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Abstract
Neutrosophic theory studies objects whose values vary in the sets of elements and are not
true or false, but in between, that can be called by neutral, indeterminate, unclear, vague,
ambiguous, incomplete or contradictory quantities. In this paper, we firstly introduce pre-
liminaries on granular calculus and analysis related to single-valued neutrosophic functions.
Based on horizontal membership functions approach, we establish some basic arithmetic
operations of single-valued neutrosophic numbers, that red allow us to directly introduce the
terms of neutrosophic function in usual mathematical formulas. Additionally, we build met-
rics on the space of single-valued neutrosophic numbers induced from Hamming distance.
Then, we define some backgrounds on the limit, derivative and integral of single-valued neu-
trosophic functions. Finally, in order to demonstrate the usable of our theoretical results, we
present some applications to well-known problems arising in engineering such as logistic
model, the inverted pendulum system, Mass - Spring - Damper model.
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1 Introduction

1.1 Briefly review the calculus of uncertainty functions

Fuzzy sets were introduced by Zadeh [68] to manipulate data and information possessing
nonstatistical uncertainties. After that, Zadeh and numerous researchers from the whole
world have promoted fuzzy theory reaching to every aspects of engineering science. Nowa-
day, based on the Mathematics Subject Classification of American Mathematical Society
(MSC2010 database), fuzzy theory has formed many different branches such as fuzzy
logic, fuzzy graph theory, fuzzy algebraic structures, fuzzy real analysis, fuzzy measure the-
ory, fuzzy differential equations, fuzzy topology, fuzzy control systems, fuzzy probability,
etc. Fuzzy theory have a bright future like today, beside many breakthrough researches in
algebraic structures of fuzzy numbers space, there has been many researches on fuzzy cal-
culus and fuzzy analysis. In order to model real world systems containing uncertainty by
fuzzy differential equations or dinamic systems, the concept of derivative calculus must be
introduced. Derivative calculus of fuzzy valued functions were dependened on the type of
difference arithmetic correspondently. The first fuzzy derivative seem to be introduced in
1972 [17]. Not long after that, extensive researches on this issue were conducted, namely
by Dubois-Prade derivatives [21], Puri-Ralescu derivative based on Hukuhara distance [39],
Goetschel-Voxman derivative [23], Seikkala derivative [42] and Friedman-Ming-Kandel
derivative [22]. However, when applying these derivatives into engineering problems, there
have been appeared some disadvantage and drawback such as the uncertainty of solution of
one engineering problem modeling by fuzzy dinamic systems increases when time tends to
infinity. It was not until 2005 [8] that Bede and Gal invented strongly generalized Hukuhara
derivative. With slightly different notion, Bede and Stefanini [10, 51] introduced generalized
Hukuhara derivative. These concepts of fuzzy derivative have been openning up a period of
applied researches of fuzzy mathematics in modeling of control system, dynamic scale of
economy, etc, see [9] for example.

The fuzzy set of Zadeh is actually characterized by a membership function with the range
of [0, 1],i.e., we measure the uncertainty degree of an object belonging to a fuzzy set via
single value in interval [0, 1]. However in actual practice, due to the influence of some mar-
gin of hesitation, an element may neither belong to fuzzy set nor do not belong to fuzzy
set. In the language of fuzzy set the total degree of membership with non-membership of an
element in a fuzzy set is generally not equal to. Therefore, Atanassov [5] introduced Intu-
itionistic fuzzy sets as an extension of fuzzy set of Zadeh. In the view of intuitionistic fuzzy
set, an element has degrees of membership and non-membership, relatively independent.
A comprihensive study on intuitionistic fuzzy sets can be referenced from [6, 7]. However,
as we know, the up to date researchers on intuitionistic fuzzy sets focus on algebraic struc-
ture, rarely studies on analysis and topological structures of intuitionistic fuzzy sets space.
That has greatly limited the applications of intuitionistic fuzzy logic in engineering, where
systems are often modeled by differential equations or control problems.

Neutrosophic set (NS) and neutrosophic logic were invented by Smarandache [43],
which are really extension of appeared earlier logic in the the philosophical and mathemati-
cal aspects. Neutrosophy logic orients the study of statement that are not true, nor false, but
neutral, indeterminate, contradictory or something in between. On the mathematical side,
every field posses its own neutrosophic part, namely indeterminacy part. Thus, engineering
studies rise to research topics which the underlying are the neutrosophic set and logic, the
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neutrosophic probability and statistics, the neutrosophic dynamic system and modeling, etc.
Smarandache [46] laid the first attempt to study neutrosophic precalculus and neutrosophic
calculus based on the existing calculus of interval analysis. Neutrosophic algebraic struc-
tures and neutrosophic cognitive maps were investigated in [14, 16]. Neutrosophic measure,
neutrosophic probability and statistics were studied in [13, 44, 45, 52]. Neutrosophic sys-
tems application in decision making seem to be very successful. Ye [62, 64] proposed a
multi-attribute decision making (MADM) method using the correlation coefficient under
single-valued neutrosophic environment. Ye [63] further developed clustering method and
decision making methods by similarity measures of SVNS. Meanwhile, Ye [65] presented
cross entropy measures of SVNS and applied them to decision making (for more details,
see [1–4, 11, 12, 18–20, 24–28, 32–35, 40, 41, 47–50, 53–59, 61, 66, 67]).

In some latest publications, based on horizontal membership function approach and gran-
ular computing, Mazandarani et al [29–31] studied fuzzy differential systems and related
problems, which can be considered as a particular scenario of neutrosophic dynamic sys-
tems. However, neutrosophic set theory in general and neutrosophic dynamic systems in
particular are still in the first stage of development. The main achievements focus on alge-
braic structures of neutrosophic sets. Recently, there are only some literature that have
attained the first step in defining the distance between neutrosophic sets and neutrosophic
numbers, see [34, 35, 63, 66] or have introduced some most fundamental concepts in neu-
trosophic calculus, see [44, 46, 52] for example. However, until now, the studies on analysis
structures and topological structures on the space of neutrosophic set and neutrosophic num-
bers have almost never appeared. The reason for this disadvantages comes from the intrinsic
nature of space of neutrosophic sets. For more details, due to opposite number law does
not make sense in the space of neutrosophic sets, i.e., if A is a NS and −A is the oppo-
site element then in general A + (−A) is not the zero NS. Thus, the subtraction operation
defined by A − B = A + (−B) is not the candidate for difference operator in neutro-
sophic derivative calculus. Hence, it leads to big challenges for researchers if we want to
study the analysis properties as well as constructing dynamical models for this object. Fur-
thermore, the multi-coordinateA(TA, IA, FA) of neutrosophic set makes more complicate
when studying topological structure of the space. As the best of our knowledge, there does
not have any suitable derivative concept defined for the neutrosophic-valued functions yet.
Hence, it is one of the dynamics that promotes us in this work.

1.2 Contributions and structure of the paper

As the aforesaid in previous section, the difficulty in defining a suitable difference between
neutrosophic sets is the limit of research in analysis calculus of neutrosophic-valued func-
tions. Consequently, this leads to the study of many significant engineering problems related
to derivative of a neutrosophic-valued functions such as modeling a systems by neutro-
sophic differential equations, modeling the evolution of a species by neutrosophic dynamic
systems, the control problems of a neutrosophic-valued target or approximation of an under-
lying Input/Output systems by a neutrosophic systems, having no progress. Hence, the aims
of this paper are

1. Throughout this paper, we introduce three types of single valued triangular neutro-
sophic numbers with triangular memberships functions for each components. The
reason is that, the advantage and simply when presenting the parametric metric form as
the classical fuzzy numbers. To this ends, we will define the (α, β, γ )−cuts of neutro-
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sophic fuzzy numbers and through the linearity of triangular membership functions, we
can convert neutrosophic numbers into parametric forms as intervals. This parametric
forms have advantage that, we can easily define levels-set wise of the derivatives and
integral as well as building numerical algorithms.

2. The concept of arithmetic operations on the set of neutrosophic numbers is defined
via horizontal membership functions. This idea original introduced Piegat et al.
(see [36–38]) and developed for granular differentiability of fuzzy-valued functions
by Mazandarani et al. [29–31]. Especially, we can define the granular difference
between neutrosophic numbers - one important step to define further differentiability of
neutrosophic-valued functions as well as neutrosophic differential equations and other
applications. It can be seen that this approach does not necessitate that the decreased
diameter of neutrosophic-valued function or multi-case of solution related to so-call
switching points as we often face in fuzzy analysis.

3. We laid the first step in constructing topological structures on the set of neutrosophic num-
bers by introducing Hamming metric and building complete metric space (T ,Dgr ).
Due to the fact that the space T endowed with the metric Dgr ensures the convergent
of Cauchy sequence, we can further study the qualitative and quantitative nature of
solution to some dynamical systems and processes arising in science and engineering.

