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Abstract
As an important issue in video classification, human action recognition is becoming a hot
topic in computer vision. The ways of effectively representing the spatial static and tempo-
ral dynamic information of videos are important problems in video action recognition. This
paper proposes an attention mechanism based convolutional LSTM action recognition algo-
rithm to improve the accuracy of recognition by extracting the salient regions of actions in
videos effectively. First, GoogleNet is used to extract the features of video frames. Then,
those feature maps are processed by the spatial transformer network for the attention. Finally
the sequential information of the features is modeled via the convolutional LSTM to clas-
sify the action in the original video. To accelerate the training speed, we adopt the analysis
of temporal coherence to reduce the redundant features extracted by GoogleNet with trivial
accuracy loss. In comparison with the state-of-the-art algorithms for video action recogni-
tion, competitive results are achieved on three widely-used datasets, UCF-11, HMDB-51
and UCF-101. Moreover, by using the analysis of temporal coherence, desirable results are
obtained while the training time is reduced.

Keywords Attention mechanism · Convolutional LSTM · Spatial transformer ·
Video action recognition

1 Introduction

Nowadays, much information on the Internet is communicated via multimedia data includ-
ing texts, audio, images and videos. Among them, videos contain massive information. The
increasing cameras and high-speed broadband networks keep videos growing more, result-
ing in the information explosion [15]. It is important to understand the content of a video
for various applications in retrieval [55], recommenddation [41], surveillance [46], human
interaction prediction [53], virtual reality [21], etc. Considering that most videos focus on
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human activities, it is desirable to recognize human actions accurately and robustly, which
requires algorithms to extract discriminative features effectively.

A variety of methods based on traditional machine learning have been developed for
video classification. Peng et al. proposed a model based on bag of visual words (BoVW)
with local features for action recognition [29]. Bhattacharya et al. proposed a probabilistic
representation for visual classification tasks based on maximizing the likelihood of gen-
erating the observed visual words [2], which is an efficient alternative to the traditional
vocabulary based on bag-of-visual words. To employ more comprehensive information,
Ikizler-Cinbis et al. consider the features of objects, scenes and people simultaneously in a
multiple instance learning (MIL) framework [12]. Wang et al. extract video features based
on dense trajectories and motion boundary descriptors [45]. Most of the improvements
to visual analysis can be attributed to the introduction of improved feature extractors and
feature encoding methods [7, 19, 28, 40].

Obtaining the remarkable success on image classification, 2D convolutional neural net-
works (CNN) are recently employed by [14, 25] to extract the features of each frame in a
video. The frame features are then directly assembled to get the video feature. However,
these methods are incapable of capturing the temporal dynamics. In order to solve this prob-
lem, in [6, 33, 37, 47, 52], some 2D CNN extensions are improved by either being extended
to 3D CNN or manually designed to receive explicit temporal inputs (e.g. optical flow). As
a natural way to capture temporal dynamics, recurrent neural network (RNN) is combined
with CNN to extract video features, but the features in each spatial locality are treated fairly
[5, 22, 43, 48, 49]. In [17], Krizhevsky et al. reported that when asked to classify an image,
humans focus on the salient discriminative parts rather than the whole picture. After that,
different attention-based methods were proposed and achieved promising results on several
challenging tasks, including image caption generation [51], machine translation [1], game-
playing and tracking [26], and image recognition [56]. Recently, Sharma et al. [32] and Li
et al. [23] introduced visual attention mechanism in video recognition. The attention mech-
anisms can be grouped into two categories, soft deterministic and hard stochastic attention
mechanisms for pooling convolutional feature maps. Since it requires sampling, training a
hard attention based model incurs heavy computational burden. Requiring no sampling and
less computation, the soft attention based model is adopted in [23, 32].

Simply weighing and summing all the spatial localities, soft attention might bring in
noises. While hard attention focuses only one spatial locality, which might be too local to
cover other possible discriminative features. Videos consisting of varying frames are much
more complicated than images. Devised for static images and not considering the relevance
between consecutive frames, the attention method (the spatial transformer) cannot be used
for videos directly.

Inspired by the spatial transformer proposed in [13], we propose a novel attention based
deep neural network which can dynamically sample multiple salient spatial localities in
convolutional feature maps by affine transformation. For the first time, Long-Short Term
Memory Model (LSTM) [11] is combined with the spatial transformer for video action
recognition. Capable of selecting the discriminative localities by sampling different feature
maps, the proposed LSTM spatial transformer leverages the relevance between consecutive
frames, while consuming less computation than hard attention based methods and obtaining
higher classification accuracy than soft attention. The analysis of temporal coherence in
videos [31] is also incorporated to save the training time, making the runtime acceptable for
training on large-scale datasets.
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2 Related works

Recently, many end-to-end methods for video recognition based on deep learning have
emerged. In this paper, our work is based on neural networks and attention mechanism.
Thus in this section, we review some of the researches on convolutional neural networks,
recurrent neural networks, and visual attention mechanisms involved in video recognition.

