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Abstract
Breast cancer has become an important factor affecting human health. Diagnosis based on
pathological images is considered the gold standard in the clinic. In this paper, an automatic
breast cancer detection method based on hybrid features is proposed for pathological images.
To obtain better segmentation results under conditions of crowded and chromatin-sparse
nuclei, a 3-output convolutional neural network (CNN) is employed to segment the nuclei.
Due to the weak correlation between the hematoxylin (H) and eosin (E) channels, texture
features are separately extracted for the two channels, which provides more representative
results. From multiple perspectives, the morphological features, spatial structural features and
texture features are extracted and fused. Using a support vector machine (SVM) classifier with
improved generalization, the pathological image is classified as benign or malignant on the
basis of the relief method for feature selection. For the University of California, Santa Barbara
database (UCSB), the classification accuracy of the method is 96.7%, and the area under the
curve (AUC) is 0.983. The experimental results show that the proposed method yields superior
classification performance compared with existing techniques.

Keywords Breast cancer . Nuclei segmentation . Deep learning . Hybrid features . Pathological
image

1 Introduction

Cancer has increasingly become a chronic disease that affects human health. According to the
statistics of World Cancer Research Fund International [1], breast cancer is the most common
cancer in women worldwide, with nearly 1.7 million new cases diagnosed in 2012 (second
most common cancer overall). Breast cancer represents approximately 12% of all new cancer
cases and 25% of all cancers in women. It is the fifth most common cause of death from cancer
in women. In addition, the incidence rate is increasing, with a decrease in the age of onset.

Multimedia Tools and Applications (2019) 78:21325–21345
https://doi.org/10.1007/s11042-019-7468-9

* Yanfeng Li
yf.li@bjtu.edu.cn

1 School of Electronic information engineering, Beijing Jiaotong University, Beijing 100044, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-019-7468-9&domain=pdf
http://orcid.org/0000-0002-8187-9939
http://www.wcrf.org/int/research-we-fund/continuous-update-project-findings-reports/breast-cancer
mailto:yf.li@bjtu.edu.cn


Clinically, compared with mammography, magnetic resonance imaging (MRI) and other
imaging techniques, pathological imaging is the most important criterion for the final diagnosis
of breast cancer. The accurate classification of pathological images provides an important basis
for doctors to formulate optimal treatment plans.

In general, a classification method is used to train a classifier on the structural,
morphological, and texture features of the extracted region of interest (ROI) or the entire
image to detect a malignant tumour. The features of the nuclei can be used to distinguish
between benign and malignant tumours. To extract these features, the nuclei should first
be segmented. Segmentation methods can be divided into supervised and unsupervised
methods. State-of-the-art nuclei segmentation techniques include watershed segmentation
[2], the threshold method [3], active contours [4–6] and region growing [7]. Ali et al. [8]
proposed a novel synergistic boundary and region-based active contour model that
incorporates shape priors in a level-set formulation with automated initialization based
on watershed segmentation. Better performance compared with the traditional active
contour method was reported, with a segmentation accuracy of more than 90%. To
handle diffuse intensities along object boundaries, Beevi et al. [9] provided a nuclei
segmentation method by combining a localized active contour model (LACM) with Krill
Herd algorithm (KHA)-based optimal thresholding. This method gave a segmentation
sensitivity of 94.36%, an accuracy of 93.54%, and a F1-score of 93.79%. However, such
methods cannot be generalized across a wide spectrum of tissue morphologies due to
inter- and intra-nuclear colour variations in crowded and chromatin-sparse nuclei. Su-
pervised segmentation methods include learning-based feature methods and deep
learning-based methods. Learning-based feature segmentation typically uses features
such as colour histograms, colour textures, and geometric features to train a classifier
[10–13]. Deep learning-based segmentation does not require the extraction of complex
artificial features. Hatipoglu et al. [14] proposed a segmentation method based on a deep
learning model with 2-output, using cellular and extracellular patches of various sizes.
The experimental results showed that convolutional neural networks (CNNs) and partly
stacked auto encoders (SAEs) had better cell-segmentation performance than traditional
methods, but some touching and overlapping remained. Neeraj Kumar et al. [15]
proposed a three-class CNN-based method for nuclei segmentation with an accuracy of
92%. This method showed an improvement in the segmentation of crowded and
chromatin-sparse nuclei. The CNN model employed a large size of convolution kernels,
which increased the calculations.