4. At last, we demonstrate the effectiveness and significance of our theoretical results by
applying them in some engineering problems related to logistic model or some mechan-
ical models such inverted pendulum systems or Mass- Spring- Damper model. Our
research will open up many potential applications in applied science and engineering that
directly employ derivative and integral calculus as the essential tools such as optimal control
of wireless networks, modeling a wires in circuits by a dynamic system of neutrosophic
objects, etc.

The organizational structure of this paper is as follows: Section 2 recalls some prelimi-
naries on single valued neutrosophic set and neutrosophic numbers, in which we introduce
the levels set notion as the bridge between neutrosophic set with granular computing. Next,
we introduce some types of single valued triangular neutrosophic numbers along with their
respective parametric form. For more clearly, we give some numerical examples for each
subsection. Section 3 is used to present granular representation of single valued triangular
neutrosophic numbers, that is the foundation to build some calculus properties such as the
neutrosophic gr-derivative and neutrosophic gr-integral before some applications to engi-
neering problems are presented in Section 4. Finally, some conclusions and future works
are discussed in Section 5.

2 Single valued triangular neutrosophic number

We call a neutrosophic set (NS)A defined in the universal of discourse X, denote generally
by x, if it is represented by the form

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X}

where TA : X →−]0, 1[+ is denoted for the truth membership function representing the
degree of confidence, IA : X →−]0, 1[+ is called the indeterminacy membership function
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which represents the degree of uncertainty and FA : X →−]0, 1[+ is called the falsity mem-
bership function which represents the degree of scepticism such that the following relation holds

0− ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

In this paper, we consider single valued NS, which is a NS A with x is a single valued
independent variable (see [15]), whose the truth, indeterminacy and falsity membership
functions exhibit the relation

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

A single valued NS A defined on the universal set of real numbers R is said to be sin-
gle valued neutrosophic number or neutrosophic number (NN) for short if it has following
properties

(i) A is neut-normal, i.e., there exist three points a0, b0, c0 ∈ R such that TA(a0) = 1,
IA(b0) = 1 and FA(c0) = 1.

(ii) A is neut-convex, i.e., the following conditions hold

TA (λx1 + (1 − λ)x2) ≥ min {TA(x1), TA(x2)} ,

IA (λx1 + (1 − λ)x2) ≤ max {IA(x1), IA(x2)} ,

FA (λx1 + (1 − λ)x2) ≤ max {FA(x1), FA(x2)} ,

for each λ ∈ [0, 1] and x1, x2 ∈ R.

Definition 2.1 The (α, β, γ ) - cut (or level set) of a single valued NS A, denoted by
A(α,β,γ ), is defined by A(α,β,γ ) = {x ∈ X : TA(x) ≥ α, IA(x) ≤ β, FA(x) ≤ γ }, where
α, β, γ ∈ [0, 1] such that α + β + γ ≤ 3.

Here, we consider a special type of single valued neutrosophic number, namely single
valued triangular neutrosophic number.

Definition 2.2 A single valued triangular NN is given by

A = 〈[(p1, q1, r1);α], [(p2, q2, r2);β], [(p3, q3, r3); γ ]〉,

where α, β, γ ∈ [0, 1] and the truth membership function TA : R → [0, α], the inde-
terminacy membership function IA : R → [β, 1] and the falsity membership function
FA : R → [γ, 1] satisfy following condition

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 for allx ∈ A.

We denote by T the set of all single valued triangular NNs. Then, based on the depen-
dence between quantities: the truth, the indeterminacy and the falsity, we can classify the
set T of single valued triangular NNs into three following types
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2.1 Single valued triangular NN of type 1

The quantities of truth, indeterminacy and falsity are not dependent. Then, a single val-
ued triangular NN of type 1 is defined as A = 〈p1, q1, r1; p2, q2, r2; p3, q3, r3〉, with
membership functions are defined as follows, respectively

TA(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − p1

q1 − p1
p1 ≤ x ≤ q1,

1 x = q1,
r1 − x

r1 − q1
q1 ≤ x ≤ r1,

0 otherwise,

IA(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − p2

q2 − p2
p2 ≤ x ≤ q2,

0 x = q2,
r2 − x

r2 − q2
q2 ≤ x ≤ r2,

1 otherwise,

FA(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − p3

q3 − p3
p3 ≤ x ≤ q3,

0 x = q3,
r3 − x

r3 − q3
q3 ≤ x ≤ r3,

1 otherwise,

We can easily find the parametric form ofA as

A(α,β,γ ) = [
T −
A (α), T +

A (α); I−
A(β), I+

A(β);F−
A (γ ), F+

A (γ )
]
, (1)

where α, β, γ ∈ [0, 1] such that 0 ≤ α + β + γ ≤ 3 and

T −
A (α) = p1 + α(q1 − p1), T +

A (α) = r1 − α(r1 − q1),

I−
A(β) = q2 − β(q2 − p2), I+

A(β) = q2 + β(r2 − q2),

F−
A (γ ) = q3 − γ (q3 − p3), F+

A (γ ) = q3 + γ (r3 − q3).

Example 2.1 Let A = (8, 14, 20; 12, 16, 22; 10, 15, 24) be a single valued triangular NN.
Then, from (1) its parametric form is

A(α,β,γ ) = [8 + 6α, 20 − 6α; 16 − 4β, 16 + 6β; 15 − 5γ, 15 + 9γ ] , α, β, γ ∈ [0, 1].
In Table 1, we give some values of T −

A (α), T +
A (α), I−

A(β), I+
A(β), F−

A (γ ), F+
A (γ ) of the

numberA at some concrete levels whose graphical representation is shown Fig. 1.

2.2 Single valued triangular NN of type 2

In this type of number, two quantities: indeterminacy membership function and falsity mem-
bership function are dependent. Then, a single valued triangular NN of type 2 is defined
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Table 1 Values of T −
A(α), T +

A(α), I−
A(β), I+

A(β), F−
A(γ ), F+

A(γ )

α, β, γ T −
A(α) T +

A(α) I−
A(β) I+

A(β) F−
A(γ ) F+

A(γ )

0 8 20 16 16 15 15

0.1 8.6 19.4 15.6 16.6 14.5 15.9

0.2 9.2 18.8 15.2 17.2 14 16.8

0.3 9.8 18.2 14.8 17.8 13.5 17.7

0.4 10.4 17.6 14.4 18.4 13 18.6

0.5 11 17 14 19 12.5 19.5

0.6 11.6 16.4 13.6 19.6 12 20.4

0.7 12.2 15.8 13.2 20.2 11.5 21.3

0.8 12.8 15.2 12.8 20.8 11 22.2

0.9 13.4 14.6 12.4 21.4 10.5 23.1

1 14 14 12 22 10 24

as A = 〈p1, q1, r1;p2, q2, r2; βneu; γneu〉, whose membership functions are defined in
compact form as

TA(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − p1

q1 − p1
p1 ≤ x ≤ q1,

1 x = q1,
r1 − x

r1 − q1
q1 ≤ x ≤ r1,

0 otherwise,

IA(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q2 − x + βneu(x − p2)

q2 − p2
p2 ≤ x ≤ q2,

βneu x = q2,
x − q2 + βneu(r2 − x)

r2 − q2
q2 ≤ x ≤ r2,

1 otherwise,

FA(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q2 − x + γneu(x − p2)

q2 − p2
p2 ≤ x ≤ q2,

γneu x = q2,
x − q2 + γneu(r2 − x)

r2 − q2
q2 ≤ x ≤ r2,

1 otherwise,

Similarly, the parametric form ofA is

A(α,β,γ ) = [
T −
A (α), T +

A (α); I−
A(β), I+

A(β);F−
A (γ ), F+

A (γ )
]
,

where

T −
A (α) = p1 + α(q1 − p1), T +

A (α) = r1 − α(r1 − q1),

I−
A(β) = q2 − βneup2 − β(q2 − p2)

1 − βneu

, I+
A(β) = q2 − βneur2 + β(r2 − q2)

1 − βneu

,

F−
A (γ ) = q2 − γneup2 − γ (q2 − p2)

1 − γneu

, F+
A (γ ) = q2 − γneur2 + γ (r2 − q2)

1 − γneu

.
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Fig. 1 Membership functions of NN of type 1 A

Here, α ∈ [0, 1], β ∈ [βneu, 1] and γ ∈ [γneu, 1] such that 0 ≤ α + β + γ ≤ 3.

Example 2.2 Let A = (8, 14, 20; 12, 16, 22; 0.5; 0.6) be a single valued NN. Then, its
parametric form is

A(α,β,γ ) = [8 + 6α, 20 − 6α; 20 − 8β, 10 + 12β; 22 − 10γ, 7 + 15γ ] ,

for α ∈ [0, 1], β ∈ [0.5, 1], γ ∈ [0.6, 1].
In Table 2, we give some values of T −

A (α), T +
A (α), I−

A(β), I+
A(β), F−

A (γ ), F+
A (γ ) of the

numberA whose graphical representation is shown Fig. 2.

