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Abstract
Magnetic resonance image (MRI) plays a crucial role in medical applications for visual
analysis and processing. Rician noise which arises from the MRI during acquisition can affect
the quality of the image. This crucial issue should be addressed by denoising method. The
proposed adaptive rician noise removal based on the bilateral filter using fuzzy hexagonal
membership function improves the denoising efficiency at various noise variances and pre-
serves the fine structures and edges. The fuzzy weights were obtained with the local mean (μi)
and global mean (μg) by constructing hexagonal membership function for local order filter and
bilateral filter. Bilateral filter is used to preserve the edges by smoothening the noises in MRI
image and local filter is used to preserve the edges and retrieve the structural information.
Brain MRI images are restored by multiplying its corresponding fuzzy weight with the restored
image of local order filter and bilateral filter. Experiments on synthetic and clinical Brain MRI
data were done at different noise levels by the proposed method and the existing methods. The
result shows that the proposed method restores the image in better visual quality and can be
well utilized for the diagnostic purpose at both low and high densities of rician noise.

Keywords Magnetic resonance imaging . Rician noise . Fuzzy logic . Denoising .Membership
function . Bilateral filtering

1 Introduction

Magnetic resonance imaging (MRI) is a significant powerful imaging techniques and effective
diagnostic tool developed to analyze the anatomical and physiological information of internal
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body parts [38]. MRI images are affected by thermal noise during acquisition and decrease the
quality of the acquired images [11, 16, 21, 26]. The restoration of noisy image without
degrading the fine structural features has been a crucial issue in MRI analysis [10]. Need of
noise reduction technique for medical image is a vital issue in medical field. Different kinds of
noises like salt & pepper, speckle, gaussian, rician, rayleigh, gamma, uniform, poisson etc. are
present in medical image [1, 2]. The most frequently occurring noise in MRI images is the
rician noise. The complexity in restoring high resolution MRI increases due to rician noise.
The low signal to noise ratio (SNR) creates random variation and the signals dependent on bias
which reduces the brightness and contrast of the image [28, 29]. This work is to improve
energy consumption, reliability and better lifetime. It provides the hybrid solution. The
watermarking has to be done for the restoration for achievement of good quality in the images
[4, 6, 22].

Many researchers developed diverse techniques to restore the MRI images affected by
rician noise. The estimation of magnitude MRI from the degraded image has been proposed
but limits to low noise variation [13]. Gaussian filters have been extensively used in MRI pre-
processing during restoration, results in blurred edges at high-frequency signals [8]. Various
edge-preserving methods have been projected for medical image denoising to overcome the
blurring effects and they do not degrade the morphological edges during smoothing [17]. The
anisotropic diffusion filters removes noise using gradient information at low noise level rather
than high noise level [12]. Homogeneity mean difference (HMD) method is sensitive to noise
and insensitive to contrast during image restoration [37]. In [23] noises in the brain images
were detected and removed using directional filtering algorithm but it takes more complexity.
Wavelet based bilateral filter with neigh shrink preserves the structural features, but the strong
noisy pixels in homogeneous regions were not reduced [7]. MRI enhancement using genetic
programming for rician noise removal preserves the structural details, but complexity increases
in setting the parameters for genetic programming and requires more time to converge [20].

Rough set based bilateral filter approach derives pixel level edge map and class labels to
achieve better restoration but the restoration potential needs to be improved [31]. Non-local
means (NLM) algorithms were efficiently used in MRI denoising, but limited due to high
computational complexity. The random sampling based NLM algorithm decreases the com-
putational burden, but the restoration potential needs to be improved [15]. Linear minimum
mean square error (LMMSE) filtering removes the rician noise with less restoration efficiency
[36]. The choice of bilateral filter parameters affects the performance of denoising. In order to
get the optimised parameters, genetic algorithms have been applied to the noisy images in
searching regions of different window size and the efficiency of the filter mainly depends upon
the optimal parameter selection [3]. Iterative bilateral filter improves the denoising efficiency,
preserves the fine structures and reduces the bias due to rician noise but the complexity
increases due to increase in number of iterations [32].