Improved segmentation has provided a good foundation for increasing classification
accuracy. Anuranjeeta et al. [16] proposed a method that combined the morphological
features of the nuclei and a Rotation Forest classifier to obtain an accuracy of 85.7%.
However, the morphological features were too simple to explain the nuclear arrangement
and chromatin characteristics. Doyle et al. [17] used an SVM classifier to distinguish
between cancer or non-cancer images based on the combination of the texture features of
grayscale images and the architectural features of the nuclei. The system achieved an
accuracy of 95.8% in distinguishing cancer from non-cancer and 93.3% in distinguishing
high from low grades of cancer. However, the highest accuracy was achieved when only
Gabor filter features were used instead of all feature sets. With the improvement of
computing power, attention has increasingly focused on the classification of deep
learning [18, 19]. To reduce the dependence on feature engineering and improve the
automatic learning ability of features, Spanhol et al. [20] employed AlexNet to classify
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benign or malignant tumours from breast cancer pathological images. Their classification
results were 6% more accurate than those obtained by traditional machine learning
classification algorithms [21]. Bayramoglu et al. [22] proposed a CNN-based method
to classify breast cancer histopathology images. It reported that the classification perfor-
mance did not degrade when mixing images with different magnifications in the training
stage. However, the complexity of this system was increased, thus requiring longer
training time. Cavalin et al. [23] conducted transfer learning through a modified Alexnet
model. Combining full-connection layer features, the classification accuracy is about
85% to 90%.

In this paper, an automatic breast cancer detection method based on hybrid features is
proposed for pathological image. Nuclei may be crowded and chromatin-sparse. To get more
accurate nuclei segmentation result, a 3-output CNN model and a post processing scheme are
designed. The benign and malignant nuclei are different from shape, texture and spatial
distribution. To comprehensively describe the difference, morphological features, spatial
features, and texture features are extracted and fused. According to the Lambert-Beer law,
the colour in the H&E-stained image is a superposition of two independent vectors. The
correlation between the H and E channels is weak. Based on this observation, texture features
are extracted for these two channels, respectively.

The flow chart of the proposed method is shown in Fig. 1. First, the nuclei in the
pathological image are segmented by combining a 3-output CNN and a post-processing
scheme. Then, the morphological features and spatial structural features are extracted
based on the segmented nuclei. These features are fused with texture features of the H E
images. Finally, the relief method is employed for feature selection, and an SVM
classifier is adopted.

2 Database

The pathological image database from the Center for Bio-image Informatics [24], University
of California, Santa Barbara (UCSB), includes 26 malignant cell images and 32 benign cell
images. As the segmentation results and classification results are both provided, this database
is selected to verify the proposed method. All images are stored in 24-bit TIFF format with a
resolution of 896×786 and a magnification of 40×. As the images in this database are prepared
by the same pathology laboratory, there is no spectral variation in the imaging illuminant [25].
Only a size of 200×200 ground truth (GT) nuclei segmentation are labelled for each image, as
shown in Fig. 2. Touching and overlapping nuclei are not further segmented.

Fig. 1 Flow chart of breast cancer automatic detection
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3 Method

3.1 Nuclei segmentation based on deep learning

Deep learning-based segmentation can automatically discover features from images, which is
convenient for automatic detection and produces relatively good results. Instead of a CNN
model with 2 classes including foreground and background, a 3-class CNN model with nuclei,
nuclear boundary and background is employed [15]. In the 2-output CNN model, unnecessary
touching may occur between the nuclei. In the 3-output CNN model, the nuclear boundary is
extracted and then used in re-determination to alleviate segmentation errors. The process of
segmentation based on the 3-output CNN is shown in Fig. 3.