Table 2 Values of T −
A(α), T +

A(α), I−
A(β), I+

A(β), F−
A(γ ), F+

A(γ )

α, β, γ T −
A(α) T +

A(α) I−
A(β) I+

A(β) F−
A(γ ) F+

A(γ )

0 8 20

0.1 8.6 19.4

0.2 9.2 18.8

0.3 9.8 18.2

0.4 10.4 17.6

0.5 11 17 16 16

0.6 11.6 16.4 17.2 19.6 16 16

0.7 12.2 15.8 18.4 20.2 15 17.5

0.8 12.8 15.2 19.6 20.8 14 19

0.9 13.4 14.6 20.8 21.4 13 20.5

1 14 14 12 22 12 22
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Fig. 2 Membership functions of NN of type 2 A

2.3 Single valued triangular NN of type 3

Here, the quantities: the truth, indeterminacy and falsitymembership function are dependent. Then,
a single valued triangular NN of type 3 is defined as A = 〈p1, q1, r1; αneu;βneu; γneu〉,
whose membership functions are defined as follows

TA(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αneu

x − p1

q1 − p1
p1 ≤ x ≤ q1,

αneu x = q1,

αneu

r1 − x

r1 − q1
q1 ≤ x ≤ r1,

0 otherwise,

IA(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q1 − x + βneu(x − p1)

q1 − p1
p1 ≤ x ≤ q1,

βneu x = q1,
x − q1 + βneu(r1 − x)

r1 − q1
q1 ≤ x ≤ r1,

1 otherwise,

FA(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q1 − x + γneu(x − p1)

q1 − p1
p1 ≤ x ≤ q1,

γneu x = q1,
x − q1 + γneu(r1 − x)

r1 − q1
q1 ≤ x ≤ r1,

1 otherwise,

The parametric form of the numberA is

A(α,β,γ ) = [
T −
A (α), T +

A (α); I−
A(β), I+

A(β);F−
A (γ ), F+

A (γ )
]
,
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Table 3 Values of T −
A(α), T +

A(α), I−
A(β), I+

A(β), F−
A(γ ), F+

A(γ )

α, β, γ T −
A(α) T +

A(α) I−
A(β) I+

A(β) F−
A(γ ) F+

A(γ )

0 14 22

0.1 14.4 20.8

0.2 14.8 19.6

0.3 15.2 18.4

0.4 15.6 17.2

0.5 16 16

0.6

0.7 16 16

0.8 16 16 15.333 18

0.9 15 19 14.667 20

1 14 22 14 22

where

T −
A (α) = p1 + α

αneu

(q1 − p1), T +
A (α) = r1 − α

αneu

(r1 − q1),

I−
A(β) = q1 − βneup1 − β(q1 − p1)

1 − βneu

, I+
A(β) = q1 − βneur1 + β(r1 − q1)

1 − βneu

,

F−
A (γ ) = q1 − γneup1 − γ (q1 − p1)

1 − γneu

, F+
A (γ ) = q1 − γneur1 + γ (r1 − q1)

1 − γneu

.

Here, α ∈ [0, αneu], β ∈ [βneu, 1] and γ ∈ [γneu, 1] such that 0 ≤ α + β + γ ≤ 3.

Example 2.3 Let A = (14, 16, 22; 0.5; 0.8; 0.7) be a single valued NN. Then, its
parametric form is

A(α,β,γ ) =
[

14 + 4α, 22 − 12α; 24 − 10β, −8 + 30β; 62
3

− 20

3
γ, 2 + 20γ

]

,

for α ∈ [0, 0.5], β ∈ [0.8, 1], γ ∈ [0.7, 1].
In Table 3, we give some values of T −

A (α), T +
A (α), I−

A(β), I+
A(β), F−

A (γ ), F+
A (γ ) of the

numberA whose graphical representation is shown Fig. 3.

3 Granular presentation of single valued triangular neutrosophic
number

3.1 Horizontal membership function

Definition 3.1 Let A = (a1, b1, c1; a2, b2, c2; a3, b3, c3) be a single valued triangular
neutrosophic number whose parametric form is

A(α,β,γ ) = [
T −
A (α), T +

A (α); I−
A(β), I+

A(β);F−
A (γ ), F+

A (γ )
]
.
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Fig. 3 Membership functions of NN of type 3 A

Then, we can represent the horizontal membership function (HMF) of A as an element
Agr(α, β, γ, μ), which is given by

Agr : [0, αneu] × [βneu, 1] × [γneu, 1] × [0, 1]3 → [a1, c1] × [a2, c2] × [a3, c3],

and maps (α, β, γ, μ) into
(
xα(μ1), xβ(μ2), xγ (μ3)

) ∈ R
3, where the notion ”gr” repre-

sents for the granular information that are contained in
(
xα, xβ, xγ

) ∈ [a1, c1] × [a2, c2] ×
[a3, c3] and μ ∈ [0, 1]3 standing for μ1, μ2, μ3 is called relative-distance-measure (RDM
for short) variables. In particular, we have Agr(α, β, γ, μ) = (

xα(μ1), xβ(μ2), xγ (μ3)
)
,

where

xα(μ1) := T
gr
A (α, μ1) = T −

A (α) + (
T +
A (α) − T −

A (α)
)
μ1,

xβ(μ2) := I
gr
A (β, μ2) = I−

A(β) + (
I+
A(β) − I−

A(β)
)
μ2,

xγ (μ3) := F
gr
A (γ, μ3) = F−

A (γ ) + (
F+
A (γ ) − F−

A (γ )
)
μ3.

Proposition 3.1 The HMF of a number A ∈ T is denoted by H(A) � Agr(α, β, γ, μ).
Moreover, the (α, β, γ )− cuts ofA can be obtained by using following inverse transforma-
tion

A(α,β,γ ) := H−1(Agr(α, β, γ, μ))

=
{[

inf
ξ≥α

min
μ1

T
gr
A (ξ, μ1), sup

ξ≥α

max
μ1

T
gr
A (ξ, μ1)

]

,

[

inf
ξ≥β

min
μ2

I
gr
A (ξ, μ2), sup

ξ≥β

max
μ2

I
gr
A (ξ, μ2)

]

,

[

inf
ξ≥γ

min
μ3

F
gr
A (ξ, μ3), sup

ξ≥γ

max
μ3

F
gr
A (ξ, μ3)

]}

.
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Definition 3.2 Two elements A and Ã ∈ T are said to be equal and written by A = Ã if
and only if H(A) = H(Ã) for all triplet (μ1, μ2, μ3) = (μ̃1, μ̃2, μ̃3) ∈ [0, 1] × [0, 1] ×
[0, 1], i.e.,

⎧
⎪⎨

⎪⎩

T
gr
A (α, μ1) = T

gr

Ã (α, μ1)

I
gr
A (β, μ2) = I

gr

Ã (β, μ2)

F
gr
A (γ, μ3) = F

gr

Ã (γ, μ3)

for each (α, β, γ ) ∈ [0, αneu] × [βneu, 1] × [γneu, 1] and for all (μ1, μ2, μ3) ∈ [0, 1] ×
[0, 1] × [0, 1].

3.2 Arithmetic operations

Definition 3.3 Denote ”⊗” by one of three arithmetic operations in T : addition, subtraction
or multiplication operation. ThenH(A1 ⊗A2) � H(A1)⊗H(A2). It should be noted that
the difference in this sense is called granular difference (gr-difference), denoted by 	gr .

Example 3.1 Let A = (5, 10, 15; 3, 6, 9; 10, 16, 22) and Ã = (4, 6, 8; 1, 3, 5; 9, 11, 13)
be two triangular neutrosophic numbers of type 1 whose parametric representations are
given by

A(α,β,γ ) = {[5 + 5α, 15 − 5α], [6 − 3β, 6 + 3β], [16 − 6γ, 16 + 6γ ]} ,

Ã(α,β,γ ) = {[4 + 2α, 8 − 2α], [3 − 2β, 3 + 2β], [11 − 2γ, 11 + 2γ ]} .
From Definition 3.1, it implies that

Agr(α, β, γ, μ) = (5 + 5α + (10 − 10α)μ1; 6 − 3β + 6βμ2; 16 − 6γ + 12γμ3) ,

Ãgr (α, β, γ, μ̃) = (4 + 2α + (4 − 4α)μ̃1; 3 − 2β + 4βμ̃2; 11 − 2γ + 4γ μ̃3) .