To overcome these challenges, machine learning techniques such as fuzzy logic based
system are widely used for solving problems in different domain of engineering [5, 9] and in
medical application it is based on image-based diagnosis, disease detection and disease
prognosis to reduce the operator dependency and get better diagnostic accuracy [19]. Trape-
zoidal fuzzy based hybrid filter preserves edges but does not give a suitable degree of
membership to the filters to restore the MR image [35]. In fuzzy similarity based NLM filter
for rician noise removal, the structural information has not been retrieved properly from noisy
image [34]. The adaptive hexagonal fuzzy hybrid filter for rician noise removal in MR images
restores the image at low and high densities of rician noise [18]. However, the problem of

Multimedia Tools and Applications (2020) 79:15513–1553015514



image restoration still remains open because it is an ill-posed inverse problem; it requires
necessary information about the degraded image to reconstruct the original image. Therefore,
the need for more effective methods keeps increasing. The proposed adaptive fuzzy hexagonal
bilateral filter removes the rician noise by preserving the structural information. The proposed
filter combines the median filter and bilateral filter adaptively by constructing the fuzzy
hexagonal membership function using local and global statistical parameters.

The rest of the paper is organised as follows. Section 2 briefly discusses the proposed
adaptive fuzzy hexagonal bilateral filter for brain MRI restoration. Section 3 provides the
information on experimental setup. Section 4 discusses the analysis of the proposed adaptive
fuzzy hexagonal bilateral filter effect for synthetic and clinical MRI data. Finally Section 5
concludes the paper.

2 Adaptive fuzzy hexagonal bilateral filter

The proposed adaptive fuzzy hexagonal bilateral filter along with local order filter removes the
rician noise in MRI under low and high noise levels. The acquired MRI data are complex and
represented in frequency domain as k-space [35]. The raw data has been corrupted by thermal
noise during acquisition [36]. After inverse fourier transformation of the k-space data, the
resultant data are complex and still corrupted by noise. The magnitude computation is a non-
linear operation, changes to rician by realizing the probability distribution function (PDF) of
noise in the image [35]. The PDF of MR signal (M) magnitude data is given as

p MjA;σð Þ ¼ M

σ2
exp −

M2 þ A2

2σ2

� �
Io

AM

σ2

� �
u Mð Þ ð1Þ

where, A represents the amplitude of noise free signal, σ2 refers to variance of white Gaussian
noise, Io denotes the modified Bessel Function in zero order and u (M) represents unit step
Heaviside function that indicates the PDF of M is valid for non negative values of M [36].

The proposed adaptive fuzzy hexagonal bilateral filter removes the rician noise in MRI is
shown in Fig. 1. The method is based on fuzzy logic that combines local order filter and
bilateral filter to restore the MRI. The proposed method determines the statistical features such
as local mean, global mean and standard deviation of the noisy image. The fuzzy weights are
computed adaptively using hexagonal membership function at both low and high noise levels
to restore the MR image as shown in Fig. 1 where Wbilateral and Wlocal are the fuzzy weights for
the noisy MRI image.

2.1 Statistical features

The statistical features such as standard deviation, local mean, and global mean are computed
using (2) and (3) [35]. To differentiate background and foreground regions of the image, local
mean (μi) of a local neighbourhood and global mean (μg) of a noisy image are considered to
construct fuzzy membership function. In magnitude MR data the standard deviation of the
rician noise is computed using (2)

σg ¼
ffiffiffiffiffiffi
μb

2

r
ð2Þ
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where μb is the mean value of the background region of MR image.

μb ¼
1

m� n
∑m;n

i; j¼1 f i; jð Þ ð3Þ

f(i, j) is the input MRI image of size m × n. Background is extracted using Otsu threshold
method [35].

2.2 MRI denoising using local order and bilateral filter

The local order and bilateral filter are applied to the noisy MR image. The local order filter is
the high pass filter works well at low level noise in MRI image by retaining the edges. The
bilateral filter is a non linear filter, preserves the edges and removes the noise effectively. The
local order and bilateral filter are applied along with the corresponding fuzzy weights
determined by using hexagonal membership function suppress the rician noise.

2.2.1 Local order filter

The local order filter is used to remove the highly corrupted pixels. It uses the search
window size (2 ×Mlocal + 1) with a mask of size (2 × Rlocal + 1) to perform convolution
over the complete noisy MR image. The Mlocal and Rlocal are set to one and compute the
median value for each pixel in the image [35]. The restored image for local-order
statistical filter is given by

Llocal ¼ LocalFilter L;Rlocalð Þ ð4Þ

where, Llocal is the local order filter image of the noisy MR image L and Rlocal is the
radius of squared neighbourhood pixel.