Fig. 2 Example from the UCSB pathological database. a Benign image. bMalignant image. cGround truth (GT)
of the benign image. d GT of the malignant image

Fig. 3 Flow chart of segmentation based on the 3-output CNN
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3.1.1 Structure of the CNN model

The designed CNN model consists of 3 convolutional layers, 3 pooling layers, 2 fully
connected layers and 1 output layer. The structure is shown in Table 1.

Convolutional layer This layer is used to learn features from images. The advantages of the
CNN model are local perception and weight sharing, which are fully reflected in the
convolutional layer. The size of the scan window is the same as that of the convolution kernel,
and only partial images or feature maps are scanned at one time. A feature map shares a
convolution kernel.

A convolution kernel is convolved with a number of feature maps from the previous layer.
Then, the corresponding elements and a bias are added. Finally, the weighted sum are
conveyed to a nonlinear activation function to obtain a new feature map [26]. The activation
function can be a rectified linear unit (ReLU) function or sigmoid function. The process of
feature extraction is given by the following:

xlj ¼ f ∑i∈ml−1xl−1i *w lð Þ
ij þ b lð Þ

j

� �
ð1Þ

In (1), xlj denotes the jth feature map of the lth layer, and w lð Þ
ij shows the weights between

the jth feature map of the lth layer and the ith feature map of the (l − 1)th layer. b lð Þ
j

represents the offset of the jth feature map in the lth layer, and ml − 1 indicates all feature
maps in the (l − 1)th layer.

The convolution kernel size of the CNN model is 3×3 pixels, which is beneficial for
extracting the finer features from the image and reducing the number of parameters and the
amount of calculation.

Pooling layer This layer is used to compress the feature map. Feature compression is
performed to extract the main features, which reduces the size of the feature map and simplifies
the network. In general, the feature map of the convolutional layer is downsampled by taking
the regional maximum or average value.

Fully connected layer All features are connected and prepared for classification. The convo-
lution can be transformed into a global convolution with the size of the previous convolution

Table 1 The CNN model parameters

Layer Filter size Activation Output size

Input – – 25×25×3
Conv 3×3 ReLU 23×23×25
Pool 2×2 Max 11×11×25
Conv 3×3 ReLU 9×9×50
Pool 2×2 Max 4×4×50
Conv 3×3 ReLU 2×2×80
Pool 2×2 Max 1×1×80
FC 1 – ReLU 1024
FC 2 – ReLU 1024
Output – SoftMax 3
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kernel if the previous layer is the convolutional layer, otherwise, the convolution is converted
to a convolution with a 1×1 convolution kernel.

Output layer The softmax classifier is used to obtain the classes. The softmax classifier is an
algorithm that classifies samples into multiple classes. Suppose there are N input images

xif gNi¼1, each image is labelled with {yi ∈ {1, 2, 3, … , k}, k ≥ 2}, for a total of k classes. For
each input xi, there will be a probability for each class.

hθ xið Þ ¼
p yi ¼ 1jxi; θð Þ
p yi ¼ 2jxi; θð Þ

⋮
p yi ¼ kjxi; θð Þ

2
64

3
75 ¼ 1

∑k
j¼1e

θTj xi

eθ
T
1 xi

eθ
T
2 xi

⋮
eθ

T
k xi

2
664

3
775 ð2Þ

In (2), 1

∑k
j¼1e

θT
j
xi
represents the normalization of the probability distribution, that is, the sum of all

the probabilities is 1. θ represents the parameters of the softmax classifier.

3.1.2 Post processing

The probability growing method is used to convert the three probability maps obtained
by the CNN model into fine nuclei [15]. The probability maps are shown in Fig. 4. First,
the nuclear probability map is binarized at the threshold Thn to obtain a reduced nucleus.
Second, the morphological dilation operation is used to amplify the nucleus by 1 pixel.
Then average probability of the nuclear region is obtained by multiplying the boundary
probability map by the nuclear region. Probability growing is not complete until the
average probability of the nucleus reaches the average probability of the boundary
probability map by iteration. The images after post processing are shown in Fig. 4.