2.1 Convolutional neural networks for action recognition

The success of CNN extracting the deep features on image-analyzing tasks has inspired
researchers for video classification. A practicable choice is to pre-train the CNN, such like
Alexnet [17], Vggnet [34], GoogleNet [38] and ResNet [10] on ImageNet dataset [4] and
use it as a feature extractor. Moreover, CNN combined with the independent subspace anal-
ysis can learn invariant spatio-temporal features from unlabeled video data [20]. Intuitively,
a video can be taken as a set of frames, and the final representation of a video can be com-
puted by averaging the feature vectors of all the frames, which are extracted by feeding a
CNN one frame at a time. Obviously, taking a video as a set of pictures and directly feeding
them to the CNN might lose sight of the important temporal dynamics in a video. Ji et al.
[52] generalize 2D CNN to the 3D case by performing 3D convolution in both spatial and
temporal dimensions. One convolution layer can capture the motion information from a few
consecutive frames, and so forth, the motion information spanning across all the frames will
be extracted ultimately. Karpathy et al. [15] evaluate different kinds of connectivity of the
CNN in the temporal dimension and proposed a multi-resolution method to speed up the
training. Tran et al. [41] train a 3D CNN on a large video dataset to obtain generic spatiotem-
poral features. For handling 3D signals more efficiently, Sun et al. factorize 3D convolution
as a combination of 2D spatial convolution followed by 1D temporal convolution [37]. Sim-
ilarly, Qiu et al proposed a new architecture named Pseudo-3D Residual Net (P3D ResNet)
based on the factorization of 3D convolution [30]. However, 3D CNNs still face difficulties
that their performance is currently not good enough [44]. The reason may be that too much
noise in the temporal domain makes it hard to extract accurate motion information. To avoid
direct convolution over the noisy temporal domain, Simonyan and Zisserman [33] proposed
a two-stream architecture, which incorporates spatial and temporal networks. The spatial
network is trained on static RGB frames to extract spatial information, and the temporal net-
work is trained on dense optical flow to extract motion information. The dense optical flow
is used to indicate the motion information explicitly. The algorithm makes the training eas-
ier and achieves competitive performance. Feichtenhofer et al. provide a number of ways of
fusing two-stream networks to best take advantage of spatio-temporal information [6]. The
important factors related to the performance of the two-stream CNN are investigated by Ye
et al. [55], including network architectures, model fusion, learning parameters and the final
prediction methods. Recently, Carreira et al. [3] proposed a two-stream inflated 3D-CNN
(I3D) model that is based on 2D-CNN inflation. Further, the model is pre-trained on a new
large-scale video dataset Kinetics and achieves extraordinary performance. Tran et al. [42]
design the R(2+1)D model by using 3D-CNN factorization and integrate the model within
the framework of residual learning. After pre-training on Kinetics, their model also obtains
comparable results with [3]. Most methods use 2D or 3D CNNs to process videos as RGB
image sequences, or employ optical flow for further boosting performance. Recently, Wu
et al. [50] proposed an action recognition algorithm based on compressed video (CoViAR).
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They design a multi-CNN structure trained directly on compressed videos to excavate the
spatiotemporal features. CoViAR is the first to train deep neural networks on compressed
videos and makes full use of the compressed information with higher density. CoViAR
yields a new state-of-the-art, which indicates that compressed video coding would provide
an effective way for video analysis.

2.2 Recurrent neural networks for action recognition

The temporal CNN in the two-stream method [33] can only explicitly capture the motion
between consecutive frames and depict short-period actions. During the training phase,
either a single frame or a multi-frame optical flow is fed into the CNN. Thus it has no
consideration for the frame order. With the two characteristics, some longer-period actions
consisting of several sub-actions cannot be processed effectively.

Different from CNN taking images or static frames of fixed length as inputs, RNN is a
natural way designed for modeling temporal dynamics. Thus, researchers employed RNN
to model the intricate temporal dynamics in videos. Exempted from the vanishing gradient
problem, LSTM, among many RNN variants, has been shown to be effective in many tasks,
such as image/video title generation [5, 54] and voice analysis [8]. Srivastava et al. obtain
the representations of videos by using an encoder LSTM to map an input sequence to a fixed
length representation [36]. Donahue et al. [5] proposed an end-to-end recurrent convolution
architecture, which assembles the recurrent sequential model and the convolutional visional
model directly. The convolutional part can be extended further to a two-stream architecture
as in [33]. The sequential and visional models are trained simultaneously, and the spatial and
temporal dynamics are learned respectively. Wu et al. [48] proposed a hybrid deep neural
framework to model static spatial information, short-term motion and long-term dynam-
ics. In this framework, the spatial and short-term features are extracted by two CNNs and
are combined by using a feature-fusion network. Then, LSTM is employed to model the
longer-term dynamics based on the fused features. Considering that actions can span across
varying-length frames (individual frame, continuous frames, short segments or the entire
video), Li et al. [22] proposed a framework to learn the deep spatial-temporal video repre-
sentation in a hierarchical and multi-granular fashion. Ng et al. proposed several deep neural
network architectures to combine frame information across a video over longer time peri-
ods [27]. Some works have contributed in mobile devices-based applications where human
activity recognition is an important problem. Tao et al. present a new two-directional feature
derived from horizontal and vertical acceleration components. Moreover, a multicolumn
bidirectional LSTM (MBLSTM) ensemble classifier is proposed to combines different fea-
tures for improving recognition accuracy [39]. Besides accelerometers, human actions can
also be represented by the multiview features from depth and inertial sensors. Guo et al.
encode the multiview features into a unified space that is optimal for activity recognition [9].