2.2.2 Bilateral filter

The bilateral filter uses the combination of the weight obtained in range filter and domain
filter for removing the noise in MR image. The bilateral filter smoothens and preserves
edges of the noisy MR image. The bilateral filter for image restoration is given in (5).

Fig. 1 Block diagram of the proposed adaptive fuzzy hexagonal bilateral filter
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The weights of the domain and range filter are given in (6) & (7) respectively. The
weight of the domain filter is computed as spatial distance between the pixels and the
range filter is the intensity difference between the pixels.

Bbilateral ¼ 1

wp
∑
x∈Ω

wd wr f xð Þ ð5Þ

where,

wd ¼ e
−1
2

d p−sð Þ
σd

� �2

ð6Þ

wr ¼ e−
1
2

δ Ip−Isð Þ
σr

� �2

ð7Þ
and

wp ¼ ∑
x∈Ω

wd wr

f(x) is the input MR image, wd, wr and wp are the weights of the domain filter, range filter and
normalization parameter respectively. Ω is the neighbourhood of a centre pixel. σd and σr

controls the decay of two weight factors, d (p-s) is the Euclidean distance between current
pixel (p) and neighbour pixel (s), δ(Ip - Is) is the difference between two intensity values [32].

2.3 Adaptive fuzzy hexagonal membership function

An adaptive fuzzy hexagonal membership function restores the noisy MRI using the statistical
features. Membership function (MF) is a hexagonal curve that defines the mapping of each
pixel in the input MR image to the corresponding membership value between 0 and 1 as given
in (9). Fuzzy hexagonal membership function has been constructed adaptively by using
statistical features for better restoration. The hexagonal MF shown in Fig. 2 has been denoted
using (9).

f x; a; b; c; d; e; fð Þ ¼

0 for x < a
1

2

x−a
b−a

� �
for a≤x≤b

1

2
þ 1

2

x−b
c−b

� �
for b≤x≤c

1 for c≤x≤d

1−
1

2

x−d
e−d

� �
for d≤x≤e

1

2

f −x
f −e

� �
for e≤x≤ f

0 for x > f

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð9Þ

where x is the input value for the hexagonal function and a, b, c, d, e and f are scalar
parameters, computed using (10).
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a ¼ k1 �min μi;μg

� �
b ¼ k2 �max μi;μg

� �
c ¼ k3 � b
d ¼ k4 � c
e ¼ k5 � d
f ¼ k6 � e

ð10Þ

where k1, k2, k3, k4, k5, and k6 are adjusting parameters and it depends on noise level σg. μi is
the mean of a local neighbourhood centred around a pixel i and μg is the mean of the complete
image. The adjusting parameters k1 and k2 have been considered as given in (11) [35]. The k3,
k4, k5, and k6 are obtained by conducting the experiment based on trial and error method.

k1 ¼ 3:1� σg

k2 ¼ 0:98þ 0:8� σg

k3 ¼ 4:1
k4 ¼ 3:1
k5 ¼ 2:1
k6 ¼ 1:1

ð11Þ

After the construction of fuzzy hexagonal membership function, weight of bilateral and
local order are computed as given in (12),

Wbilateral ¼ f μi; a; b; c; d; e; fð Þ
Wlocal ¼ 1–Wbilateral

ð12Þ

where Wbilateral and Wlocal are the near optimal contributions of bilateral and local filters
respectively.

The restored image is obtained using (13),

f x; yð Þ ¼ Wbilateral � Bbilateral þ Wlocal � Llocal ð13Þ

Fig. 2 Hexagonal Fuzzy Membership Function
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3 Experimental setup

Quantitative and Qualitative analysis are performed for the synthetic and clinical MRI using
the proposed method and existing methods. Quantitative analysis is performed by the perfor-
mance metrics peak signal to noise ratio (PSNR), root mean squared error (RMSE) and the
structural similarity index measure (SSIM). Qualitative analysis is done by the visual assess-
ment of the restored MRI image.

3.1 Synthetic MRI data set

The synthetic data sets of the normal brain MR images are taken from the BrainWeb for
analysis. The three co-registered modalities named: T1- weighted, T2-weighted, and PD-
weighted are considered with the size 181× 128× 181. The voxel resolution of the datasets
is 1mm3. Different slices are taken for the analysis.

