
Multimedia Tools and Applications (2019) 78:20609–20636
https://doi.org/10.1007/s11042-019-7378-x

An efficient scheme for secure domain medical image
fusion over cloud

Lakshmi V. S.1 ·Deepthi P. P.1

Published online: 4 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The exponential growth in the medical images is making the healthcare industry move
towards cloud-based paradigm, which has vast storage and high end processing facilities.
However, moving medical images containing highly sensitive data to third-party cloud
servers brings in serious security threats. Even though encrypting medical images before
outsourcing using traditional encryption schemes seem to be a feasible solution, that can
not support encrypted domain processing. In this paper, we propose an affine Hill cipher
based scheme for encrypted domain medical image fusion. The random vectors used in this
scheme are carefully designed to preserve the randomness and security properties when
operations are performed on the encrypted data. The proposed scheme offers data privacy
and supports encrypted domain processing with no additional storage burden at the cloud
side and very low computational burden at the healthcare provider side. The security of the
proposed scheme is evaluated through extensive cryptanalysis in terms of resistance against
various statistical attacks. The performance of the proposed scheme is analyzed by com-
paring various metrics of encrypted domain MR-CT/PET image fusion results with those
of plaintext domain fusion. The values of structural similarity index, normalized correlation
coefficient and structural content are 1 and the image quality index is 0.999, which show
that the proposed encrypted domain image fusion provides same accuracy levels as that of
plaintext domain image fusion.
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1 Introduction

Medical image fusion plays a crucial role in accurate diagnosis and treatment of diseases.
Medical images of various modalities can provide different information. For example, com-
puted tomography (CT) image give information on dense structures such as bones; and
positron emission tomography (PET) image provide functional information while mag-
netic resonance (MR) imaging provide information on soft tissues. Image fusion helps the
doctor for better diagnosis by combining the complimentary features in images of differ-
ent modalities. As medical images of different modalities acquired by different devices
are of high resolution for precise diagnosis, it impose huge storage cost to the health care
providers. In addition, due to the exponential growth in medical images generated per day,
the biggest challenge faced by the health care providers/industry is the storage, processing
and management of this huge amount of medical images being generated.

In recent years, with the advent of cloud platform offering high end storage and comput-
ing facilities, health care industry is now shifting the medical data to the cloud environment
[28]. Although cloud storage and computing relieves the healthcare providers from the bur-
den of data storage, maintenance and processing cost, it also brings in several security
threats since the outsourced data is stored in third party cloud servers. One of the major
security challenges that need to be addressed is to protect privacy or confidentiality of data,
when highly sensitive data like medical images are outsourced, especially when processing
operations are to be performed on these data. Although traditional encryption schemes like
AES provide data confidentiality, they will not support operations on the encrypted medical
images.

Homomorphic encryption schemes are a special class of encryption schemes, which
allow to perform some operations on the encrypted data without any knowledge of the
decryption function. Image fusion techniques involve only linear operations and an additive
homomorphic encryption scheme is sufficient for encrypting the medical images to be out-
sourced. The most popular additive homomorphic encryption schemes available in literature
are Paillier [23] and secret sharing schemes [30]. Paillier scheme is computationally expen-
sive due to the modular exponentiation operation over a finite field of large size. Moreover,
the storage overhead of Paillier scheme is twice since the size of ciphertext is double that
of plaintext. Secret sharing scheme (SSS) has lesser computational complexity compared to
the Paillier scheme due to linear encryption and decryption operations. But in SSS [22, 34],
different image shares generated from a single image need to be stored in storage devices of
multiple non-colluding cloud service providers in order to provide adequate security. This
brings in additional restrictions on storage. Furthermore, since size of each image share is
same as the size of original image, the storage overhead increases with the number of image
shares being stored.

As the encryption and decryption operations have to be done at the health service
provider (client) side, it is desirable to have an additive homomorphic encryption scheme
with low computational complexity. Moreover, since data outsourcing cost charged by the
cloud depends on the amount of data stored in the cloud, it is required to minimize the stor-
age overhead incurred due to the ciphertext expansion. This motivated us to design a low
complex additive homomorphic encryption system based on Hill cipher [35] since it satis-
fies the requirements in terms of computational complexity and storage overhead. This is
due to the fact that the encryption and decryption operations of Hill cipher are linear and
as the size of ciphertext is same as that of plaintext, there is no storage overhead. How-
ever, original Hill cipher scheme is prone to known-plaintext attack. Hence, in order to use
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Hill cipher for secure image fusion, it is necessary to modify it in such a way that, it is
computationally infeasible for an adversary, who has access to all data stored in the cloud
and some knowledge about the plaintext, to retrieve the plaintext. But since such an
adversary cannot have access to encrypting machine, chosen plaintext attack need not be
considered as a valid attack. This assumption will not cause any loss of generality, due to
the fact that in all practical applications, the client machine will be geographically separated
from the cloud servers. This paper attempts to enhance the security of the Hill cipher so that
it can withstand the known-plaintext attack, preserving additive homomorphism.

The major contributions of this work are listed below.

1. A symmetric key additively homomorphic encryption scheme based on affine Hill
Cipher is proposed to provide confidentiality of outsourced data and to support linear
operations in the encrypted domain.

(a) In order to reduce the computational complexity involved in finding the inverse of
the key matrix during decryption, self invertible matrices are used in this work.

(b) In the proposed scheme, different random vectors are generated for different data
blocks through a novel design method based on a combination of linear feed-
back shift registers (LFSR) which helps to improve security of Hill cipher based
encryption scheme.

(c) The method for reseeding the LFSR is designed so that randomness and secu-
rity properties will be preserved while homomorphically combining the blocks.
Through mathematical analysis, it is proved that the linear combination of
encrypted blocks neither nullifies the effect of individual random vectors nor
destroys the randomness properties.