2.3 Visual attentionmechanisms for video recognition

One frame contains the content beneficial for recognition but it also holds irrelevant noise.
The useful content should be recognized to improve the accuracy of recognition and the
useless content should be omitted to reduce extra computation. Sharma et al. [32] proposed
a soft attention based LSTM model for action recognition, which learns to focus more on
the relevant parts of a frame. However, similar to soft attention mechanism for image cap-
tion generation in [51], they did not consider the motion information during the attention
procedure. Li et al. [23] introduced the VideoLSTM applying attention in LSTM models
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by hardwiring convolution to the LSTM and adding motion for better attention, which are
not only important for the action classification, but also result in better attention for action
localization. More recently, Jaderberg et al. [13] introduced the spatial transformer, a new
way to learn the invariance for generic warping by affine transformation. The spatial trans-
former can extract salient local information and reduce the side effects brought by noisy
information. Yan et al. [53] proposed a tri-coupled LSTM structure embedded with a relative
attention model for human interaction prediction. Different from the traditional attention
selecting discriminative regions based on only one LSTM, the relative attention predicts
discriminative regions by using the hidden states of three coupled LSTMs.

Motivated by the above reviews, this paper proposes an attention mechanism based con-
volutional LSTM network for video action recognition. In the proposed method, GoogleNet
is employed to extract deep feature maps for video frames. The LSTM spatial transformer
is proposed to overcome the disadvantages of soft and hard attention mechanisms by intrin-
sically considering both motion and space information. The convolutional LSTM module is
then used to classify by integrating the spatial and temporal information of the feature maps
of each video frame.

3 An attentionmechanism based convolutional LSTM network

The proposed framework is an end-to-end model receiving video frames as input and
outputting the final classification result for videos. The stacked network architecture for
video classification can be divided into four stages: video feature extraction, salient fea-
ture selection, redundant frame reduction and the final video classification. For extracting
video features, CNN (GoogleNet or ResNet) is adopted due to its successful applications in
image feature extraction. For selecting salient video features, this paper integrates an LSTM
into the spatial transformer network to address the problem that the traditional attention
mechanisms including soft attention and hard attention cannot utilize the motion informa-
tion during the attention procedure. For reducing redundant frames, we use the module of
temporal coherence analysis to save computation and filter useless information. Finally,
convolutional LSTM is adopted for video classification, since it can capture the temporal
and spatial information from the salient video features. In this framework, attention and
convolutional LSTM modules are incorporated to model the spatial and temporal informa-
tion of videos. The proposed framework is shown in Fig. 1. First, we extract the feature
maps of each frame from a video by feeding them to a pre-trained GoogleNet. Second,
the LSTM spatial transformer network automatically selects the discriminative parts of the
feature maps. Third, the transformed feature maps are fed to a convolutional LSTM (Con-
vLSTM) module to make the prediction for the corresponding frame. Fourth, the predictions
of all the frames determine the final classification together. In the following parts in this
section, we present the process and the loss function of the model in details. Further, we
give the analysis of temporal coherance for reducing video redundancy.

3.1 Convolutional features

To utilize the deep spatial features extracted by CNN, the GoogleNet pre-trained on Ima-
geNet dataset is fed with the frame to generate the feature maps of the last convolutional
layer. Feature maps can be viewed as a box of H × W × D, U ∈ RH×W×D , where H , W ,
and D indicate the height, width, and channel sizes respectively (7× 7× 1024 in our exper-
iment). Moreover, the box can be divided into H × W D-dimension feature slices, each of
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Fig. 1 The framework of convolutional recurrent neural network with attention mechanism for video action
recognition

which is a representation corresponding to a spatial locality of the frame. The coordinates
of those spatial feature slices can be sampled automatically by the following LSTM spatial
transformer network.

3.2 Attentionmechanism

The spatial transformer network is an effective module applied in image recognition [13],
which consists of three parts: the localization network, the grid generator and the sampler.
We modify the original network by embedding an LSTMmodule to apply it on video recog-
nition. The spatial transformer network is adopted to extract the salient features of videos.
The LSTM localization network produces the affine transformation parameter for subse-
quent spatial transformation. The grid generator uses the affine transformation parameters
to compute the mapping of the coordinates between the source and target vector spaces.
According to the coordinate correspondence, the sampler generates the value at each target
coordinate by bilinear sampling kernel.