3.2 Clinical MRI data set

The clinical MR data sets of the brain MR images are obtained for analysis from the Medall
Diagnostics at Tirunelveli for co-registered three modalities: T1-weighted, T2-weighted, and
PD-weighted. Conventional T1, T2, and PD weighted MR image are measured with angles
700, 2200 and 2200 respectively, of the same spin echo sequence are considered for analysis
with 30 number of 2-D slices in each volume. The public MR data sets of the brain MR images
[14] for T1-weighted, T2-weighted, and PD-weighted have been analyzed for different slices.

3.3 Performance metric and parameter setup

The restoration of noisy MR images has been analysed using synthetic MRI data sets from
Brain Web and clinical data using the proposed adaptive hexagonal fuzzy bilateral filter. The
quality of the MR image has been evaluated using PSNR, RMSE and SSIM.

The proposed adaptive hexagonal fuzzy bilateral filter and the existing methods are carried
out using MATLAB 2013. The proposed adaptive hexagonal fuzzy bilateral filter has been
compared with the existing techniques such as Median filter [24], NLM filter [27], Adaptive
filter [12, 30, 33], Wiener filter [25], Bilateral filter [32], Fuzzy trapezoidal with NLM filter
[35] and Fuzzy hexagonal with NLM filter [18].

4 Results and discussion

This section represents extensive experimental validation of the proposed adaptive
hexagonal fuzzy bilateral filter using the synthetic MR image and clinical MR image
as discussed in Section 3.1 and 3.2 respectively. The noise in MRI has been removed by
restoration process using the proposed adaptive fuzzy hexagonal bilateral filter and its
performance were compared with the existing methods such as Median filter, NLM filter,
Adaptive filter, Bilateral filter, Wiener filter, Fuzzy trapezoidal with NLM filter and
Fuzzy hexagonal with NLM filter. The efficiency of the proposed adaptive fuzzy
hexagonal bilateral filter were analysed using the performance metrics PSNR, RMSE
and SSIM.
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4.1 Validation on synthetic MRI data

The synthetic MRI data with T1 weighed, T2 weighed and PD weighed were exploited at
different noise levels. Table 1 shows the performance measures from low to high level noise
for synthetic MRI image with T1 weighed, T2 weighed and PD weighed. The PSNR value
obtained for the proposed adaptive fuzzy hexagonal bilateral filter is higher than the fuzzy
hexagonal NLM filter. For higher rician noise level, NLM filter generates the artifacts on its
own and fails to restore the noisy MRI accurately leads to the low PSNR value than the noisy
image.

The bilateral filter in the proposed method has less computation cost than the NLM filter.
Median filter preserves edges but fails to retain the structural information. Adaptive filter and
wiener filter are unable to smooth the noise effectively. The NLM filter can able to preserve
distinct edge features but it excessively smoothens the homogeneous regions and reduce the
contrast between gray and white scale image [15] whereas the proposed adaptive fuzzy
hexagonal bilateral filter preserves the edges and structural details of the image. Table 1 shows
that mean of the proposed adaptive fuzzy hexagonal bilateral filter has 71, 72 and 72% for T1
weighted, T2 weighted and PD weighted respectively on average compared to fuzzy hexag-
onal NLM filter [5].

The differences in RMSE values of the proposed adaptive fuzzy hexagonal bilateral
filter with the existing methods effectively characterize the performance of the restora-
tion methods. Table 1, also shows the RMSE improvement of the processed image
obtained by the proposed adaptive fuzzy hexagonal bilateral filter and existing filters.
The proposed adaptive fuzzy hexagonal bilateral filter reduces RMSE by 99.6% for T1,
99.6% for T2 and 99.5% for PD compared to existing fuzzy hexagonal with NLM filter.
SSIM quality index confirms the better visual quality of the proposed method at all noise
levels. Figure 3 illustrates SSIM comparison of the proposed adaptive fuzzy hexagonal
bilateral filter with other methods for the synthetic MRI. The proposed method gives
much better SSIM improvement by retaining the structural details both at low and high
level noise. The bilateral filter smoothen the local variations without affecting edges and
the classification have been done using fuzzy hexagonal membership function improves
the SSIM of noisy MRI both at low and high level.