2. The suitability of the proposed encryption scheme for encrypted domain MR-CT image
fusion is analyzed through comparing simulation results in encrypted domain with those
of plaintext domain in terms of various subjective and objective performance metrics.
It is verified that encrypted domain image fusion provides same accuracy levels as that
of plaintext domain image fusion.

3. Security of the proposed encryption scheme against cipher text only attack and known
plaintext attack is established through cryptanalysis and in terms of resistance against
different statistical attacks.

The rest of the paper is organized as follows. Section 2 presents the summary of related
works while Section 3 details the system model and adversary model considered. Section 4
gives the description of the proposed homomorphic encryption scheme and Section 5 pro-
vides the detailed performance analyses. The security analyses is described in Section 6
followed by concluding remarks in Section 7.

2 Related work

In this section, the recent works on homomorphic encryption schemes and methods for
securing medical images are discussed in detail.

The idea of processing encrypted data was first addressed by Rivest et al. [26]. Fully
homomorphic encryption schemes which allow any computations on encrypted data was
introduced by Gentry [10]. Several schemes [4, 5, 11] were proposed following this
work. Even though many schemes with optimizations were proposed, these schemes still
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remain computationally complex and impractical. Whereas partially homomorphic encryp-
tion schemes support computations only for either multiplication or addition. RSA [27],
Paillier [23] and Goldwasser-Micali [12] are some of the cryptosystems that support partial
homomorphism. RSA is homomorphic over multiplication whereas the other two schemes
are additively homomorphic which allow linear combination operations on the encrypted
data.

Among the additive homomorphic encryption schemes, Paillier is the widely used for
image processing works on encrypted domain [21, 25, 32]. The basic image scaling and
cropping operations in encrypted domain is proposed in [21]. A reversible data hiding
approach based on Paillier scheme, where the hidden data is directly embedded into the
encrypted images is proposed in [32]. A digital watermarking scheme for secure transmis-
sion of medical images based on Paillier encryption is introduced in [25]. In this scheme, the
encrypted watermark image is directly embedded into the encrypted image. However, the
Paillier scheme suffers from the following issues. The storage overhead of Paillier scheme
is twice as the size of ciphertext is double the plaintext size. Moreover, in Paillier scheme,
to provide 128-bit security, the modulus required is a prime number of size 2048bits.
Hence, this scheme has high computational complexity due to the modular exponentiation
operations involved during encryption and decryption.

Some notable works for securing medical images during storage or/and transmission
have been proposed in [8, 9, 31, 36]. A watermark embedding scheme based on Arnold
transform for ensuring authentication of medical images is proposed in [31]. For confi-
dentiality of medical images, the watermarked images are encrypted through chaos-based
encryption in [36]. For secure transmission and storage of the medical images in the cloud
server, the outsourced images are encrypted using elliptic curve cryptography, whose keys
are chosen using hybrid swarm optimization in [9]. A hybrid encryption scheme developed
from AES and RSA is used for securing medical data while transmission in IoT environment
is presented in [8]. Even though all these works ensure secure storage or transmission of
medical images, these schemes are not designed to support secure processing in encrypted
domain.

The use of Arnold transform [31] to scramble the medical images to be fused suffers
from known-plaintext attack (KPA) since the transform matrix used for encrypting the
images to be fused need to be same to support fusion in encrypted domain. Similarly, chaos
based encryption [36] is a one-time pad encryption, where the keystreams generated through
chaotic map acts as a one-time pad. This method is also prone to KPA and the random-
ness properties of the keystream cannot be ensured while homomorphically combining the
encrypted images. The elliptic curve cryptography adopted in [9] can be modified to support
additive homomorphism as detailed in [33]. However, the storage overhead of this elliptic
curve based scheme is double and has high computational complexity. The hybrid encryp-
tion scheme based on AES and RSA [8] cannot be used for encrypted domain processing
since AES does not support homomorphism over encryption.

Hill cipher [35] is a potential candidate for additive homomorphic encryption system
for encrypted domain image fusion due to the linearity in encryption and decryption oper-
ations. Moreover, it introduces no storage overhead and has less computational complexity.
However, the original Hill cipher [35] is susceptible to KPA. A symmetric key additively
homomorphic encryption scheme based on Hill cipher, namely iterated Hill cipher (IHC) is
proposed in [6]. Although the authors claim it to be secure against KPA, later in [38], it is
proved that IHC can be broken through KPA. Another version of Hill cipher that can with-
stand KPA is affine Hill cipher [37]. In this scheme, unique random vectors are added to
the ciphertexts generated through original Hill cipher. Nevertheless, this scheme cannot be
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directly converted to provide additive homomorphism as the randomness properties of the
random vector cannot be ensured while homomorphically combining the data.

In the proposed affine Hill cipher based homomorphic encryption scheme, the linearity
in encryption process is retained in order to preserve additive homomorphism. The random
vectors used for encryption are keystreams generated using linear feedback shift registers
(LFSR) due to the good randomness properties and low structural complexity of LFSR. At
the same time, care has been taken to preserve the randomness and security properties of
the random vectors, while homomorphically combining the data.

3 Systemmodel and adversary model

3.1 Systemmodel

The system model considered is an end to end secure cloud based medical image fusion
scenario as shown in Fig. 1, where the encrypted medical images of different modalities
are outsourced to the cloud; the cloud fuses the images in encrypted domain and the fused
encrypted image is accessed by the healthcare provider, who further decrypts the fused
image. Multiscale decomposition method is a widely used technique for multi-modal image
fusion [7]. In this method, the images of different modalities are decomposed using wavelets
and the wavelet coefficients corresponding to images of different modalities are combined
using appropriate fusion rule to obtain the fused coefficients. Then the final fused image
is obtained by taking the inverse wavelet transform of the decomposed image consisting
of fused coefficients. The fusion rule generally used are averaging, weighted averaging
etc. which are linear operations [16]. In the system model considered, the preprocessing
of images of different modalities includes image decomposition using appropriate wavelets
and rounding off the pixel values based on the requirements of the encryption scheme.