Fig. 4 Example of probability maps of prediction. The top row shows benign images. The bottom row shows
malignant images. From left to right: the original image, background probability map, boundary probability map,
nuclei probability map, binary image and colour image
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3.2 Feature extraction

In general, the benign nucleus is basically elliptical or round-like, with a consistent shape and
size, smooth edges, abundant cytoplasm, fine chromatin and a uniform distribution. Malignant
nuclei have irregular shapes, with spiky rather than smooth edges. The volume is generally 1–4
times larger than that of a normal nucleus. The number of nuclei is greater, and the staining is
deeper and more uneven [27].

Based on the above information, a feature vector v is created for each image I that
includes morphological features, spatial features, and texture features. Because of the
weak correlation between the H and E channels, the image is first decomposed to H
channel and E channel according to Lambert-Beer law. The texture features are extracted
for these two channels separately.

3.2.1 Morphological features

Ten morphological features are calculated from image I, including the number of nuclei, the
proportion of nuclei to the entire area, and the average, standard deviation, maximum, and
minimum of nuclei areas and perimeters. Since the overlap and touch are not serious, the
separation of connected nuclei is ignored. The number of all connected components in the
segmentation result is taken as the number of nuclei. In calculating the perimeter and area, only
the discrete nuclei are employed.

3.2.2 Spatial features

Benign and malignant images have different spatial distributions of nuclei. The Voronoi
diagram, Delaunay diagram and minimum spanning tree are employed to extract the
spatial features.

Voronoi diagram Given a set of two or more but a finite number of distinct points in the
Euclidean plane, all locations in that space are associated with the closest member of the point
set with respect to the Euclidean distance, which is called the Voronoi diagram [28]. The
Voronoi diagram is shown in Fig. 5.

Fig. 5 Example of a Voronoi diagram. a Benign image. b Malignant image
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Since the Euclidean distance is used to divide these points, the distances between overlap-
ping and touching nuclei are so small that they can be ignored for a moment. Centroids of
connected regions are used to plot the Voronoi diagram. Then, 12 spatial features are calculated
from image I, including the average, standard deviation, maximum and minimum of areas, side
lengths and perimeters of each Euclidean polygon region. The Voronoi diagram assigns
infinity points to the outermost centroid, resulting in an infinite area of the Voronoi polygon
formed by the outermost points. Thus, the calculation of the outermost regions is neglected.

Delaunay diagram The Delaunay triangulation of a discrete point set P in a general position
corresponds to the dual graph of the Voronoi diagram for P. The planar Voronoi graph has a
straight line between two nodes if the corresponding cells share an edge. All lines constitute
the Delaunay graph. Three points di, dj, dk ∈D are vertices of the same face of the Delaunay
graph of D if and only if the circle through di, dj, dk contains no point of D in its interior. Two
points di, dj ∈D form an edge of the Delaunay graph of D if and only if there is a closed circle
C that contains di and dj on its boundary and does not contain any other point of D [29]. The
Delaunay diagram is shown in Fig. 6.

The average, standard deviation, maximum and minimum of areas, side lengths and
perimeters of each triangle as well as the number of areas and side lengths are calculated to
obtain a total of 14 features.

Minimum spanning tree The minimum spanning tree is one of the applications of the
Delaunay diagram. For a set T of n points in the plane, the Euclidean Minimum Spanning
Tree is the graph with the minimum summed edge length that connects all points in T and
has only the points of T as vertices [29]. The minimum spanning tree is generated by
taking the distance between nodes as the weight of the edge. Multiple minimum
spanning trees constitute the minimum spanning forest. A diagram of a minimum
spanning forest is shown in Fig. 7.