In addition, employing Definition 3.3, we immediately obtain that

• Agr (α, β, γ, μ) + Ãgr (α, β, γ, μ) = (9 + 7α + (14 − 14α)μ1; 9 − 5β + 10βμ2; 27 − 8γ + 16γμ3) ,

• Agr (α, β, γ, μ) − Ãgr (α, β, γ, μ) = (1 + 2α + (6 − 6α)μ1; 3 − β + 2βμ2; 5 − 4γ + 8γμ3) ,

• 0.5 · Agr (α, β, γ, μ) = (2.5 + 2.5α + (5 − 5α)μ1; 3 − 1.5β + 3βμ2; 8 − 3γ + 6γμ3) ,

• Agr (α, β, γ, μ) × Ãgr (α, β, γ, μ) =
(
20 + 30α + 10α2 + 20(1 − α)(2 + 3α)μ1 + 40(1 − α)2μ2

1;
18 − 21β + 6β2 + 6β(7 − 4β)μ2 + 24β2μ2

2;
176 − 98γ + 12γ 2 + 4γ (49 − 12γ )μ3 + 48γ 2μ2

3

)
.

Then, by using Proposition 3.1 and (α, β, γ ) −cuts representation theorem, we obtain

• The addition

A + Ã = (9, 17, 24; 4, 9, 14; 19, 27, 35).
• The subtraction

A 	gr Ã = (−3, 4, 11; −2, 3, 8; −3, 5, 13).

• The multiplication by the scalar λ = 0.5

λA = (2.5, 5, 7.5; 1.5, 3, 4.5; 5, 8, 11).
• The multiplication

A · Ã = (20, 60, 120; 3, 18, 45; 90, 176, 286).
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Especially, we have the spare ofA is given by

A2 := A · A = (25, 100, 225; 9, 36, 81; 100, 256, 484).

Definition 3.4 Let f : [a, b] ⊂ R → T be a T -valued function including n distinct
single valued triangular neutrosophic numbers A1, , A2, . . . ,An. Then, the HMF of f at
t ∈ [a, b], denoted byH(f (t)) � f gr (t, α, β, γ, μf ), is as

f gr : [a, b] × [0, αneu] × [βneu, 1] × [γneu, 1] × [0, 1]3n → R
3,

where μf � (μ1,A1 , . . . , μ1,An , μ2,A1 , . . . , μ2,An , μ3,A1 , . . . , μ3,An).

Remark 3.1 Let f be a T − valued function defined in closed interval [a, b] ⊂
R. Then, since the value f (t) ∈ T , we can write f (t) as f (t) ={〈x, Tf (t)(x), If (t)(x), Ff (t)(x)〉 : x ∈ R

}
for each t ∈ [a, b], whose HMF can be written

as

f gr (t, α, β, γ, μf ) =
(
T

gr

f (t)(α, μ1,f ), I
gr

f (t)(β, μ2,f ), F
gr

f (t)(γ, μ3,f )
)
.

Example 3.2 Let A = (5, 10, 15; 3, 6, 9; 10, 16, 22) and Ã = (4, 6, 8; 1, 3, 5; 9, 11, 13)
be two triangular neutrosophic numbers of type 1 with respective HMF is as follows

Agr(α, β, γ, μ) = (5 + 5α + (10 − 10α)μ1; 6 − 3β + 6βμ2; 16 − 6γ + 12γμ3) ,

Ãgr (α, β, γ, μ̃) = (4 + 2α + (4 − 4α)μ̃1; 3 − 2β + 4βμ̃2; 11 − 2γ + 4γ μ̃3) ,

where α, β, γ ∈ [0, 1] and μ = (μ1, μ2, μ3), μ̃ = (μ̃1, μ̃2, μ̃3) ∈ [0, 1] × [0, 1] × [0, 1].
Consider a T -valued function f (t) = At + Ã sin 2t on the interval [0, 7]. The horizontal
membership function of f is given by

H(f (t)) = tAgr (α, β, γ, μ) + Ãgr (α, β, γ, μ̃) sin 2t

= (
[5 + 5α + (10 − 10α)μ1] t + [

4 + 2α + (4 − 4α)μ̃1
]
sin 2t;

[6 − 3β + 6βμ2] t + [
3 − 2β + 4βμ̃2

]
sin 2t;

[16 − 6γ + 12γμ3] t + [
11 − 2γ + 4γ μ̃3

]
sin 2t

)
.

and the graphical representation of T − valued function f (t) is shown in Fig. 4

3.3 Neutrosophic metric space

Definition 3.5 LetA, Ã ∈ T . The function Dgr : T × T → R
+ ∪ {0} defined by

Dgr(A, Ã) = supα,β,γ maxμi ,μ̃i

1

3

{∣
∣
∣T

gr
A (α, μ1) − T

gr

Ã (α, μ̃1)

∣
∣
∣+

∣
∣
∣I

gr
A (β, μ2) − I

gr

Ã (β, μ̃2)

∣
∣
∣

+
∣
∣
∣F

gr
A (γ, μ3) − F

gr

Ã (γ, μ̃3)

∣
∣
∣

}
,

(2)

is a distance between two type 1 single valued triangular neutrosophic numbers A and Ã.

Proposition 3.2 Such real-valued function Dgr is said to be a metric on T .
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Fig. 4 The (α, β, γ )- cuts of T -valued function f in Example 3.2, where the black curve corresponds to the
certain values, the blue curves show the left end-points, while the red show the right end-points

Proof LetA and Ã be two numbers in T with respective horizontal membership functions

Agr(α, β, γ, μ) = (T
gr
A (α, μ1), I

gr
A (β, μ2), F

gr
A (γ, μ3)),

Ãgr (α, β, γ, μ̃) = (T
gr

Ã (α, μ̃1), I
gr

Ã (β, μ̃2), F
gr

Ã (γ, μ̃3)).

From the formula (2), it implies that Dgr(A, Ã) ≥ 0 for all A, Ã ∈ T and if
Dgr(A, Ã) = 0 then we deduce that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
μ1,μ̃1

∣
∣
∣T

gr
A (α, μ1) − T

gr

Ã (α, μ̃1)

∣
∣
∣ = 0

max
μ2,μ̃2

∣
∣
∣I

gr
A (β, μ2) − I

gr

Ã (β, μ̃2)

∣
∣
∣ = 0

max
μ3,μ̃3

∣
∣
∣F

gr
A (γ, μ3) − F

gr

Ã (γ, μ̃3)

∣
∣
∣ = 0.
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Equivalently, it implies
⎧
⎪⎨

⎪⎩

T
gr
A (α, μ1) = T

gr

Ã (α, μ̃1)

I
gr
A (β, μ2) = I

gr

Ã (β, μ̃2)

F
gr
A (γ, μ3) = F

gr

Ã (γ, μ̃3),

for all μi = μ̃i ∈ [0, 1] (i = 1, 2, 3) which follows thatA = Ã.
Since symmetry of Dgr is obvious, the rest of proof is to show that

Dgr(A1,A2) ≤ Dgr(A1,A3) + Dgr(A3,A2) for allA1,A2,A3 ∈ T . (3)

Indeed, since the following inequality
∣
∣
∣T

gr
A1

(α, μ1) − T
gr
A2

(α, μ̃1)

∣
∣
∣ ≤

∣
∣
∣T

gr
A1

(α, μ1) − T
gr
A3

(α, μ1)

∣
∣
∣+

∣
∣
∣T

gr
A3

(α, μ1) − T
gr
A2

(α, μ̃1)

∣
∣
∣

holds for each α ∈ [0, αneu], μ1, μ̃1, μ1 ∈ [0, 1], we deduce that
∣
∣
∣T

gr
A1

(α, μ1) − T
gr
A2

(α, μ̃1)

∣
∣
∣ ≤ max

μ1,μ̃1,μ1

{∣
∣
∣T

gr
A1

(α, μ1) − T
gr
A3

(α, μ1)

∣
∣
∣+

∣
∣
∣T

gr
A3

(α, μ1) − T
gr
A2

(α, μ̃1)

∣
∣
∣

}
.

Therefore,

sup
α

max
μ1,μ̃1

∣
∣
∣T

gr
A1

(α, μ1) − T
gr
A2

(α, μ̃1)

∣
∣
∣ ≤ supα max

μ1,μ1

∣
∣
∣T

gr
A1

(α, μ1) − T
gr
A3

(α, μ1)

∣
∣
∣

+ supα max
μ1,μ̃1

∣
∣
∣T

gr
A3

(α, μ1) − T
gr
A2

(α, μ̃1)

∣
∣
∣ .