Fig. 1 System Model for secure medical image fusion
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There is a need for additive homomorphic encryption scheme to facilitate image fusion in
encrypted domain.

3.2 Adversary model

Cloud systems use distributed storage architecture for reliable data storage and securing
data in distributed storage systems (DSS) assumes that the adversaries have access to only
a subset of storage servers. The works on secure DSS [17, 24, 29] aims to resist ciphertext-
only attack against adversaries who have access to only a limited number of servers in the
DSS and is achieved through adding randomness to the data. But in practical DSS such as
those with cloud storage, the storage servers may be distributed in the same geometrical
environment. So in this work, we consider computationally bounded passive adversaries,
who can eavesdrop on all the cloud servers. Also, based on the type of data stored, the
adversary may have knowledge of some plaintexts with which he can try to mount a known-
plaintext attack.

4 Proposed scheme for encrypted domain processing

The design of the proposed scheme for image fusion in encrypted domain is inspired from
the Hill cipher [35] construction. In original Hill cipher, the encryption of a plaintext vector,
m of length ‘p’ is done by multiplying it with a secret invertible random matrix, G of size
p × p and the plaintext is decrypted by multiplying the ciphertext with the inverse of G

matrix. The set of all possible keys or key space in the case of Hill cipher is the set of all
possible invertible p × p matrices from the space of all p × p matrices. Iterated Hill cipher
(IHC) [6] is proposed as a homomorphic encryption scheme and it extends the key space to
the set of all p × p matrices. An initialization vector of length ‘p’ and the iteration number
are kept secret in addition to G in the case of iterated Hill cipher. In IHC, the encryption and
decryption are done using an iterative algorithm and the encoding results corresponding to
the kth and (k − 1)th iteration form the ciphertext, where k is the number of iterations. Thus
the size of ciphertext in the case of IHC will be double the size of plaintext, which will result
in storage overhead. The authors claim that iterated Hill cipher can be made secure against
known plaintext attack by changing the initialization vector during every encryption. But it
is proved in [14] that this will spoil the homomorphic property offered by the encryption
scheme. Furthermore, in [38], the authors showed that it can be broken through known
plaintext attack even if the initialization vector is changed during every encryption. An
improved version of the Hill cipher which can withstand known plaintext attacks is Affine
Hill cipher [20, 37]. Affine Hill cipher construction relies on adding unique random vectors
to the ciphertexts generated through original Hill cipher. But this scheme cannot be directly
converted to support homomorphic operations since the randomness and security properties
of the random vector cannot be ensured while homomorphically combining the image (data)
blocks.

An affine Hill cipher based additive homomorphic encryption scheme is proposed in
this paper to securely store the data in cloud and to support encrypted domain processing.
While designing the scheme, care has been taken to preserve the randomness and security
properties of the random vector, while homomorphically combining the data. In addition,
in this work self invertible or involutory matrices are used as key matrix, G. This facilitates
the use of same matrix, G for encryption and decryption and reduces the computational
complexity involved in finding the inverse of G matrix during decryption.
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The details of the proposed encryption scheme are as follows:

Encryption The ciphertext, ci ∈ F
p
q of length ‘p’ whose elements are chosen from finite

field, Fq , corresponding to ith plaintext, mi ∈ F
p
q is given by

ci = EK(mi) = G · mi + ri (1)

where G ∈ F
p×p
q is a self-invertible matrix and ri ∈ F

p
q is a random vector which is

different for each plaintext.

Decryption The plaintext, mi ∈ F
p
q corresponding to the ciphertext, ci ∈ F

p
q can be

retrieved by
mi = DK(ci) = G.(ci − ri) (2)

Homomorphic property The encryption operation supports additivity and homogeneity
properties which are the requirements for an additive homomorphic encryption scheme. Let
m1,m2 ∈ F

p
q represent two plaintext messages and r1, r2 ∈ F

p
q represent the corresponding

random vectors. Then homomorphic properties of the encryption scheme can be defined as

Additivity

EK(m1) + EK(m2) = (G.m1 + r1) + (G.m2 + r2)

= G.(m1 + m2) + (r1 + r2)

= EK(m1 + m2) (3)

Homogeneity

β.EK(m1) = β.(G.m1 + r1) = G.βm1 + βr1

= EK(βm1) (4)

where β ∈ Fq represents a scalar.
To ensure additive homomorphism as given in (3) and (4), it is essential to design random

vectors ‘ri’ properly. For (5) to hold, it is required that sum of random vectors r1 +r2 should
yield a random vector with properties same as that of r1 and r2. Similarly for (4) to hold, the
scalar multiple of random vector β · r1 should also have same randomness properties as r1.
During decryption operation to retrieve the plaintext, it is essential to have the knowledge of
the effective resultant random vector. Since encryption and decryption are done at the client
side, the client can remove the effect of the random vectors with the help of keys used for
generating it.

Following section discusses how random vectors can be designed to satisfy these required
properties.

4.1 Design of random vector

As the image fusion technique mainly involves averaging and weighted averaging opera-
tions, linear combination can be considered as the generalized operation that is required in
the encrypted domain image fusion. In order to ensure homomorphism for linear operations,
the set of random vectors used for encryption should be closed under linear combination
operations. That means linear combinations of random vectors should yield random vec-
tors of the same randomness properties. In order to satisfy these requirements, we are
using a well-designed combination of LFSRs for generating random vectors. The proper



20616 Multimedia Tools and Applications (2019) 78:20609–20636

design of the random vectors is important as the randomness properties offered by the
LFSR keystream will be spoiled if the linear combination of random vectors yield a null
vector while linearly combining ciphertexts. Therefore, the secret initial states of LFSR
used for generating different random vectors should also be derived properly to retain the
randomness properties of the random vector in the linearly combined ciphertext.