3.2.1 Localization network

The localization network can be formulated as θ = floc(U), where U ∈ RH×W×D denotes
the input feature box extracted by GoogleNet, floc(U) denotes a map from RH×W×D to
R2×3, and θ ∈ R2×3 denotes the parameter for affine transformation. Different from a sin-
gle image, a frame is related to not only itself, but also its neighbor frames. Therefore, an
LSTM module is used to model the temporal information in order to compute θ for each
frame in a video. Figure 2 shows the process of mapping the features into affine transfor-
mation parameters by the LSTM localization network. First, CNN converts each frame in
the video into a feature box with the size of H × W × D (here 7 × 7 × 1024). Second,
each feature box is reduced in spatial dimensions (H and W) and cast into a D-dimensional
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Fig. 2 LSTM localization network. For instance, the feature maps extracted from a video clip of 30 frames
are pooled by using an average pooling layer and are then integrated in an LSTM cell. The following fully
connected layer receives the hidden states of the LSTM cell to compute transformation parameters θ∼ for
each frame

feature vector through the mean pooling layer, which brings less computation consumption.
Third, feature vectors are input into the LSTM by order of time to produce the hidden state
at each moment. Fourth, each hidden state is input into the fully connected layer with a lin-
ear activation functions to obtain the affine transformation parameter θ for each frame. The
subsequent spatial transformation is essentially the mapping of 2-dimensional coordinates
between two vector spaces, i.e., affine transformation. Affine transformation is implemented
by linear and translation transformations. The parameters of linear and translation trans-
formations are the matrices with the size of 2 × 2 and 2 × 1, respectively. Therefore, the
parameter for affine transformation is denoted as R2×3.

3.2.2 Grid generator

The transformation parameter θ is used to compute the sampling coordinates by 2D affine
transformation. Let V ∈ RH ′×W ′×D denote the output feature box (the transformed feature
maps), where H ′, W ′, and D denote the height, width and channel sizes respectively. The
coordinate of the i-th feature slice in the output feature box is denoted by (xt

i , y
t
i ). All of

them are stored in G = {Gi}, where Gi = (xt
i , y

t
i ). The grid generator is implemented

using affine transformation Tθ (·), which is formulated as:

(
xs
i

ys
i

)
= Tθ (Gi) = Aθ

⎛
⎝ xt

i

yt
i

1

⎞
⎠ (1)

where (xs
i , y

s
i ) denotes the coordinate of the feature slice in the input feature box to

be sampled, Aθ denotes the affine transformation matrix

(
θ11 θ12 θ13
θ21 θ22 θ23

)
. Practically, we

normalize the height and width to [−1, 1].

3.2.3 The sampler

To perform spatial transformation, the sampler computes each value in the target feature box
V by applying a sampling kernel centered at a particular coordinate from the input feature
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box U . The sampling coordinates can be deduced by 2D affine transformation parameter-
ized by θ . As shown in Fig. 3, the sampler adopts the Bilinear Sampling Kernel [13] to get
the output feature box V from the input feature box U . The value at the c-th channel of the
i-th feature slice in V is computed by:

V c
i =

H∑
n

W∑
m

Uc
mnmax(0, 1 − ∣∣xs

i − m
∣∣)max(0, 1 − ∣∣ys

i − n
∣∣) (2)

The derivative of V c
i with respect to Uc

nm and Aθ are computed as follows:

∂V c
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∂Uc
nm

=
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m
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Fig. 3 An example of transforming feature maps. After computing θ , the transformed feature maps V are
constructed by sampling the feature maps U at multiple coordinates. The sampling coordinates can be
deduced by 2D affine transformation parameterized by θ
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It is obvious that the derivatives can be propagated to both the GoogleNet and the LSTM
spatial transformer network.

3.3 Convolutional LSTM

The traditional LSTM is explicitly designed to learn long-term dependencies, but its perfor-
mance deteriorates when processing videos containing not only temporal information but
also spatial information. Because LSTM cannot model spatial information well, it is neces-
sary to convert the spatiotemporal data to the temporal data via a pooling or fully connected
layer, i. e., the spatial contents are abandoned. The convolutional LSTM overcomes that
problem by substituting convolution for multiplication [23]. As shown in Fig. 4, the class of
each frame can be predicted sequently by inputting feature maps to the convolutional LSTM
module. The following formulas define the details of the convolutional LSTM:

i(t) = σ(Wxi ∗ x(t) + Whi ∗ h(t−1) + Wci ◦ c(t−1) + bi) (10)

f (t) = σ(Wxf ∗ x(t) + Whf ∗ h(t−1) + Wcf ◦ c(t−1) + bf ) (11)

o(t) = σ(Wxo ∗ x(t) + Who ∗ h(t−1) + Wco ◦ c(t−1) + bo) (12)