By similar arguments, we also obtain

sup
β

max
μ2,μ̃2

∣
∣
∣I

gr
A1

(β, μ2) − I
gr
A2

(β, μ̃2)

∣
∣
∣ ≤ supβ max

μ2,μ2

∣
∣
∣I

gr
A1

(β, μ2) − I
gr
A3

(β, μ2)

∣
∣
∣

+ supβ max
μ2,μ̃2

∣
∣
∣I

gr
A3

(β, μ2) − I
gr
A2

(β, μ̃2)

∣
∣
∣ ,

sup
γ

max
μ3,μ̃3

∣
∣
∣F

gr
A1

(γ, μ3) − F
gr
A2

(γ, μ̃3)

∣
∣
∣ ≤ supγ max

μ3,μ3

∣
∣
∣F

gr
A1

(γ, μ3) − F
gr
A3

(γ, μ3)

∣
∣
∣

+ supγ max
μ3,μ̃3

∣
∣
∣F

gr
A3

(γ, μ3) − F
gr
A2

(γ, μ̃3)

∣
∣
∣ .

Finally, by adding both sides of three above inequalities, we obtain the inequality (3).

Remark 3.2 Such metric Dgr is said to be the granular metric on the space T of all single
valued triangular neutrosophic numbers. Hence, the space T equipped with the metric Dgr

is a metric space.

Theorem 3.1 The metric space (T ,Dgr ) is complete space.

Proof Let {An}n≥1 ⊂ T be a Cauchy sequence in T , that means

∀ ε > 0, ∃ N ∈ N
∗ such that∀ n ≥ N, p ≥ 1, we haveDgr(An+p,An) < ε,
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or equivalently,

sup
α,β,γ

max
μ1,μ̃1

∣
∣
∣T

gr
An+p

(α, μ1) − T
gr
An

(α, μ̃1)

∣
∣
∣ < ε,

sup
α,β,γ

max
μ2,μ̃2

∣
∣
∣I

gr
An+p

(β, μ2) − I
gr
An

(β, μ̃2)

∣
∣
∣ < ε,

sup
α,β,γ

max
μ3,μ̃3

∣
∣
∣F

gr
An+p

(γ, μ3) − F
gr
An

(γ, μ̃3)

∣
∣
∣ < ε.

As a result, we directly obtain that
∣
∣
∣T

gr
An+p

(α, μ1) − T
gr
An

(α, μ̃1)

∣
∣
∣ < ε,

∣
∣
∣I

gr
An+p

(β, μ2) − I
gr
An

(β, μ̃2)

∣
∣
∣ < ε,

∣
∣
∣F

gr
An+p

(γ, μ3) − F
gr
An

(γ, μ̃3)

∣
∣
∣ < ε.

Thus, we deduce that
{
T

gr
An

(α, μ1)
}

n≥1
,
{
I

gr
An

(β, μ2)
}

n≥1
,
{
F

gr
An

(γ, μ3)
}

n≥1
are Cauchy

sequences in the space of real numbers R, and then, these sequences are convergent in R.

Particularly, let us consider the sequence
{
T

gr
An

(α, μ1)
}

n≥1
. By Definition 3.1, we can

rewrite T
gr
An

(α, μ1) = T −
An

(α) +
(
T +
An

(α) − T −
An

(α)
)

μ1.

Since
{
T

gr
An

(α, μ1)
}

n≥1
is a convergent sequence and 0 ≤ μ1 ≤ 1, it follows that the

sequences
{
T −
An

(α)
}
and

{
T +
An

(α)
}
are also convergent. No loss generality, we assume

that lim
n→∞ T −

An
(α) = T −

A (α), lim
n→∞ T +

An
(α) = T +

A (α) and due to the fact that T −
An

(α) ≤
T +
An

(α), ∀ n ≥ 1, we obtain that T −
A (α) ≤ T +

A (α). At last, by employing analogous method

as in proof of Theorem 8.5 in [9], we deduce that the interval [T −
A (α), T +

A (α)] is the α − cuts
of a fuzzy number. As a consequence, the similar results are also obtained for the sequences{
I

gr
An

(β, μ2)
}

n≥1
and

{
F

gr
An

(γ, μ3)
}

n≥1
.

Therefore, we can see that if {An}n≥1 is a Cauchy sequence in T then An converges to
an elementA ∈ T . Hence, this achieves the proof.

3.4 The continuity

Definition 3.6 Let f : [a, b] ⊂ R → T be a T -valued function and t0 ∈ [a, b]. An
element � ∈ T is called the limit of f (t) as t tends to t0 and written by lim

t→t0
f (t) = � iff

for all ε > 0, there exists δ > 0 such that ∀t ∈ [a, b] satisfying 0 < |t − t0| < δ then
Dgr(f (t), �) < ε.

Especially, we have

• If t0 = a then lim
t→a+ f (t) = � means that for all ε > 0, there exists δ > 0 such that

∀t ∈ [a, b] satisfying 0 < t − a < δ then Dgr(f (t), �) < ε.
• If t0 = b then lim

t→b− f (t) = � means that for all ε > 0, there exists δ > 0 such that

∀t ∈ [a, b] satisfying 0 < b − t < δ then Dgr(f (t), �) < ε.

Definition 3.7 T − valued function f : (a, b) ⊂ R → T is said to be continuous on (a, b)

if for all t0 ∈ (a, b), for all ε > 0, there exists δ > 0 such that ∀t ∈ (a, b) satisfying
|t − t0| < δ then Dgr(f (t), f (t0) < ε.
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3.5 The neutrosophic derivatives

Definition 3.8 Let f : U ⊂ R → T be a T − valued function. Then, f is called granular dif-
ferentiable (gr-differentiable for short) at a point t0 ∈ U if there exists an element f ′

gr (t0) ∈
T such that the following limit

lim
h→0

f (t0 + h) 	gr f (t0)

h
= f ′

gr (t0),

exists for h sufficiently near 0 and then, the value f ′
gr (t0) is called the granular deriva-

tive (gr-derivative) of T -valued function f at the point t0. The function f is called
gr-differentiable on U if the gr-derivative of f exists for all points t0 ∈ U and mapping
t ∈ U �→ f ′

gr (t) is then called gr-derivative of f and denoted by f ′
gr or ḟgr .

Proposition 3.3 A necessary and sufficient condition for a function f : U ⊂ R → T is gr-
differentiable at a point t0 ∈ U is the differentiability of its horizontal membership function

at that point. Moreover, we haveH
(
f ′

gr (t0)
)

= ∂f gr (t0, α, β, γ, μf )

∂t
.

Proof Since the assumption T − valued function f is gr-differentiable at t0 ∈ U , we have

∀ε > 0, ∃δ > 0 such that∀h : 0 < h < δ ⇒ Dgr

(
f (t0 + h) 	gr f (t0)

h
, f ′

gr (t0)

)

< ε.

For simplicity in presentation, let us denote f (t0+h)	grf (t0)
h

and f ′
gr (t0) by A and A′,

respectively. Then, by employing the concept of granular metric, the above statement can
be rewritten as follows

∀ε > 0, ∃δ > 0 such that∀h : 0 < h < δ ⇒
sup

α,β,γ

max
μi,μ̃i

1

3

{∣
∣T

gr
A (α, μ1) − T

gr

A′ (α, μ̃1)
∣
∣+ ∣

∣I
gr
A (β, μ2) − I

gr

A′ (β, μ̃2)
∣
∣

+ ∣∣Fgr
A (γ, μ3) − F

gr

A′ (γ, μ̃3)
∣
∣
}

< ε,

that is equivalent to
∥
∥
∥
∥
1

h

[
f gr (t0 + h, α, β, γ, μf ) − f gr (t0, α, β, γ, μf )

]−
(
f ′

gr

)gr

(t0, α, β, γ, μf ′)

∥
∥
∥
∥

is getting as small as h tends to 0. Here, we denote
1

h

[
f gr (t0 + h, α, β, γ, μf ) − f gr (t0, α, β, γ, μf )

] = (
T

gr

A (α, μ1), I
gr

A (β, μ2), F
gr

A (γ, μ3)
)
,

(
f ′

gr

)gr

(t0, α, β, γ, μf ′ ) = (
T

gr

A′ (α, μ̃1), I
gr

A′ (β, μ̃2), F
gr

A′ (γ, μ̃3)
)
.

Therefore, this follows that the gr-differentiability of f implies the differentiability of
its horizontal membership function. By analogous arguments, we also prove the converse
statement. The proof is complete.

Proposition 3.4 Let f, g : [a, b] → T be differentiable T − valued functions. Then, based
on the horizontal membership function approach, the following statements are fulfilled:

(i) (A)′gr = 0̃, whereA ∈ T and 0̃ is zero neutrosophic number.
(ii) (αf (t) ± βg(t))′gr = αf ′

gr (t) + βg′
gr (t), where t ∈ [a, b] and α, β ∈ R.