It is well known that keystream constituting one period of the LFSR output, satisfy
Golomb’ s randomness properties [19]. Also linear combination of these output keystreams
is a keystream generated from the linear combination of corresponding states.

Theorem 1 The keystreams generated by the LFSR satisfies superposition property.

Proof (1) Additivity property –The sum of the keystreams is a new keystream generated by
an initial state which is the sum of initial states corresponding to individual keystreams.

Let k(x) = k0 +k1x +k2x
2 +· · ·+kL−1x

L−1 be the polynomial representation of initial
state and g(x) = g0 +g1x+g2x

2 +· · ·+gLxL be the feedback polynomial of LFSR, where
ki, gi ∈ Fq . Then the state of the L-length shift register of LFSR initially consists of values,
k0, k1, k2, · · · , kL−1, which are coefficients of k(x) and the tap weights of the feedback
connections of the LFSR are decided by g0, g1, g2, · · · , gL, the coefficients of g(x). Hence,
the output sequence with period qL − 1 generated by the LFSR can be represented as

a(x) = f (x)/g(x),wheref (x) =
L−1∑

i=0

⎛

⎝
i∑

j=0

kjgi−j

⎞

⎠ xi (5)

Suppose k1(x) = k10 + k11x + k12x
2 + · · · + k1L−1x

L−1 and k2(x) = k20 + k21x +
k22x

2 +· · ·+k2L−1x
L−1 are two different initial states of the LFSR with the same feedback

polynomial g(x). Let a1(x) and a2(x) represent the output sequences generated by LFSR
corresponding to intial states, k1(x) and k2(x) and feedback polynomial, g(x). Then using
(5), a1(x) and a2(x) can be represented in terms of kij as

a1(x) =
⎡

⎣
L−1∑

i=0

⎛

⎝
i∑

j=0

k1j gi−j

⎞

⎠ xi

⎤

⎦ /g(x)

a2(x) =
⎡

⎣
L−1∑

i=0

⎛

⎝
i∑

j=0

k2j gi−j

⎞

⎠ xi

⎤

⎦ /g(x) (6)

The sum of output sequences or keystreams, a1(x)+a2(x) of the LFSR can be expressed
as

a1(x) + a2(x) =
⎡

⎣
L−1∑

i=0

⎛

⎝
i∑

j=0

(k1j + k2j )gi−j

⎞

⎠ xi

⎤

⎦ /g(x)

=
⎡

⎣
L−1∑

i=0

⎛

⎝
i∑

j=0

k3j gi−j

⎞

⎠ xi

⎤

⎦ /g(x)

= a3(x) (7)

where a3(x) is a keystream generated by the initial state k3(x) = k1(x) + k2(x). Equation 7
shows that the sum of keystreams result in another keystream, a3(x), which can be generated
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by an LFSR with initial state, k3(x), which is equal to the sum of the initial states, k1(x)

and k2(x).

Proof (2) Homogeneity property –The scalar multiple of a keystream is a new keystream
generated by an initial state which is the scalar multiple of the initial state corresponding to
original keystream.

Let a(x) be the keystream generated by key, k(x). Then b(x) = β ·a(x) is the keystream
generated by kβ(x) = β · k(x)

β · a(x) = β ·
⎡

⎣
L−1∑

i=0

⎛

⎝
i∑

j=0

(
kj

)
gi−j

⎞

⎠ xi

⎤

⎦ /g(x)

=
⎡

⎣
L−1∑

i=0

⎛

⎝
i∑

j=0

β · kjgi−j

⎞

⎠ xi

⎤

⎦ /g(x)

=
⎡

⎣
L−1∑

i=0

⎛

⎝
i∑

j=0

kβj gi−j

⎞

⎠ xi

⎤

⎦ /g(x)

= b(x) (8)

Due to these properties of LFSR keystream, the random vectors for the proposed homo-
morphic encryption system are chosen as the output keystreams of an LFSR. The initial state
of the LFSR, k(x) and the feedback polynomial g(x), which decide the feedback connec-
tions of the LFSR are kept secret and form part of the secret key of the proposed encryption
scheme. The length of the random vector ‘p’ is to be chosen as a value close to an integral
multiple of period of LFSR to ensure randomness properties, i.e., p ∼= c(qL − 1) , where
‘L’ is the length of LFSR and ‘c’ is a nonzero integer.

In the proposed scheme, it is required to generate different random vectors correspond-
ing to different data blocks to retain homomorphism over linear operations. In order to
facilitate generation of a distinct random vector corresponding to each distinct data block to
be homomorphically combined, it is required to derive different initial states for the LFSR
from the initial secret key through a proper design method. Therefore, next attempt in the
design of proposed encryption scheme is to devise a method for generating multiple initial
states from the initial secret key.

4.1.1 Properties of random vector

The random vector should be generated to satisfy the randomness and security properties.

Randomness property If N image blocks are to be linearly combined during image fusion,
it is required to have at least N linearly independent random vectors for encryption. This
is to ensure that, when ciphertext blocks are linearly combined, the corresponding random
vectors obtained through linear combination operation will not yield a null vector so that
the security of encryption operation is retained. From the previous discussions on LFSR
theory it can be clearly seen that, linearly independent initial states of an LFSR will result in
linearly independent random vectors. Also, since each state of an LFSR of length L forms a
L-dimensional vector in a vector space V over Fq , there can be only L linearly independent
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initial states. Therefore, the minimum possible length of LFSR ‘L’ has to be chosen as at
least N ie, Length of LFSR, L ≥ N , where N is the number of data blocks to be combined.
Now, in order to ensure that the generated random vectors are linearly independent, the
initial state si of LFSR corresponding to each message block mi where 1 ≤ i ≤ N , can be
derived from the initial key k = (k0, k1, k2, · · · , kL−1) by a cyclic shifting operation. To
complete the design of random vector for encryption, it is required to arrive at the number
of cyclic shifting operations that can be performed on a vector of length ‘L’ so that the set
of shifted vectors remain linearly independent.