G(t) = tanh(Wxc ∗ x(t) + Whc ∗ h(t−1) + bc) (13)

c(t) = f (t) ◦ c(t−1) + i(t) ◦ G(t) (14)

h(t) = o(t) ◦ tanh(c(t)) (15)
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Fig. 4 Convolutional LSTM for prediction of each frame. At the t-th time, Convolutional LSTM receives the
feature maps of the t-th frame and integrates them in the history memory. Instead of memorizing temporal
information only, the spatial and temporal information from time 0 to t captured by convolutional LSTM are
utilized by a softmax layer to predict the class of the t-th frame with higher confidence
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where ∗ denotes convolution, ◦ denotes element wise multiplication, Wx∼ and Wh∼ repre-
sent 2D convolutional kernels, b∼ is bias vectors, and σ denotes the sigmoid function. The
input, forget and output gates i(t), f (t) and o(t), the candidate memory G(t), memory cells
c(t) and c(t−1), and hidden states h(t) and h(t−1) are 3D tensors. The convolutional LSTM
can receive the feature maps of each frame while keeping the spatial dimensions invariable.
Intuitively, stacking several convolutional LSTMs forms a more powerful deep architecture.

3.4 Initialization strategy and loss function

In order to accelerate the convergence of the LSTM module in the LSTM spatial trans-
former, the same strategy as in [32] is used to compute the initial memory cell c(0) and
hidden state h(0):

c(0) = finit,c

(
1

T

T∑
t=1

(
1

H × W

H×W∑
i=1

xt,i

))
(16)

h(0) = finit,h

(
1

T

T∑
t=1

(
1

H × W

H×W∑
i=1

xt,i

))
(17)

where finit,c and finit,h indicate two multilayer perceptrons, T denotes the frame number
in a video, H and W denote the height and width of the input feature box respectively, and
xt,i denotes the i-th feature slice.

The loss function is set up based on cross entropy and double random penalty. It is
formulated as follows:

l = −
T∑

t=1

C∑
i=1

yt,i log ˆyt,i + γ
∑

i

∑
j

θ2i,j (18)

where yt denotes the one hot label vector, ˆyt,i denotes the probability of the i-th class
predicted at the time t , T and C denote the numbers of time step and class respectively, γ
denotes the weight decay coefficient and θ denotes the parameters of our model.

3.5 The analysis of temporal coherence

Using vector representations of videos, the analysis of temporal coherence can be employed
to reduce redundant video frames effectively. Different from using handcrafted features
as in [31], We use GoogleNet to extract the D′-dimensional vector representations pi for
each frame, P = [p1, p2, · · · , pi, · · · , pn], where n denotes the number of frames. The
correlation between each pair of consecutive frames,C = [C1, C2, · · · , Cn−1], is calculated
according to:

Ct =
√√√√ D′∑

d ′=1

(pt,d ′ − pt+1,d ′)2 (19)

C′
t =

{
0, Ct < ct,k

1, Ct ≥ ct,k
(20)

A video is a sequence of temporally contiguous frames. Subsequences are the temporally
contiguous video clips split from the whole video sequence at some key points, where the
similarity of two adjacent frames is less than a certain threshold ct,k . The threshold ct,k

denotes the mean value of the correlation vectors in C. C′
t = 1 indicates that the t-th and

(t + 1)-th frames belong to the same subsequence. C′
t = 0 indicates that the two frames
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Fig. 5 Three examples of reserving frames for each subsequence. In part a, 8 frames from a short clip are
grouped into 3 subsequences by computing the Euclidian distances between their vector representations
extracted by GoogleNet, where 1 indicates the neighbor frames are correlated and 0 indicates they are uncor-
related. In part b, the frames are grouped into three subsequences and the frames in part c are grouped into
two subsequences
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do not belong to the same subsequence. We keep just one frame for each subsequence, so
that the redundant feature maps can be reduced. Figure 5 shows an example of reducing
redundant frames. Furthermore, we incorporate the analysis of temporal coherence to reduce
redundant feature maps extracted by GoogleNet, as shown in Fig. 6. In this way, before
being fed to the LSTM spatial transformer network, the redundant feature maps extracted
by GoogleNet are reduced. For example, since U1 and U2 belong to the same subsequence,
either of them can be reduced and the other reserved. However,U3 constitutes a subsequence
itself, so no frames can be reduced in this case. Those feature maps are then converted to
vectors and used in the LSTM spatial transformer for latter sampling. After sampling, the
convolutional LSTM module following by a softmax layer is used to predict the class for
each frame. The class of the video is finally generated by voting.