(iii) (fg)′gr (t) = f ′
gr (t)g(t) + f (t)g′

gr (t), where t ∈ [a, b].
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Example 3.3 Let A = (5, 10, 15; 3, 6, 9; 10, 16, 22) and Ã = (4, 6, 8; 1, 3, 5; 9, 11, 13)
be two triangular neutrosophic numbers of type 1. Consider the T -valued function f (t) =
At + Ã sin 2t with t ∈ [0, 7]. Then, the horizontal membership function of f is given in
Example 3.2 and its derivative is as

∂f gr (t, α, β, γ, μ, μ̃)

∂t
= (

[5 + 5α + (10 − 10α)μ1] + [
8 + 4α + (8 − 8α)μ̃1

]
cos 2t;

[6 − 3β + 6βμ2] + [
6 − 4β + 8βμ̃2

]
cos 2t;

[16 − 6γ + 12γμ3] + [
22 − 4γ + 8γ μ̃3

]
cos 2t

)
,

where α, β, γ ∈ [0, 1] and μ = (μ1, μ2, μ3), μ̃ = (μ̃1, μ̃2, μ̃3) ∈ [0, 1]3. Thus, it follows
that the function f is gr-differentiable and the (α, β, γ ) - cuts of its derivative is given by

[f ′
gr (t)](α,β,γ ) = H−1

(
∂f gr (t, α, αu, αv)

∂t

)

= ([5 + 5α, 15 − 5α] + [8 + 4α, 16 − 4α] cos 2t;
[6 − 3β + 6 + 3β] + [6 − 4β, 6 + 4β] cos 2t;
[16 − 6γ, 16 + 6γ ] + [22 − 4γ, 22 + 4γ ] cos 2t) .

By using (α, β, γ )−cuts representation theorem, we have

f ′
gr (t) =

(
⋃

α

{[5 + 5α, 15 − 5α] + [8 + 4α, 16 − 4α] cos 2t} ;
⋃

β

{[6 − 3β, 6 + 3β] + [6 − 4β, 6 + 4β] cos 2t} ;

⋃

γ

{[16 − 6γ, 16 + 6γ ] + [22 − 4γ, 22 + 4γ ] cos 2t}
⎞

⎠

= (5, 10, 15; 3, 6, 9; 10, 16, 22) + (8, 12, 16; 2, 6, 10; 18, 22, 26) cos 2t
Therefore, we obtain that the gr-derivative f ′

gr (t) is A + 2Ã cos 2t which graphical
representation is shown in Fig. 5

3.6 The neutrosophic integral

Definition 3.9 Let f : [a, b] → T be a continuous T − function whose HMF H (f (t)) is

integrable on [a, b]. If there exists a number υ ∈ T such thatH(υ) =
∫ b

a

H (f (t)) dt then

such number m is said to be the granular integral (gr-integral for short) of f on [a, b] and
denoted by υ =

∫ b

a

f (t)dt .

Remark 3.3 Similar to Proposition 3.3, we can easily prove that the integrability of the
function f is equivalent to the integrability of its horizontal membership function.

Remark 3.4 Let a function f : [a, b] → T and a point x ∈ [a, b]. Then, if f is integrable
on [a, b], f is also integrable on the sub-interval [a, x].
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Fig. 5 The (α, β, γ )- cuts of the gr-derivative of T -valued function f in Example 3.3, where the black curve
corresponds to the certain values, while the blue and red curves represent for the left and right end-points

Lemma 3.1 If function f : [a, b] → T is continuous on [a, b] then for each t ∈ [a, b], the
function �(t) =

∫ t

a

f (s)ds is an anti-derivative of the function f .

Proof Let t0 ∈ [a, b] be arbitrary. Due to the continuity of f at point t0, we have that
for all ε > 0, there exists δ > 0 such that ∀t ∈ [a, b] satisfying |t − t0| < δ then
Dgr(f (t), f (t0)) < ε, i.e., lim

t→t0
f (t) = f (t0).

For h sufficiently near 0, let us consider the following quotient

�

t0
= 1

h

[
�(t0 + h) 	gr �(t0)

] = 1

h

[∫ t0+h

a

f (s)ds 	gr

∫ t0

a

f (s)ds

]

,
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whose horizontal membership function is given by

H
(

�

t0

)

= 1

h

[∫ t0+h

a

H(f (s))ds 	gr

∫ t0

a

H(f (s))ds

]

= 1

h

[∫ t0+h

a

f gr (s0 + h, α, β, γ, μf )ds −
∫ t0

a

f gr (s0, α, β, γ, μf )ds

]

= 1

h

∫ t0+h

t0

f gr (s0 + h, α, β, γ, μf )ds.

Next, by applying mean value theorem for integrals, we obtain that

H
(

�

t0

)

= 1

h

∫ t0+h

t0

f gr (s0 + h, α, β, γ, μf )ds

= f gr(t0 + θh, α, β, γ, μf ),

in which θ ∈ (0, 1). Since the fact that t0 + θh tends to t0 as h → 0 then we have

H
(
� ′

gr (t0)
)

= lim
h→0

H
(

�

t0

)

= lim
h→0

f gr (t0 + θh, α, β, γ, μf ) = f gr (t0, α, β, γ, μf ),

which implies that [� ′
gr (t0)](α,β,γ ) = H−1(f gr (t0, α, β, γ, μf )) = [f (t0)](α,β,γ ) for each

α, β, γ ∈ [0, 1]. Since the point t0 ∈ [a, b] is chosen arbitrarily, this achieves the proof.

Theorem 3.2 (Newton-Leibniz Formula) Assume that � : [a, b] ⊆ R → T be a gr-
differentiable T -valued function and function f (t) := �′

gr (t) is continuous on [a, b]. Then
f is gr-integrable and

∫ b

a

f (t)dt = �(b) 	gr �(a).

Proof By Lemma 3.1, we obtain that function �(t) =
∫ t

a

f (s)ds is an anti-derivative of

function f on [a, b] whose horizontal membership function is given as follows

�gr(t, α, β, γ, μ�) =
∫ t

a

f gr (s, α, β, γ, μf )ds,

that means �gr(t, α, β, γ, μ�) is also an anti-derivative of f gr(t, α, β, γ, μf ) on [a, b].
Hence, if �gr(t, α, β, γ, μ�) is another anti-derivative of f gr(t, α, β, γ, μf ) on [a, b] then

�gr(t, α, β, γ, μ�) = �gr(t, α, β, γ, μ�) + C

=
∫ t

a

f gr (s, α, β, γ, μf )ds + C,

where C is a constant.

In addition, by substituting t = a, we have �gr(a, α, β, γ, μ�) =
∫ a

a

f gr (s, α, β, γ, μf )

ds + C, or equivalently, �gr(a, α, β, γ, μ�) = C. Thus, it implies that

�gr(t, α, β, γ, μ�) =
∫ t

a

f gr (s, α, β, γ, μf )ds + �gr(a, α, β, γ, μ�)

⇐⇒
∫ t

a

f gr (s, α, β, γ, μf )ds = �gr(t, α, β, γ, μ�) − �gr(a, α, β, γ, μ�).
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Letting t = b then we obtain the following formula

∫ b

a

f gr (s, α, β, γ, μf )ds = �gr(b, α, β, γ, μ�) − �gr(a, α, β, γ, μ�),

whose (α, β, γ )− cuts can be given as follows

∫ b

a

H−1 (f gr (s, α, β, γ, μf )
)
ds = H−1 (�gr(b, α, β, γ, μ�) − �gr(a, α, β, γ, μ�)

)
,

that means the following integral equality holds

∫ b

a

f (t)dt = �(b) 	gr �(a).

Example 3.4 Consider a function � : [0, 5] → T given by �(t) = A1e
−t + A2t

2 in
which A1 = (4, 7, 10; 0, 1, 2; 3, 5, 7) and A2 = (2, 4, 6; 1, 2, 3; 1, 3, 5) ∈ T . Then, the
horizontal membership function of �(t) is given by

H(�(t)) = �gr(t, α, β, γ, μ, μ̃)

= A
gr

1 (α, β, γ, μ)e−t + A
gr

2 (α, β, γ, μ̃)t2

=
(
[4 + 3α + (6 − 6α)μ1] e

−t + [
2 + 2α + (4 − 4α)μ̃1

]
t2;

[1 − β + 2βμ2] e
−t + [

2 − β + 2βμ̃2
]
t2; [5 − 2γ + 4γμ3] e

−t

+ [3 − 2γ + 4γ μ̃3
]
t2
)
.