Theorem 2 For an LFSR of length L, the set of L initial states generated by cyclically shift-
ing an initial secret key k(x) are linearly independent if gcd (k(x), xL − 1) is a polynomial
of degree zero.

Proof Let the initial state of LFSR which acts as the secret key be represented as k =
(k0, k1, k2, · · · , kL−1) , where ki ∈ Fq . Then define a shift operator, T : V �→ V by

T (k0, k1, k2, · · · , kL−1) = (kL−1, k0, k1, · · · , kL−2) (9)

If the initial secret key, k and its L − 1 shifted versions are arranged as rows of a matrix,
K , it will form a L × L circulant matrix as shown in (10).

K =

⎡

⎢⎢⎢⎢⎢⎣

k

T k
...

T L−2k

T L−1k

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

k0 k1 · · · kL−2 kL−1
kL−1 k0 · · · kL−3 kL−2

...
...

. . .
...

...
k2 k3 · · · k0 k1
k1 k2 · · · kL−1 k0

⎤

⎥⎥⎥⎥⎥⎦
(10)

All the ‘L’ initial states obtained by taking the cyclic shifted versions of k(x) will be
linearly independent if the circulant matrix is full rank.

Let U denote the circulant matrix whose entries are

Uij =
{

1, j − i ≡ 1(modL)

0, j − i 	≡ 1(modL)
(11)

Then the L × L circulant matrix K corresponding to k is given by K = ∑L−1
i=0 kiU

i

where U0 = I , the identity matrix of size L × L and U1 is obtained by cyclically shifting
each row of U0 with shift operator T . Now, if K is invertible over Fq , then there exists a
circulant matrix M = ∑L−1

i=0 miU
i , where mi ∈ Fq such that K .M = I .

If k(x) = ∑L−1
i=0 kix

i be the polynomial representation of circulant matrix, K , then
finding the inverse of K is equivalent to finding a polynomial m(x) = ∑L−1

i=0 mix
i in Fq [x]

such that
k(x).m(x) ≡ 1[mod(xL − 1)] (12)

The congruence modulo (xL − 1) follows from the equality UL = I . Using Extended
Euclidean algorithm, (12) can be written as

k(x).m(x) + t (x).(xL − 1) = 1 (13)

Thus the L × L circulant matrix will be of full rank if gcd (k(x), (xL − 1)) = v, where v is
a non-zero integer in Fq . In general, if degree of gcd (k(x), (xL − 1)) is ‘s’ , then the rank
of circulant matrix is ‘ L − s’ . So if s = 0, then the matrix K will be full rank and all the
rows are linearly independent.
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So for encrypting N image blocks, the length of LFSR should satisfy L − s ≥ N where
s = degree of gcd (k(x), (xL − 1)) for the initial secret key polynomial, k(x).

Security property If the initial states of the LFSR for generation of random vectors are
derived from initial secret key by simple linear shifting operations, it can cause security
leakage as discussed below:

Let c1 and c2 be the ciphertexts corresponding to plaintexts m1 and m2, which are to
be linearly combined in the encrypted domain. Then the data blocks m1 and m2 will be
encrypted with the same self-invertible matrix, G and random vectors r1 and r2 respectively
as

c1 = G.m1 + r1 (14)

c2 = G.m2 + r2 (15)

where r2 = TR(r1), TR represents the right shift.
If c′

2 represents the ciphertext obtained by left shifting c2, then

c′
2 = TL(c2) = TL(G · m2) + TL(r2) (16)

where TL represents the left shift.
Therefore,

c1 − c′
2 = G · [m1 − TL(m2)] + r1 − TL(r2)

= G · [m1 − TL(m2)], (17)

Thus the effect of random vector can be removed from ciphertext. So to enhance the
security, the LFSR initial state needed for generating successive random vectors are derived
by shifting the previous initial state and multiplying with a random element from Fq . This
helps to prevent the security leakage while preserving linear independence and there by
randomness properties.

Algorithm 1 gives the procedure for generating random vectors. The inputs to the algo-
rithm are initial secret key of LFSR, k1 and feedback polynomial, g(x) and initial seed
α1 to generate random multiplier αi . Output is random vector, ri used for encrypting each
data block, mi . In this algorithm, LFSR-PRNG refers to the pseudorandom number gener-
ator based on LFSR which outputs ‘N ’ random elements to form random vectors, ri used
for encryption based on the initial state, k1 and the feedback polynomial g(x). LFSR-State
refers to LFSR state updation with initial state α1 and outputs a single random element.
TRi(k1) in the algorithm indicates right shift of the initial state k1 by ‘i’ bits.
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4.2 Design of keymatrix

Random invertible matrices are used as key matrix in original Hill cipher. However, the
complexity in finding such a matrix increases with increase in the size of the matrix and field
size, q. Moreover, during decryption the inverse of the matrix needs to be computed which
will increase the decryption time and complexity. In order to overcome these problems, in
this work we make use of self-invertible or involutory matrix [1] as key matrix. A matrix,
G is said to be self-invertible if G−1 = G. Let G be a p × p involutory matrix, which can

be written as G =
[

G11 G12
G21 G22

]
, where Gij , 1 ≤ i, j ≤ 2 are matrices of order p/2 × p/2.