4 Experiment

4.1 Datasets

To evaluate the effectiveness of the proposed method, experiments are conducted on three
datasets of realistic actions: UCF-11 (YouTube Action Data Set) [24], HMDB-51 (a large
human motion database) [18], and UCF-101 (an extension of UCF-11) [35]. UCF-11 con-
tains 1600 videos, each of which belongs to one of the 11 action categories: basketball
shooting, biking, diving, golf swinging, horse back riding, soccer juggling, swinging, tennis
swinging, trampoline jumping, volleyball spiking and walking with a dog. In our experi-
ments, 975 videos are used for training and the rest for testing. HMDB-51 provides three
splits, each of which contains 5100 videos, including the 3570 for training and the rest for
testing. All the videos cover 51 action categories including clapping, drinking, hugging,
jumping, somersaulting, throwing, etc. UCF-101 contains 13320 videos from 101 action
categories, and it is one of the most challenging datasets to date. Since CNN requires inputs
of fixed size, all the frames in a video are cropped to 224 times 224 and sequentially fed to
a GoogleNet pre-trained on the ImageNet dataset. The output of the last convolution layer
is adopted as the high-level representation for each frame.

GoogleNet

U1
LastConv Outputs

U2 U3 Ut-1 Ut

V1

…

…

V3 Vt-1

Transforma�on parameters
Spa�al Transformer module

Final Predic�on

Conv-recurrent neural network

Θt-1θ3θ1 …

Temporal Coherence 
Analysis

…

U1 U3 Ut-1

SamplerLSTM

Input Frames

Fig. 6 The framework of ConvLSTM with attention mechanism using the analysis of temporal coherence
for reducing redundant feature maps
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Table 1 Hyper parameters
Parameter Value

Learning rate 10−4

The size of the convolution kernel 3 × 3

The number of the convolution kernel 16

Dropout rate 0.5

Weight decay coefficient 10−5

4.2 Experimental settings

Adam optimization algorithm [16] is used to optimize the loss function. The architecture
of the convolutional LSTM module is selected by cross validation. Other hyper parameters
such as learning rate, dropout rate and weight decay coefficient are also selected by cross
validation. The values of those hyper parameters are listed in Table 1.

According to the settings in Table 1, five recurrent convolutional models with 1 up to 5
stacked recurrent layers are evaluated on UCF-11, HMDB-51 and UCF-101, respectively.
The results of them are shown in Table 2. It can be seen that the 3-layer stacked convolu-
tional LSTM achieves the best results on UCF-11 and HMDB-51. The 3-layer and 4-layer
stacked convolutional LSTMs achieve almost the same results on UCF-101. Balancing the
accuracy and efficiency, the 3-layer stacked convolution LSTM is used in the following
experiments. Our model is trained by using a Tesla P40 GPU.

The differences among hardware and software environments will directly affect the time
performance of the model. Therefore, to evaluate the scalability of the model objectively,
space and time complexity is deduced here. The number of parameters included in the
weights (convolutional kernels) is used to represent space complexity, and the number of
floating-point multiplication operations involved is used to represent time complexity. The
three parameterized parts of the model are the CNN module, the spatial transformer mod-
ule, and the stacked convolutional LSTM module. A video frame of 224 × 224 × 3 is
input into the CNN module (for example, GoogleNet) to output a feature box with the
size of 7 × 7 × 1024, wherein the number of parameters included in convolutional kernels
is about 5.86M. The number of floating-point multiplication operations is approximately
1.58T. The spatial transformer module consists of an LSTM (256 hidden units) and a fully
connected layer (6 neurons), so there are 1.31M parameters as well as 1.31M floating-point
multiplication operations. The stacked convolutional LSTM module contains 1 ∼ 5 Conv-
LSTMs, each of which outputs the 7 × 7 × 256 feature box, with 3 × 3 kernels. Except
that the first Conv-LSTM maps 1024 channels to 128, other Conv-LSTMs keep the number
of channels as 128 unchanged. The number of parameters of the stacked Conv-LSTMs is

Table 2 Accuracy of multi-layer
ConvLSTM on different datasets Model UCF-11 HMDB-51 UCF-101

1-ConvLSTM 93.27 63.54 89.23

2-ConvLSTM 93.78 65.95 90.17

3-ConvLSTM 94.12 67.12 92.51

4-ConvLSTM 94.05 67.08 92.54

5-ConvLSTM 93.84 66.37 92.39
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Table 3 Recognition accuracy on
UCF-11 using different methods Model UCF-11

Multiple feature + Multiple instance learning [12] 75.21

Stacked convolutional ISA [20] 75.8

Bag-of-visual words (BoW) [2] 76.5

Dense trajectories + Motion boundary descriptors [45] 84.9

Soft attention model (@ 30 fps, = 0) [32] 84.96

Baseline 83.81

Our model 94.12

Our model + the analysis of temporal coherence 93.48

5.31M+(n − 1) × 1.18M (n-layer Conv-LSTMs). The number of floating-point multiplica-
tion operations is 260.11M+(n − 1) × 57.8M. It can be concluded from the above analyses
that the scalability of the model depends mainly on the CNN module and linearly increases
as the number of stacked Conv-LSTMs increases.