By using similar arguments as in Example 3.2, we have that the T − valued function �(t) is
gr-differentiable on [0, 5] and its derivative is �′

gr (t) = f (t) whose horizontal membership
function is given by

f gr (t, α, β, γ, μ, μ̃) = ∂�gr(t, α, β, γ, μ, μ̃)

∂t

= −A
gr

1 (α, β, γ, μ)e−t + 2Agr

2 (α, β, γ, μ̃)t

= (
[−4 − 3α − (6 − 6α)μ1] e

−t + [
4 + 4α + (8 − 8α)μ̃1

]
t;

[−1 + β − 2βμ2] e
−t + [

4 − 2β + 4βμ̃2
]
t;

[−5 + 2γ − 4γμ3] e
−t + [

6 − 4γ + 8γ μ̃3
]
t
)
,

where α, β, γ ∈ [0, 1] and μ = (μ1, μ2, μ3), μ̃ = (μ̃1, μ̃2, μ̃3) ∈ [0, 1]3. Then,
employing (α, β, γ ) − level sets representation theorem, we obtain that

f (t) = A3e
−t + A4t,

in which A3 = (−10,−7,−4; −2,−1, 0;−7, −5,−3), A4 = (4, 8, 12; 2, 4, 6; 2, 6, 10)
are single valued triangular neutrosophic numbers. In addition, we can see that f is
continuous function on [0, 10]. Then, by applying Theorem 3.2, it follows that

∫ 5

0
f (t)dt = �(5) 	gr �(0) = (

A3e
−5 + 5A4

)	gr A3 = (
1 − e−5

)
A1 + 5A4.
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4 Applications to T − valued differential equations

4.1 T − valued differential equations

In the following, based on the HMF approach, we will investigate some classes of T − val-
ued differential equations. Indeed, let us consider following initial problem to T − valued
differential equations

{
x′
gr (t) = f (t, x(t))

x(t0) = x0
t ∈ [t0, T ], (4)

where f : [t0, T ] → T is a T − valued function including n distinct neutrosophic numbers
A1, A2, . . ., An, x′

gr (·) represents for the gr-derivative of x(·) w.r.t t and x0 ∈ T is ini-
tial condition. According to Definition 3.2, the initial problem (4) can be transformed into
following form

{H(x′
gr (t)) = H(f (t, x(t)))

H(x(t0)) = H(x0)
t ∈ [t0, T ],

Then, by using Proposition 3.3, we obtain that

⎧
⎨

⎩

∂xgr (t, α, β, γ, μx)

∂t
= f gr (t, xgr (t, α, β, γ, μx), α, β, γ, μf )

xgr (t0, α, β, γ, μx) = x
gr

0 (α, β, γ, μx)
t ∈ [t0, T ], (5)

where α, β, γ ∈ [0, 1], μx ∈ [0, 1]3 and μf � (μ1,A1 , . . . , μ1,An , μ2,A1 , . . . ,

μ2,An , μ3,A1 , . . . , μ3,An).
Thus, under the HMF approach, we can see that the use of gr-differentiability help us

only need to solve just one differential equation that is equivalent to the given equation
and we call this equivalent equation is granular differential equation. Moreover, we can see
that if T − valued differential equation (4) doesn’t have solution then the corresponding
granular differential equation also does not. Conversely, if x̃gr (t, α, β, γ, μx) is a solution
of problem (5) then it is also the solution of problem (4).

Remark 4.1 Some important results such the well-posedness or the existence and unique-
ness of solution to Cauchy problems (4) for T − valued differential equations correspond
to those of Cauchy problem (5) for granular differential equations.

Example 4.1 Consider following T − valued differential equations

{
ẋgr (t) = y(t) − ũ

ẏgr (t) = −4x(t)
(6)

subject to the initial condition

x(0) = y(0) = 0̃,

where ũ = (−1, 0, 1; 0, 1, 2; −2, 0, 2), 0̃ = (0, 0, 0; 0, 0, 0; 0, 0, 0) are single valued tri-
angular neutrosophic numbers and t ∈ [0, 10]. By using the similar method to obtain the
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system (5), it follows that the corresponding granular system of differential equations of (6)
is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂xgr (t, α, β, γ, μx)

∂t
= ygr (t, α, β, γ, μy) − ũgr (α, β, γ, μũ)

∂ygr (t, α, β, γ, μy)

∂t
= −xgr (t, α, β, γ, μx)

xgr (0, α, β, γ, μx) = ygr (0, α, β, γ, μy) = 0,

in which ũgr (α, β, γ, μũ) = (
α − 1 + (2 − 2α)μũ,1; 1 − β + 2βμũ,2; 4γμũ,3

)
and the

triplets μx = μy = μũ = μ. Then, the solution of the above system is given as
{

xgr (t, α, β, γ, μ) = −ũgr (α, β, γ, μ) sin 2t

ygr (t, α, β, γ, μ) = 1

2
ũgr (α, β, γ, μ) (1 − cos 2t) ,

Fig. 6 The (α, β, γ ) − cuts of function x(t) that corresponds to the solution of system (6)
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whose (α, β, γ )− cuts can be given as
⎧
⎨

⎩

[x(t)](α,β,γ ) = ([−1 + α, 1 − α]; [−1 − β, −1 + β]; [−2γ, 2γ ]) sin 2t
[y(t)](α,β,γ ) =

([

−1

2
+ α

2
,
1

2
− α

2

]

;
[
1

2
− β

2
,
1

2
+ β

2

]

; [−γ, γ ]

)

(1 − cos 2t)

Figures 6 and 7 show the (α, β, γ )− level sets of solution of the system (6).

4.2 Some real-life models

Example 4.2 (Logistic equations) In this example, we consider dynamics of a single pop-
ulation model. We denote by x = �(t) the number of individuals of a given species at the
time t and r by the percent change of the population. If r is not impacted by the limitation
of space and food then we can assume it as a constant. However, in real world, this assump-
tion is unrealistic. Thus, in modeling models of population by dynamic system, we often

Fig. 7 The (α, β, γ ) − cuts of function y(t) that corresponds to the solution of system (6)
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modify the unrestricted growth rate r to ensure that the environment can only support a cer-
tain number of the species, denoted by K, namely the carrying capacity of the environment
with populations living in. If x > K then it cause consequences the lack of food and space
available to support x, more species will be die than will be born, which leads to the nega-
tive growth rate. Conversely, if x < K then the population growth should be positive. Using
the above model of the population growth, we consider the following differential equation
that is known as the Verhulst equations or logistic equations

{
�̇gr (t) = r�(t) · (1.5 	gr �(t))

�(0) = A,
t ∈ [0, 7],

where r = 0.8 andA = (0.1, 0.3, 0.5; 0.1, 0.2, 0.3; 0, 0.1, 0.2). Here, due to the uncertainty
of available information about the initial population of the species when modeling this real-
world problems, neutrosophic value presentation has been considered as a better description
in the formulation of the mathematical model.

In addtion, based on the approach mentioned in previous section, we have

∂�gr(t, α, β, γ, μ)

∂t
= 0.8�gr(t, α, β, γ, μ)

(
1.5 − �gr(t, α, β, γ, μ)

)
(7)

subject to the initial condition

�gr(0, α, β, γ, μ) = (0.3 + 0.2α + 0.4(1 − α)μ1; 0.2 − 0.1β + 0.2βμ2; 0.1 − 0.1γ + 0.2γμ3) ,

where α, β, γ ∈ [0, 1] and μi ∈ [0, 1] (i = 1, 2, 3).
The solution of the granular differential (1) is

�gr(t, α, β, γ, μ) = 1.5�gr(0, α, β, γ, μ)

�gr(0, α, β, γ, μ) + [1.5 − �gr(0, α, β, γ, μ)] e−1.2t
,

whose (α, β, γ )− cuts is given as follows

[�(t)](α,β,γ ) =
[

0.15 + 0.3α

0.1 + 0.2α + (1.4 − 0.2α) e−1.2t
,

0.75 − 0.3α

0.5 − 0.2α + (1 + 0.2α) e−1.2t

0.3 − 0.15β

0.2 − 0.1β + (1.3 + 0.1β) e−1.2t
,

0.3 + 0.15β

0.2 + 0.1β + (1.3 − 0.1β) e−1.2t

0.15 − 0.15γ

0.1 − 0.1γ + (1.4 + 0.1γ ) e−1.2t
,

0.15 + 0.15γ

0.1 + 0.1γ + (1.4 − 0.1γ ) e−1.2t

]

.

The (α, β, γ )− level sets of the solution of the logistic (3.3) with respect to the initial
condition �(0) = (0.1, 0.3, 0.5; 0.1, 0.2, 0.3; 0, 0.1, 0.2) is presented in Fig. 8

Remark 4.2 From the above figure, we see that if at the initial time, the population of
species is in the carrying capacity of the environment then the population will approach to
the carrying capacity value as time increases.

Example 4.3 The inverted pendulum system is a popular demonstration of using feedback
control to stabilize an open-loop unstable system. In this example, we consider the following
mechanical system which model an inverted pendulum on the cart.

By applying Newton’s second law to mechanical system including two masses m1, m2,
we have following nonlinear model

{
(m1 + m2)ÿ + m2�θ̈ cos θ − m2�θ̇

2 sin θ + μẏ = u

�θ̈ − g sin θ + ÿ cos θ = 0.
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Fig. 8 The (α, β, γ ) − cuts of the solution �(t) of the logistic (3.3).