Benign nuclei often have cluster distributions. For example, benign ductal tumour cells are
confined within the duct, and the basement membrane is intact. However, malignant cancer
cells break through the epithelial basement membrane and widely invade surrounding tissues
[27]. The minimum spanning tree is used to simulate this distribution. Based on the Delaunay
graph, the side length threshold is set as Thl, the side length that exceeds Thl is deleted, and the
number of minimum spanning trees in the minimum spanning forest is calculated. At the same

Fig. 6 Example of a Delaunay diagram. a Benign image. b Malignant image
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time, the average, standard deviation, maximum, and minimum of the side lengths in the
minimum spanning forest are calculated, and there are 5 features in total.

3.2.3 Texture features

The benign nuclear chromatin is fine, with a uniform distribution and many interstitial fibrous
tissues. The malignant nucleus is vacuolated, with obvious nucleoli and less interstitial fibrous
tissue. Speeded Up Robust Features (SURF), Grey-level co-occurrence matrix (GLCM), and
Local binary patterns (LBP) features are extracted to represent the texture changes in the
nucleus and fibrous tissues. In terms of colour space, the H and E channels are employed as the
basis for extracting texture features. According to the Lambert-Beer law, the colour in the
H&E-stained image is a superposition of two independent vectors, namely the absorption
spectra of H and E in the optical density domain. The smaller cross information in the H&E
model means that the channels in the H&E model are less dependent on each other than the
channels in other colour spaces [25].

Colour decomposition According to the Lambert-Beer law, the reverse operation by which a
colour represented in RGB colour is converted to the H&E model is called colour decompo-
sition [30]. The relation between light transmission and the amount (A) of stain with dye
absorption factor C in stained samples is given by the following:

I i ¼ I0;ie−ACi ð3Þ
In (3), Iiis the intensity of light detected after passing the specimen, I0, i is the intensity of light
entering the specimen, and subscript i indicates the detection channel.

The optical density (OD) for each channel is defined as follows:

ODi ¼ −log10
I i
I0;i

¼ ACi ð4Þ

Since the optical density (OD) of each channel is linear with the concentration of absorbing
material, it can be used to separate the contributions of multiple stains in a specimen.

Fig. 7 Example of a minimum spanning forest. a Benign image. b Malignant image
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If R is a 3×1 vector of the amounts of the three stains at a particular pixel and the optical
density matrix (OD) is Q, then the OD vector detected at that pixel is y = RQ. After
transformation, the vector is R =Q−1y, and then the colour deconvolution matrix can be easily
defined as follows:

S ¼ Q−1 ð5Þ
Utilizing the colour deconvolution matrix, the RGB image (shown in Fig. 8a) is converted into
the H channel image (shown in Fig. 8b) and E channel image (shown in Fig. 8c).

SURF SURF is a robust local feature point detection and description algorithm [31] that
includes the construction of a Hessian matrix and scale space, the location of feature points,
assignment of the main direction of feature points and the generation of feature descriptors.
The Hessian matrix is the core of the SURF algorithm.

Given a point x = (x, y) in an image I, the Hessian matrix H x;σð Þ in x at scale σ is defined
as follows:

H x;σð Þ ¼ Lxx x;σð Þ Lxy x;σð Þ
Lxy x;σð Þ Lyy x;σð Þ

� �
ð6Þ

In (6), Lxx(x, σ) is the convolution of the Gaussian second-order derivative ∂2
∂x2 g σð Þ with the

image I in point x; Lxy(x, σ) and Lyy(x, σ) are derived in a similar manner.
In the main direction, a square region round the feature point is split up regularly into

smaller 4×4 square sub-regions. For each sub-region, we compute Haar wavelet responses at
5×5 regularly spaced sample points. Each sub-region has a four-dimensional descriptor vector
V, V = (∑dx,∑dy, ∑ | dx| , ∑ | dy| ), which represents the sum of the responses in the horizontal
and vertical directions and the sum of the absolute values of the responses in the horizontal and
vertical directions, resulting in 64 features. The 64 features of multiple interest points of each
image are summed so that each image has SURF features with the same dimension.