An involutory matrix over any field will satisfy the following properties.

1. The determinant of an involutory matrix is ±1, i.e., |G| = ±1.
2. The square of an involutory matrix is an identity matrix, i.e., G2 = I

Assuming |G| = −1 and from G−1 = G, the involutory matrix G can be obtained by
solving the equation, G12G21 = I − (G11)

2, since G22 = −G11.

Algorithm 2 give the steps for generating involutory key matrix, G. The inputs to the algo-
rithm are the size of matrix, p and a random element, γ , where γ ∈ Fq . In this algorithm,
the subblocks, G12 and G21 of the matrix are generated from the factors of I − (G11)

2.

4.3 Key space

The secret key for the proposed encryption scheme consists of the self invertible matrix,
G∈F

p×p
q , the initial states, k1, α1 of two LFSRs and the feedback polynomial g(x) of LFSR.

4.4 Proposed secure medical image fusion

The complete schematic of the proposed encrypted domain MR-CT/PET image fusion
over cloud is shown in Fig. 2. As mentioned in Section 3.1, we have considered DWT
based MR-CT/PET image fusion using averaging rule. The hospital (client) computes the
DWT of captured MR and CT/PET images using Haar wavelet. Then the client gener-
ates the encrypted MR and CT/PET images from their decomposed images using proposed
Hill cipher based encryption scheme. For encryption, these decomposed images are first
divided into blocks, and passed through pre-processsing operation. Pre-processing of image
is required to ensure that the pixel values are integers after decomposition and averaging dur-
ing fusion. Encrypted image blocks are sent to cloud for long term storage and image fusion.
The cloud performs the encrypted domain image fusion of the encrypted MR and CT/PET
image vectors. In order to retrieve the final fused image, the health care provider (client)
access the encrypted version of the fused MR-CT/PET image from the cloud. The client then
performs the decryption of the fused image vectors and post-process the decrypted DWT
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fused coefficients in order to match the results in the plaintext domain. The post processed
fused image thus obtained after decryption is in DWT domain. Then the final fused MR-CT/
PET image is generated by computing the inverse DWT of the post processed image.

The detailed steps of the proposed encrypted domain MR-CT image fusion with the
required mathematical expressions are shown in Algorithm 3. Since single level Haar
wavelet decomposition involves division by 2 and averaging the encrypted image blocks
involves another division by 2, the original image pixels are preprocessed by multiplying
with 4. The pixels of the corresponding encrypted MR and CT image vectors are added and
multiplied with multiplicative inverse of 2 to obtain average of the encrypted image vec-
tors. The effect of the preprocessing done before encryption is removed after decryption in
the post processing step. In a similar manner, the steps for the proposed encrypted domain
MR-PET image fusion can be obtained by replacing CT images with PET images.
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Fig. 2 Flow Diagram for proposed secure medical image fusion

5 Performance analysis

In this section, the accuracy of encrypted domain image fusion is analyzed in terms of
subjective and objective performance metrics.

5.1 Simulation results and analysis

To evaluate the performance of the proposed encryption scheme, the fusion of medical
images of different modalities are considered. Simulations of the proposed scheme are per-
formed on PC with Intel(R) Xeon(R) CPU E3-1226 v3 3.3 GHz 16GB RAM running on
Windows 10 Professional equipped with MATLAB R2015b environment.

For simulation, we have used standard MR, CT and PET image datasets from the Harvard
university site which are available at http://www.med.harvard.edu/aanlib/home.html. MR
and CT images of size 512 × 512 are first decomposed using single level 2D Haar wavelet.
The decomposed MR and CT images to be encrypted are divided into 64 blocks and each
block is encrypted by multiplying with self-invertible G matrix of size 4096 × 4096 which
is followed by the addition of the random vector of length 4096. We have also considered
the fusion of MR and PET images of size 512 × 512, where MR images are gray-scale
and PET images are colour. As PET images provide functional information with low spatial
resolution and MR images provide the tissue information with high resolution, the fusion of
MR-PET image helps in better diagnosis.

The pixels of the image can be represented using an 8-bit integer since each pixel takes
a value in the range 0 to 255. Hence the field size, q should be at least 257, which is the
nearest prime ≥ 255. However, the field size should be large enough to accommodate the
result of processing for preserving the accuracy of computation in encrypted domain. For
example, if two encrypted image blocks are added, the resultant pixel can take value in the
range 0 to 510. So in order to preserve this value on decryption, q should be a prime number
≥ 510. Since the final value of the pixels on decryption could be negative or positive, care
should be taken to choose q such that it is at least twice greater than the range of values
involved. Thus to ensure the correctness of the computation in encrypted domain, all the
modulo operations have to be done using a prime number at least ≥ 4080 (=255*4*4). In
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Table 1 Simulation parameters
Simulation parameters

Image size 512 × 512

No. of decomposed image blocks 64

Size of G matrix 4096 × 4096

Length of random vector 4096

Field size 4091

this paper, all simulations for image fusion are done by choosing q = 4091. Table 1 shows
the in-detail simulation parameters used in this paper.

The original MR, CT image, their decomposed images, encrypted images before and
after fusion and decrypted fused image are shown in Fig. 3. From Fig. 3, it is clear that the
encrypted images after fusion will not leak any information about the original images.

5.1.1 Subjective analysis

Since accuracy is an important parameter, the efficiency of the proposed homomorphic
encryption scheme in fusing MR and CT images is evaluated by comparing the accuracy of
the encrypted domain (ED) image fusion with that of the plaintext domain (PD) fusion. The
subjective analysis of secure MR-CT image fusion for different data sets is shown in Fig. 4,
which includes the MR and CT images and the corresponding fused images in plaintext
domain (PD) and encrypted domain (ED). The subjective analysis of secure MR-PET image
fusion for different data sets is shown in Fig. 5.