In the experiments, the frame rate of the videos used in this paper is 30 fps. A video
more than 1 second is sliced into multiple clips, each of which contains 30 frames. Dur-
ing the inference stage, the category of a frame is directly predicted by the convolutional
LSTMmodule and then the category of a clip is generated by its frames via majority voting.
Similarly, the category of the entire video is voted by its clips.

4.3 Results on UCF-11

The proposed method is evaluated on the relatively small dataset UCF-11. Results obtained
by our method on UCF-11 and results of some current state-of-the-art methods are listed in
Table 3. As we can observe, the proposed method outperforms the listed models by nearly
10%, which demonstrates the effectiveness of the proposed algorithm.
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To clarify the effectiveness of the spatial transformer network, we remove the spatial
transformer network and keep the basic architecture as our baseline. The result obtained
by the baseline model is also presented in Table 3. By comparing the performances of the
models with and without the spatial transformer network, it can be seen that the spatial
transformer network obviously improves the performance.

To verify the effectiveness of temporal coherence analysis, the model with temporal
coherence analysis is tested on UCF-11 and the result is presented in Table 3. Further, the
detailed results of each class are shown in Fig. 7. With the analysis of temporal coherence,
our model is trained 30% faster, with overall accuracy loss less than 1%. Overall, the tem-
poral coherence saves considerable time by reducing redundant frames with a small loss of
accuracy. Figure 7 shows that the classification accuracy decreases for most categories and
increases for others. This is because the proportion of redundant frames varies with the cat-
egories of videos. For example, the “walking” action spans across the entire video. So the
proportion of redundant frames in such durative actions is low. Useful information is easily
ignored in the process of temporal coherence, which leads to the decrease of classification
accuracy. However, the actions of “spiking”, “shooting” and “jumping” are contained in a
few key frames at the moment when actions happen, so the proportion of redundant frames
in such non-durative actions is high. Useless information can be filtered through temporal
coherence, thereby improving the classification accuracy.

4.4 Results on HMDB-51

The proposed method is also evaluated on the big dataset HMDB-51 and is compared with
the results of state-of-the-art methods in Table 4. The methods in the top part only take
original RGB data as inputs. Those in the bottom not only make use of RGB data but
also optical flow data. From Table 4, we can see our proposed method obtains competitive
results when using RGB and optical flow data. However, the composite LSTM achieves the
best results on HMDB-51. The main reasons lie in the following two folds: 1) After pre-
trained on ImageNet, the composite LSTM is further pre-trained on 300 hours of YouTube
videos and finally fine-tuned on video classification datasets. In comparison, our model is
only pre-trained on ImageNet. 2) The composite LSTM is constructed under the framework

Table 4 Recognition accuracy
on HMDB-51 using different
methods

Model HMDB-51

Spatial stream ConvNet [33] 40.5

Soft attention model [32] 41.3

Composite LSTM Model [36] 44.0

Baseline 40.8

Our model 42.2

FST CN [37] 59.1

Two-stream ConvNet [33] 59.4

Video Darwin [7] 63.7

Multi-skip Feature Stacking [19] 65.1

Two-stream Fusion [6] 65.4

Fisher Vectors + Stacked Fisher Vectors [28] 66.8

Baseline + Optical flow 64.1

Our model + Optical flow 67.1
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of auto-encoder by utilizing the complex mechanism, which combines reconstructing the
input and predicting the future in the pre-training phase. Figure 8 represents the detailed
results for each action in HMDB-51. The diverse classification accuracy may be caused by
different video qualities. By comparing the results obtained by the models with and without

0 20 40 60 80 100

wave
walk
turn

throw
talk

sword
sword_exercise
swing_baseball

stand
somersault

smoke
smile
situp

sit
shoot_gun
shoot_bow
shoot_ball

shake_hands
run

ride_horse
ride_bike

pushup
push

punch
pullup

pour
pick

laugh
kiss
kick

kick_ball
jump

hug
hit

handstand
golf

flic_flac
fencing

fall_floor
eat

drink
dribble

draw_sword
dive

climb
climb_stairs

clap
chew
catch

cartwheel
brush_hair

Accuracy(%)

Fig. 8 Recognition accuracy on HMDB-51 for different actions (using only RGB data)
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Table 5 Recognition accuracy on
UCF-101 using different methods Model UCF-101

Spatial stream ConvNet [33] 73.0

Composite LSTM Model [36] 75.8

Our model-GoogleNet 76.5

Our model-ResNet 76.7

Two-stream ConvNet [33] 88.0

Composite LSTM Model [36] 84.3

Multi-skip Feature Stacking [19] 89.1

Conv Pooling [27] 88.6

FST CN [37] 88.1

Two-stream Fusion [6] 92.5

P3D [30] 88.6

CoViAR [50] 94.9

Our model-GoogleNet + Optical flow 92.5

Our model-ResNet + Optical flow 92.8

the spatial transformer network, it indicates that the spatial transformer network can improve
the performance.