Let x1 = y, x2 = θ , x3 = ẏ, x4 = θ̇ . Then, we obtain the state equation corresponding
to the mechanical system in Fig. 9

⎡

⎢
⎢
⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

x3
x4

[
m1 + m2 m2� cos x2
cos x2 �

]−1 ([
m2�x

2
4 sin x2 − μx3
g sin x2

]

+
[
1
0

]

u

)

⎤

⎥
⎥
⎦ .

Next, by using linearization method, we obtain the linearized system of inverted pendulum
model as follows

⎡

⎢
⎢
⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1
0 −m2

m1
g − μ

m1
0

0 m1+m2
m1�

g
μ

m1�
0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1
x2
x3
x4

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

0
0
1

m1− 1
m1�

⎤

⎥
⎥
⎦ u, (8)
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Fig. 9 Inverted pendulum on cart

in which the parameters and their values are given in Table 4.
Here, we consider the acceleration of gravity g = (9.6, 9.8, 10; 0.5, 1.5, 2.5; 1.5, 2, 2.5)

∈ T is an uncertain quantity due to errors in measurement and influence of environmental
factors such temperature, humidity, meteorology, etc. From the uncertainty of g, it follows
that the matrix’s coefficients of (8) is also uncertain, that is equivalent to the uncertainty in
the form of solution.

Table 4 Parameter’s value
m1 mass of the cart 3 kg

m2 mass of the pendulum 1 kg

� length of the pendulum 2 m

μ friction coefficient
166

39
N.s/m

y position of the cart

θ angular rotation

u force on the cart

g acceleration of gravity
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Table 5 Truth membership function of Reλ(A)

0 0.2 0.4 0.6 0.8 1.0

0 2.41 2.415 2.42 2.425 2.43 2.436

0.25 2.423 2.425 2.428 2.43 2.433 2.436

0.5 2.436 2.436 2.436 2.436 2.436 2.436

0.75 2.448 2.446 2.443 2.441 2.439 2.436

1.0 2.461 2.456 2.451 2.446 2.441 2.436

In this example, our main aim is to show that the open-loop system is unstable, i.e., the
system (8) is considered under assumption that external force u ≡ 0. Indeed, the system (8)
then becomes ⎡

⎢
⎢
⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1
0 − g

3 − 166
117 0

0 2g
3

83
117 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1
x2
x3
x4

⎤

⎥
⎥
⎦ . (9)

Based on the concepts of gr-differentiability and horizontal membership function
approach, the differential system (9) can be transformed into following form

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂x
gr
1 (t,α,β,γ,μx1 )

∂t
∂x

gr
2 (t,α,β,γ,μx2 )

∂t
∂x

gr
3 (t,α,β,γ,μx3 )

∂t
∂x

gr
4 (t,α,β,γ,μx4 )

∂t

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0 0 1 0
0 0 0 1

0 − ggr (α,β,γ,μg)

3 − 166
117 0

0 2ggr (α,β,γ,μg)

3
83
117 0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

x
gr

1 (t, α, β, γ, μx1)

x
gr

2 (t, α, β, γ, μx2)

x
gr

3 (t, α, β, γ, μx3)

x
gr

4 (t, α, β, γ, μx4)

⎤

⎥
⎥
⎦ , (10)

Let us choose μx1 = μx2 = μx3 = μx4 = μg = μ and denote

A =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1
0 − ggr (α,β,γ,μ)

3 − 166
117 0

0 2ggr (α,β,γ,μ)
3

83
117 0

⎤

⎥
⎥
⎦ .

Then, since the stability of system (9) is equivalent to the stability of corresponding
granular linear differential system, the rest of proof is to show that the linear system (10)
is unstable for each (α, β, γ ) − cuts and μ ∈ [0, 1]. By using MATLAB’s tool, we obtain
following tables about the truth, indeterminacy and falsity membership function of Reλ(A)

(Tables 5, 6 and 7).

Table 6 Indeterminacy membership function of Reλ(A)

0 0.2 0.4 0.6 0.8 1.0

0 0.921 0.855 0.784 0.707 0.621 0.522

0.25 0.921 0.889 0.855 0.821 0.784 0.747

0.5 0.921 0.921 0.921 0.921 0.921 0.921

0.75 0.921 0.952 0.983 1.012 1.041 1.069

1.0 0.921 0.983 1.041 1.097 1.15 1.2
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Table 7 Falsity membership function of Reλ(A)

0 0.2 0.4 0.6 0.8 1.0

0 1.069 1.041 1.012 0.983 0.952 0.921

0.25 1.069 1.055 1.041 1.027 1.012 0.998

0.5 1.069 1.069 1.069 1.069 1.069 1.069

0.75 1.069 1.083 1.097 1.11 1.123 1.137

1.0 1.069 1.097 1.123 1.15 1.175 1.2

As a result, we can see that Reλ(A) is always positive for each α, β, γ ∈ [0, 1] and
μ ∈ [0, 1], that means the granular linear differential system (10) is unstable. Therefore, it
implies that the open-loop system of inverted pendulum model is an unstable system.

Fig. 10 Mass - Spring - Damper model
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Table 8 Parameter values
K1 the spring constant 1 150 N/m

K2 the spring constant 2 300 N/m

D1 the friction coefficient 1 100 N.s/m

D2 the friction coefficient 2 550
3 N.s/m

M1 mass 1 10 kg

M2 mass 2 25 kg

y1, y2 the displacements

Example 4.4 (Mass - Spring - Damper) Consider a mechanical system containing two
masses that are hung from the ceiling by two strings. Here, each string can be modeled as a
combination of a spring and a dashpot for friction (see Fig. 10). If we act to the system an
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Fig. 11 The (α, β, γ ) −cuts of solution of the problem (11)-(12) with α = β = γ = 0 and μ = 1
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external force u then by Hook’s law, we can deduce that the forces are linearly proportional
to the corresponding displacements, while the forces due to the frictions depend on both
displacements and velocities. By applying Newton’s second law to two masses m1 and m2,
we obtain that

{
M1ÿ1 = u − K1(y1 − y2) − D1(ẏ1 − ẏ2)

M2ÿ2 = K1(y1 − y2) + D1(ẏ1 − ẏ2) − K2y2 − D2ẏ2,

where ẏi , ÿi represent for gr-derivative and second gr-derivative of yi , respectively.
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Fig. 12 The (α, β, γ ) −cuts of solution of the problem (11)-(12) with α = β = γ = 0.5 and μ = 1
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Fig. 13 The (α, β, γ ) −cuts of solution of the problem (11)-(12) with α = β = γ = 1 and μ = 1

To obtain the state equations, let us denote x1 = y1, x2 = ẏ1, x3 = y2, x4 = ẏ2. Then,
the state equations of the system can be represented by following matrix form

⎡

⎢
⎢
⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 1 0 0
− K1

M1
− D1

M1

K1
M1

D1
M1

0 0 1 0
K1
M2

D1
M2

−K1+K2
M2

−D1+D2
M2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1
x2
x3
x4

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

0
1

M1

0
0

⎤

⎥
⎥
⎦ u, (11)

where u is external force and the coefficients Di , Ki , mi are determined in Table 8:
In addition, the initial state of this mechanic system is given as

⎧
⎪⎪⎨

⎪⎪⎩

x1(0) = (0.05, 0.1, 0.15; 0, 0.1, 0.2; 0.05, 0.15, 0.25) ,

x2(0) = (−0.8,−0.6,−0.4; −0.1, 0, 0.1;−0.2,−0.1, 0),
x3(0) = (−0.1, 0, 0.1; 0, 0.1, 0.2; 0, 0.05, 0.1) ,

x4(0) = (0.6, 0.8, 1; 0.5, 0.8, 1.1; 0.3, 0.4, 0.5).
(12)
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Since the initial states and the external force acting to the mechanical system cannot be cer-
tain values due to the lack of specialized measure equipment and the errors in experiment
and computation, it follows that the mechanical system becomes a complex system contain-
ing uncertainties in both coefficients and conditions and hence, it is necessary to introduce
uncertainty in the solution.

For the initial problem to the system (11) subject to the conditions (12), by using
MATLAB’s program for Runge Kutta numerical method, we obtain that Figs. 11, 12 and 13
show the graphical representation of solution of mechanical system (11) with initial state
(12) with respect to some different values of (α, β, γ ) − cuts.

5 Conclusions

In this work, by using horizontal membership functions approach, a new representation of
triangular neutrosophic number is introduced. Additionally, the metric on space of single
valued triangular neutrosophic numbers and the continuity of neutrosophic valued functions
are also presented. Especially, the concept of derivative of neutrosophic valued function,
namely granular derivative, is firstly defined based on granular difference beside the foun-
dation of the concept granular integral. Under these concepts, the neutrosophic differential
equations have been investigated. To solve this kind of equations, the horizontal membership
function approach is used. The next step of our future research, we will study the control-
lability and stabilizability for some classes of linear time-invariant neutrosophic systems,
neutrosophic dynamic system of fractional order with applications to signal processing.
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