Fig. 3 Original MR and CT images, its decomposed and encrypted versions, encrypted and decrypted fused
MR-CT images
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Fig. 4 Example images a MR image, b Registered CT image, c Fused image in PD, and d Fused image in ED

5.1.2 Objective analysis

The performance of the encrypted domain image fusion is also analyzed using objective per-
formance measures. There are two classes of objective performance measures, one requires
a reference image while the other one does not require reference image. As it is difficult to
obtain an ideal fused image as a reference image, non-reference metrics such as entropy (H),
Standard Deviation (SD) and mutual information (MI) are used to evaluate the quality of
a fused image [3]. Feature Mutual Information (FMI) metric [13] is another non-reference
metric which calculates the amount of information conducted from the source images to the
fused image. Table 2 shows the H, SD, MI and FMI values of plaintext domain (PD) and
encrypted domain (ED) image fusion for different datasets. It should be noted from Figs. 4,
5 and Table 2 that the encrypted domain results match with the plaintext domain results.

The fused image quality in ED is also analyzed using objective measures relying on ref-
erence image, considering PD fused image as the reference image. Maximum difference
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Fig. 5 Example images a MR image, b PET image, c Fused image in PD, and d Fused image in ED

(MD), Average difference (AD), Normalized absolute error (NAE) , Mean-square error
(MSE) [2], Image quality index (IQI) [39], Normalized correlation coefficient (NCC),
Structural content (SC) and Structural similarity index (SSIM) [3] are used to evaluate the
quality of the fused image in ED with respect to PD. Table 3 shows the values of these
parameters corresponding to different datasets. The very low values of MD, AD, NAE and
MSE ranging from 10−13 to 10−28 indicates that the difference between ED fused image
and PD fused image are negligibly small. Moreover NCC, SC and SSIM values correspond-
ing to all datasets are equal to the maximum value, 1 and IQI is also close to 1. This indicates
that ED and PD fused images are very close to each other.

6 Security analysis

In this section, the security of the proposed scheme is first evaluated through resistance
against various statistical attacks, which is then followed by mathematical cryptanalysis.
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Table 2 Quantitative Evaluation Results based on source images and fused image in PD and ED

Datasets H SD MI FMI

PD ED PD ED PD ED PD ED

Dataset 1 6.2955 6.2953 103.44 103.44 2.1933 2.1933 0.8858 0.8858

Dataset 2 5.3307 5.3306 122.93 122.93 2.2972 2.2968 0.8894 0.8893

Dataset 3 5.5309 5.5309 122.11 122.11 2.4101 2.4097 0.8879 0.8880

Dataset 4 6.4180 6.4180 111.99 111.99 2.3919 2.3916 0.8835 0.8835

Dataset 5 6.0527 6.0527 119.26 119.26 2.6342 2.6341 0.8919 0.8919

Dataset 6 6.7761 6.7633 107.52 107.52 2.2600 2.2599 0.8860 0.8860

Dataset 7 6.2675 6.2674 112.54 112.54 2.2669 2.2668 0.8845 0.8845

Dataset 8 6.3635 6.3624 98.03 98.03 2.0766 2.0766 0.8757 0.8757

Dataset 9 6.1437 6.1437 103.44 103.44 2.1648 2.1647 0.8886 0.8886

Dataset 10 6.3275 6.3275 105.22 105.22 2.2012 2.2012 0.8832 0.8832

Dataset 11 6.4846 6.4824 117.88 117.88 2.1187 2.1185 0.8749 0.8749

Dataset 12 6.1361 6.1359 111.01 111.01 2.3024 2.3023 0.8859 0.8859

Dataset 13 6.5765 6.5765 106.93 106.93 2.2701 2.2701 0.8772 0.8772

6.1 Histogram analysis

A good encryption scheme should generate a uniformly distributed histogram corresponding
to the encrypted image. This prevents the adversary from acquiring any information about
the original image from the histogram of the encrypted image. The original MR and CT
images, their encrypted versions and fused MR-CT image in ED along with their histograms
are shown in Fig. 6. From Fig. 6, it is clear that the proposed encryption scheme completely
randomizes the plaintext since the histogram of the encrypted image follows uniform dis-
tribution. Moreover, the uniform distribution of the histogram of the ED fused image also

Table 3 Quantitative Evaluation Results of the fused image in ED considering PD fused image as reference
image

Datasets MD AD NAE MSE IQI NCC SC SSIM

Dataset 1 1.71E-13 1.69E-14 1.54E-16 9.57E-28 0.9997 1 1 1

Dataset 2 1.71E-13 1.65E-14 1.57E-16 1.14E-27 0.9997 1 1 1

Dataset 3 1.71E-13 1.83E-14 1.59E-16 1.26E-27 0.9998 1 1 1

Dataset 4 1.71E-13 2.31E-14 1.59E-16 1.48E-27 0.9998 1 1 1

Dataset 5 1.71E-13 2.49E-14 1.71E-16 1.70E-27 0.9997 1 1 1

Dataset 6 1.71E-13 2.03E-14 1.47E-16 1.25E-27 0.9998 1 1 1

Dataset 7 1.71E-13 1.97E-14 1.59E-16 1.23E-27 0.9997 1 1 1

Dataset 8 1.71E-13 1.50E-14 1.48E-16 7.92E-28 0.9992 1 1 1

Dataset 9 1.71E-13 1.67E-14 1.56E-16 9.58E-28 0.9993 1 1 1

Dataset 10 1.71E-13 1.69E-14 1.53E-16 9.68E-28 0.9997 1 1 1

Dataset 11 1.71E-13 1.95E-14 1.53E-16 1.28E-27 0.9997 1 1 1

Dataset 12 1.71E-13 2.07E-14 1.58E-16 1.26E-27 0.9998 1 1 1

Dataset 13 1.71E-13 2.01E-14 1.54E-16 1.20E-27 0.9997 1 1 1
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Fig. 6 Original MR and CT images, its encrypted versions and their corresponding histograms

indicates that no information is leaked after ED image fusion. Hence the proposed scheme
is secure against histogram attack.