Figure 4 shows the comparison of the synthetic MRI at 10% noise level. From the figure it
is observed that the visual quality improvement achieved by the proposed adaptive fuzzy
hexagonal bilateral filter reduces the noise and restore the original MRI effectively than
existing methods. From the visual perception, it has been observed that the wiener filter is
unable to smooth noise completely. NLM filter removes the noise but the structural informa-
tion has been lost. When the noise level increases, the NLM filter with hexagonal MF and
trapezoidal MF produced extra blur in the restoration. The proposed adaptive fuzzy hexagonal
bilateral filter has the ability to reduce noise by retaining fine structural details and better edge
preserving capabilties than existing methods.

4.2 Application to clinical MRI data

To evaluate the consistency of the proposed method on clinical MRI T1 weighted, T2
weighted and PD weighted images for varying rician noise ratio from 0.05 to 0.30 with a
scale of 0.05 has been used. The quantitative metrics comparison for varying noise rates
are tabulated in Tables 2 and 3. The proposed adaptive fuzzy hexagonal bilateral filter
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restores the clinical MRI in both data sets better than existing methods, as it is easier to
tune the decay of distance function in bilateral filtering. The edge preservation in the

Fig. 3 SSIM comparsion for the synthetic MR data a T1 weighted b T2 weighted c PD weighted

Fig. 4 Synthetic MRI with 10% noise a Original image b Rician noise image (PSNR = 22.76) c Median filter
(PSNR = 23.84) d NLM filter (PSNR = 18.96) e Adaptive filter (PSNR = 21.15) f Bilateral filter (PSNR = 68.49)
gWiener filter (PSNR = 23.90) h Fuzzy trapezoidal MF with NLM filter (PSNR = 21.12) i Fuzzy hexagonal MF
with NLM filter (PSNR = 21.42) j Proposed adaptive fuzzy hexagonal bilateral filter (PSNR = 69.94)
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proposed method is higher, as it averages within smooth regions of the image than
averaging across image edges are shown in Tables 2 and 3 respectively.

Fig. 5 SSIM comparison for the clinical MRI a T1 weighted b T2 weighted c PD weighted

Fig. 6 Clinical MRI with 10% noise a Original image b Rician noise image (PSNR= 19.53) c Median filter
(PSNR = 24.85) d NLM filter (PSNR = 20.46) e Adaptive filter (PSNR = 25.98) f Bilateral filter (PSNR = 67.75)
gWiener filter (PSNR = 25.56) h Fuzzy trapezoidal MF with NLM filter (PSNR = 23.45) i Fuzzy hexagonal MF
with NLM filter (PSNR = 25.68) j Proposed adaptive fuzzy hexagonal bilateral filter (PSNR = 75.29)
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The proposed adaptive fuzzy hexagonal bilateral filter has been quantitatively compared
with existing methods, to analyze the SSIM for all noise levels for clinical dataset as shown in
Fig. 5. The qualitatively analysis is shown for the clinical dataset in Fig. 6 and from the Fig. 6
it gives residue significantly less compared to other methods. In Figs. 6 and 7 the clinical
public dataset are analysed and it result shows high performance for the proposed method. The
proposed method shows better edge preserving potential due to adaptive weight adjustment
compared to existing methods.

The enhanced accuracy of the proposed adaptive hexagonal bilateral filter can be under-
stood by considering the two facts; First, fuzzy classification has been done adaptively using
hexagonal membership function. Second, the implementation to classifying the pixel with
additional scalar parameters to tune the proposed method effectively than the trapezoidal
membership functions. Although the parameter is more but the effectiveness of the restoration
obtained by proposed adaptive fuzzy hexagonal bilateral filter method makes reliable. The
restored MRI image is noiseless due to the adaptive nature of noisy image in hexagonal fuzzy
membership function.

Fig. 7 SSIM comparison for the clinical MRI for public dataset a T1 weighted b T2 weighted c PD weighted
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5 Conclusion

In this paper, adaptive fuzzy hexagonal bilateral filter has been presented and analyzed for Brain
MRI denoising application. This method increases the PSNR without affecting the significant
structures in the image. Although RMSE is a quantitative parameter, the visual perception sense
and SSIM guarantee have been analysed. The visual inspection of the proposed method based
on image residuals evaluates the efficiency. In future, the estimation of the noise level will be
determined before restoration process and then analysis the restored MRI.
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