4.5 Results on UCF-101

To further validate the effectiveness of the proposed method, the experiment on a larger
dataset UCF101 is performed. Here GoogleNet and ResNet are employed as two different
feature extractors to observe their impact on the final classification results. Table 5 is com-
posed by two parts, where the top part uses RGB data, the bottom part uses RGB and optical
flow data. It can be seen from Table 5 that the results obtained by GoogleNet and ResNet
are not significantly different. Using RGB and optical flow data to train the proposed model

Fig. 9 Kernel visualization. The
kernels of the first convolutional
layer are visualized
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can obtain better results than using only RGB data. And the proposed method can achieve
results comparable to the state-of-the-art results listed here.

As mentioned in reference [50], compressed videos provide temporal information while
avoiding cumbersome computations caused by optical flow data. Therefore, we also tried a
new type of two-stream data, RGB + compressed videos, to train the model and observe the
effectiveness of compressed videos. As a result, using RGB + compressed videos achieves
the similar results as that of using RGB + optical flow and significantly higher results than
that of using RGB. To conclude, compressed videos might be a promising substitute for opti-
cal flow. On the other hand, compared with RGB + optical flow, no noticeable differences
made by the attention module are observed, so the results of RGB + compressed videos are
not listed here.

4.6 Inspection to feature maps

In this section, the validity of GoogleNet is evaluated by visualizing intermediate filters and
feature maps. Figure 9 visualizes some filters of the first convolution layer in GoogleNet.
It is obvious that each filter intends to capture definite features of some color or edge.
Thus empirically, the extracted features should be effective. Figure 10 illustrates the original
images and the feature maps of the first two convolution layers in GoogleNet. In contrast to

Images Conv1

Pool1 Conv2

Fig. 10 Feature map visualization. The top left part shows 9 images to be fed to GoogleNet. The top right
part illustrates the corresponding feature maps from the first convolutional layer. The feature maps from the
first pooling layer and the second convolutional layer are listed in the bottom (from left to right)
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(a) Biking     (precision: 53.8%    recall:100.0%)

(b) Tennis    (precision:81.0%    recall:94.4%)

(c) Golf      (precision:83.3%     recall:83.3%)

Fig. 11 Correctly classified examples. Three examples, biking, tennis and golf, are shown here. More
brighter an area is, more salient the corresponding content is. The regions containing human, the bike, the
tennis racket and the golf club are selected as salient information.

the original images, the feature maps indicate some meaningful contents: main objects and
shapes. Thus, it is effective of GoogleNet to extract frame features.

4.7 Attention visualization

The attention effects brought by the spatial transformer network are illustrated in Figs. 11
and 12. The brighter a position is, the more heavily it weighs against the corresponding
input. Figure 11 shows some correctly classified examples, demonstrating that our attention
module is effective for winkling out the most discriminative parts.

Some misclassified examples are illustrated in Fig. 12. For Fig. 12a, the proportion of
the discriminative patch to the whole frame is too small, making it difficult to extract mean-
ingful content and resulting in misclassification. The proportion may be raised by using the
multi-resolution method. For Fig. 12b, another salient object, a red eye-catching car, adds
much noise to the walking man. To reduce the noise, we may separate the foreground from
the background. For Fig. 12c, the video does not capture the whole human body and thus
causes misclassification.

We also make quantitative analyses by using precision and recall. However, the used
video classification datasets lack the ground truth of discriminative regions. Therefore,
we manually label the discriminative regions for each example in Figs. 11 and 12. Then,
the precision and recall are computed and listed under each example. It can be seen that
the precision and recall of the discriminative regions for correctly classified examples are
obviously higher than that of incorrectly classified examples.
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(a) Shoo�ng     （precision:33.3%   recall:75.0%）

(b) Walking      (precision:28.6%   recall:50.0%)

(c) Walking with a dog      (precision:28.6%   recall:75.0%)

Fig. 12 Incorrectly classified examples. For the example of shooting, the regions containing human are small
and difficult to be selected. For the example of walking, a red car appears as noisy background surrounding
the walking man. In the last example, only a half of the woman’s body is reserved.

5 Conclusion

In order to improve the accuracy of human action recognition, an attention mechanism based
convolutional LSTM network is proposed. We incorporate LSTM in the spatial transformer
network and adopt the LSTM spatial transformer network to extract the salient regions of the
feature maps. The ConvLSTM module is then used to integrate the temporal information of
the feature maps with the spatial information sustained. The experiments demonstrate that
our model can extract salient feature representations and acquire competitive classification
accuracy.

In the future works, because the spatial transformer is based on affine transformation
which is not limited to 2D coordinate scenarios, affine transformation may be well applied
on 3D coordinate systems, including width, height and time. Also, multi-resolution methods
can be used to obtain the fine-grained section and amplify the regions containing humans.
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