GLCM GLCM [32] is often used to represent image texture features. A GLCM is a matrix in
which the number of rows and columns is equal to the number of grey levels in the image. The
matrix element P(i, j|Δx,Δy) is the relative frequency separated by a pixel distance (Δx,Δy).
Then four features are obtained, including contrast, energy, correlation and homogeneity [33].
The contrast reflects the sharpness and texture of the image. The energy is the sum of the
squares of the elements in the grey-level co-occurrence matrix and is also a measure of the

Fig. 8 Example of stain decomposition. a Original RGB image. b H channel image. c E channel image
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stability of the grayscale variations of the image texture. The correlation is used to measure the
similarity of the grey level of the image in the row or column direction. Homogeneity transfers
the tightness of the element distribution to the diagonal of the GLCM [34]. The directions
include 0∘, 45∘, 90∘ and 135∘. There are 16 features for each image.

LBP LBP consists of computing the distribution of binary patterns in the circular
neighbourhood of each pixel. The neighbourhood is characterized by a radius R and a number
of neighbours P. The principle is to threshold neighbouring pixels compared to the central
pixel. The value 1 is assigned to each of the P neighbours if the current pixel intensity is
superior or equal to the central pixel intensity. Otherwise, the value 0 is assigned. Thus, for
each pixel, a binary pattern is obtained from the neighbourhood [21]. The number of
neighbours P is set as 8, and 59 features are obtained. All features and numbers are shown
in Table 2.

3.3 Feature selection and classification

The number of features is large, and there are some redundant and irrelevant features. It is
necessary to select useful and important features for classification. The relief-based feature
selection method [35], which is a kind of feature weighting algorithm, is chosen. Different
features are assigned weights based on the relevance of each feature and class, and features
with weights less than a certain threshold are removed.

A SVM classifier is used to classify benign and malignant tumours, which satisfies the
requirements of small sample, fast computation, generalization and robustness. Moreover, a
few support vectors can determine the final result. It can not only grasps key samples and
eliminates a large number of redundant samples, but also reduces the computational
complexity.

4 Experiment and result

4.1 Experiment settings

A 10-fold cross-validation algorithm is used to obtain credible results. For each fold, the
training set consists of approximately 90% of the images, resulting in the set of 29 benign
images and 23 malignant images, the remaining images are used as the testing set.

Table 2 The type and number of each feature

Type Name Number

Morphological features – 10
Spatial features Voronoi 12

Delaunay 14
Minspantree 5

Texture features SURF 128
GLCM 32
LBP 118

Total – 319
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Training strategy As only a segmentation size of 200×200 is labelled for each image, training
and quantitative measurement for segmentation is only computed for the 200×200 ROI for each
image. For each pixel, a 25×25 patch is taken. A total of 200,000 patches with 3 classes are
obtained from the training images. CNN is trained using Torch [36] on a graphics processing unit
(GPU). The initial learning rate for the network is 0.01. The CNNmodel is trained for 50 epochs
with a batch size of 128, and the time of each epoch is approximately 1 min 30 s.

For classification, the entire image with a size of 896×768 is first segmented using the 3-
CNN model. Afterwards, the features are extracted and used to train the SVM classifier in
MATLAB 2016a on a central processing unit (CPU). Feature extraction and selection require
about 20 min. The time of classifier training is about 0.5 s.

4.2 Segmentation result

The proposed segmentation method is compared with threshold processing [37], the marker
controlled watershed algorithm [38], the fuzzy C-means clustering method (FCM) [39] and
CNN with 2 classes (2-CNN) [14]. The segmentation performance is quantitatively evaluated
based on accuracy, sensitivity, specificity and precision and the F1-score. All measure metrics
are derived from the confusion matrix. The confusion matrix containing information about the
actual and predicted classification results is defined in Table 3. True positive (TP) indicates that
an originally positive class is assigned to a positive class. False positive (FP) represents that an
originally negative class is assigned to a positive class. True negative (TN) means that an
originally negative class is assigned to a negative class. False negative (FN) indicates that an
originally positive class is assigned to a negative class. The foreground and background are
considered positive and negative, respectively.

Accuracy represents the proportion of correct classification in all samples.

Accuracy ¼ TP þ TN
TP þ FPþ TN þ FN

ð7Þ

Sensitivity indicates the proportion of positive categories that are correctly classified, which is
also known as recall.

Sensitivity ¼ Recall ¼ TP
TP þ FN

ð8Þ

Specificity shows the proportion of negative categories that are correctly classified.

Specificity ¼ TN
TN þ FP

ð9Þ

Table 3 Confusion Matrix

Predicted class

Malignant Benign

Actual class Malignant TP FN
Benign FP TN
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Precision represents the proportion of positive classes in all samples that are classified as
positive.

Precision ¼ TP
TP þ FP

ð10Þ

The F1-score is the harmonic mean of accuracy and sensitivity. It reflects the robustness of the
classification.

F1−score ¼ 2� Precision� Recall

Precisionþ Recall
¼ 2TP

2TP þ FPþ FN
ð11Þ

A quantitative comparison of the different segmentation methods is shown in Table 4. As
shown in Table 4, the accuracy and F1-score of the proposed method are 0.9082 and 0.8164,
obviously higher than those of the unsupervised methods OTSU, Watershed and FCM.
Compared with 2-CNN, the accuracy and F1-score are increased by 0.98% and 0.28%,
respectively. Some segmentation examples for different methods are shown in Fig. 9, which
illustrates that the proposed method can produce better nuclei segmentation than the 2-CNN
model in terms of overlapping nuclei.

4.3 Classification result

After feature extraction, the best 50 features are selected using the relief algorithm to train the
SVM classifier. The classifier performance is evaluated by accuracy, sensitivity, specificity, F1-

Table 4 Comparison of the results of segmentation performance

Accuracy Sensitivity Specificity Precision F1- score

OTSU [37] 0.8622 0.9276 0.8454 0.6562 0.7578
Watershed [38] 0.7672 0.7453 0.7748 0.5457 0.6026
FCM [39] 0.8584 0.8571 0.8604 0.6719 0.7415
2-CNN [14] 0.8994 0.9042 0.8938 0.7450 0.8141
3-CNN 0.9082 0.8717 0.9172 0.7766 0.8164

Fig. 9 The top row shows benign images, and the bottom row shows malignant images. From left to right, the
images are marked by GT, threshold processing, watershed, FCM, 2-CNN and our proposed method
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score, Matthews correlation coefficient (MCC) and AUC. Malignant and benign are consid-
ered positive and negative, respectively.

MCC is used to measure the binary classifier. Its value ranges between −1 and + 1, where
−1, +1, and 0 correspond to worst, best and at random prediction [16].

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ TP þ FPð Þ TN þ FNð Þ TN þ FPð Þð Þp ð12Þ

AUC is the area covered by the receiver operating characteristic (ROC) curve. The x-
coordinate of the ROC curve is the false-positive rate (FPR), and the y-coordinate is the
true-positive rate (TPR). A larger value of TPR indicates that more positive samples are
correctly detected, and a larger value of FPR signifies that more negative samples are
misdiagnosed. Thus, AUC reflects the classifier performance.

TPR ¼ TP
TP þ FN

ð13Þ

FPR ¼ 1−Specificity ¼ FP
TN þ FP

ð14Þ

Five existing methods are employed for comparison, including hand-crafted features [17,
18, 31], CNN trained from scratch [38] and transfer learning [40]. The comparison

Table 5 Comparison among the three methods and our proposed method

Accuracy Sensitivity Specificity F1- score MCC AUC

Anuranjeeta [16] 0.857 0.829 0.886 0.861 0.715 0.884
Y Song [41] 0.897 – – – – 0.930
Xingyu Li [25] 0.802 – – – – 0.659
Spanhol [20] 0.860 0.867 0.834 0.836 0.745 0.856
Cavalin [23] 0.860 0.788 0.916 0.833 0.715 0.900
Proposed 0.967 0.923 1 0.960 0.932 0.983

Fig. 10 The ROC curve of the classifier
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results are shown in Table 5. The accuracy and AUC of the proposed method are 0.967
and 0.983, which are higher than the five existing methods. The specificity of the
proposed method is 1, indicating that all benign pathological images of breast cancer
are correctly identified. The MCC of the proposed method is 0.932, showing excellent
classification performance. Moreover, as shown in Fig. 10, the ROC curve is close to the
upper left corner, and AUC is close to 1.

The reason for the higher performance may be as follows. For CNN-based method, just
high level features are extracted blindly from the entire image. However, medical heuristic
characteristics is important for medical image classification. Moreover, the parameter
setting of CNN model is also a big challenge. The proposed method uses medical heuristic
characteristics in feature extraction. The extracted features including morphology, spatial
distribution and texture, which is comprehensive for discriminating benign and malignant
pathological images.

5 Discussion

In classification, only malignant breast pathological images were wrongly classified as benign
pathological images, as shown in Fig. 11a and b). The feature vectors for these two images
were analysed. The areas and perimeters of nuclei, GLCM features and features extracted from
the minimum spanning tree are shown in Figs. 12 and 13. Specifically, these features of the
misclassified images are obviously more similar to those of benign images, and thus it is easy
for these images to be classified as benign images. The features of the image in Fig. 11a are

Fig. 11 a-b Misclassified malignant image. c Ordinary benign image. d Ordinary malignant image

Fig. 12 a Scatter diagram of morphological features for benign and malignant breast images. b Scatter diagram
of morphological and GLCM features for benign and malignant breast images
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shown in Fig. 12. The shape and stability of the grayscale variations of the image texture are
clearly similar to those of the ordinary benign image (shown in Fig. 11c). The boundaries
between benign cells and surrounding tissues are clear, with no metastasis, and thus the
integrity of the extracellular matrix structure is maintained. Adhesions and connection-
related components between malignant cells are mutated or absent, and cells lose their
association with the intercellular and extracellular matrices. Therefore, the texture in malignant
images is more blurred with a lower value of energy. The features of the image in Fig. 11b are
shown in Fig. 13. Apart from similar morphological features, the nuclei in the misclassified
image are less widely distributed, thus more similar to those in an ordinary benign image than
the nuclei in an ordinary malignant image (shown in Fig. 11d). For nuclei in an ordinary
benign image are generally distributed in some regions, and few nuclei invade into other
tissues. Therefore, these images may be less malignant.

Classification based on handcrafted features requires effective professional knowledge. It is
specific for each problem and has limited applicability in other domains. CNN-based approach
does not take exact difference between images into consideration, giving it the ability to self-
learn. However, due to the complexity of model-tuning, the training time is longer. To achieve
better results, large dataset and parameter tuning are needed. Compare with natural image,
medical image is with small dataset and has some heuristic characteristics. In breast cancer
classification, the nuclei number size, nuclei distribution and the texture of stroma can be
observed. The proposed method utilized these medical characteristics to classify benign or
malignant tumours and a better performance is obtained.

6 Conclusion

In this paper, a classification method based on 3-output CNN segmentation and hybrid feature
extraction is proposed. In the process of segmentation, the probability growing method is used
to fuse the boundary probability map and the nuclear probability map to achieve the effect of
fine segmentation. For benign and malignant classification, hybrid features representing the
differences in morphological, spatial and texture are extracted. In addition, the classification of
breast pathological images with limited annotations is very effective. It is not necessary to
obtain a perfect segmentation effect by segmenting the overlapping nuclei, and the benign and

Fig. 13 a Scatter diagram of morphological features for benign and malignant breast images. b Scatter diagram
of morphological and minimum spanning tree features for benign and malignant breast images
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malignant images can also be distinguished, which not only reduces the complexity of image
processing but also reduces the workload of pathologists annotating images.
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