6.2 Correlation analysis

Usually the correlation of neighboring pixels of the plaintext image will be very high. In
order to resist statistical attacks by exploiting the correlation between adjacent pixels, the
encrypted image should have low correlation coefficients. The correlation analysis of the
encrypted images using proposed scheme is performed by taking into consideration all
possible adjacent cases (horizontal, vertical and diagonal). The correlation coefficient is
computed using the following equations.

Corrx,y = Cov(x, y)√
V (x) × √

V (y)
(18)

Cov(x, y) = 1

N

N∑

i=1

(xi − x̄)(yi − ȳ) (19)

V (x) = 1

N

N∑

i=1

(xi − x̄)2 (20)

x̄ = 1

N

N∑

i=1

xi (21)

where x and y are values of two neighbouring pixels; and x̄ and ȳ are the mean values.
Cov(x, y) and V (x) represent the covariance and variance respectively. Table 4 shows the
correlation coefficients of adjacent pixels for original plaintext MR and CT/PET image;
their encrypted versions before and after fusion corresponding to different datasets. It is
clear from Table 4 that the correlation coefficients of encrypted MR and CT/PET images
are very low compared to original MR and CT/PET images. This reveals that the proposed
scheme completely randomizes the pixels and no statistical information is leaked from the
encrypted image. Moreover, the very low values of correlation coefficients of the encrypted
domain fused image indicate that the encrypted domain fusion will not leak any information
about the original fused image, resisting correlation attacks.
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Table 4 Correlation coefficients of MR and CT/PET images in plaintext domain (PD) and encrypted domain
(ED); and fused MR-CT/PET image in ED

Datasets Orientation MR Image CT/PET Image Fused Image

PD ED PD ED ED

Dataset 1 H 0.9912 0.0024 0.9984 −0.0009 0.0044

V 0.9908 0.0012 0.9988 −0.0024 0.0012

D 0.9844 0.0042 0.9972 −0.0023 −0.0026

Dataset 2 H 0.9942 −0.0001 0.9996 0.0020 0.0017

V 0.9949 −0.0042 0.9995 0.0015 0.0001

D 0.9905 −0.0009 0.9992 −0.0038 0.0039

Dataset 3 H 0.9943 0.0020 0.9993 0.0015 0.0000

V 0.9951 0.0004 0.9994 0.0015 −0.0020

D 0.9906 0.0025 0.9989 −0.0021 −0.0009

Dataset 4 H 0.9908 −0.0019 0.9979 0.0000 0.0044

V 0.9916 −0.0002 0.9980 0.0013 0.0009

D 0.9844 0.0022 0.9959 0.0022 −0.0033

Dataset 5 H 0.9933 −0.0032 0.9984 0.0038 −0.0002

V 0.9935 −0.0015 0.9986 −0.0005 0.0006

D 0.9884 0.0015 0.9969 −0.0003 0.0015

Dataset 6 H 0.9904 0.0008 0.9986 −0.0022 −0.0016

V 0.9908 0.0019 0.9985 0.0002 −0.0009

D 0.9828 0.0025 0.9971 0.0040 0.0020

Dataset 7 H 0.9916 −0.0028 0.9982 −0.0021 −0.0011

V 0.9925 0.0017 0.9986 0.0011 0.0005

D 0.9859 −0.0027 0.9967 −0.0035 0.0032

Dataset 8 H 0.9890 −0.0021 0.9982 −0.0022 −0.0022

V 0.9864 −0.0015 0.9987 0.0016 −0.0048

D 0.9787 −0.0019 0.997 0.0018 −0.0017

Dataset 9 H 0.9893 −0.0043 0.9981 −0.0003 −0.0001

V 0.9879 0.0034 0.9986 −0.0012 0.0021

D 0.9800 0.0000 0.9968 −0.0002 0.0024

Dataset 10 H 0.9844 −0.0015 0.9983 −0.0015 0.0004

V 0.9908 0.0003 0.9988 −0.0002 0.0028

D 0.9912 0.0007 0.9972 0.0020 0.0025

Dataset 11 H 0.9919 −0.0022 0.9986 0.0003 0.0002

V 0.9924 0.0014 0.9988 0.0012 −0.0045

D 0.9859 0.0010 0.9974 −0.0033 −0.0018

Dataset 12 H 0.9923 0.0002 0.9982 0.0009 −0.0058

V 0.9932 0.0008 0.9981 0.0036 −0.0005

D 0.9873 −0.0018 0.9965 −0.0017 0.0002

Dataset 13 H 0.9895 0.0018 0.9977 −0.0036 −0.0001

V 0.9901 −0.0007 0.9983 0.0023 −0.0016

D 0.9821 0.0020 0.9960 −0.0006 −0.0019



Multimedia Tools and Applications (2019) 78:20609–20636 20629

6.3 Key sensitivity analysis

Key sensitivity is an important parameter used to quantify the security of an encryp-
tion scheme. A good encryption scheme will provide totally different ciphertexts when
encrypted with keys which are differing only in a few bits. The key sensitivity of the
proposed scheme is first analyzed by decrypting the image with a key different from the
encryption key by only 1 bit. Even though there is only one-bit change in key, it is observed
that the decrypted image is completely random. The two commonly used parameters to
analyze the key sensitivity are number of pixels change rate, NPCR and unified average
changing intensity, UACI. The NPCR and UACI values are computed using the following
expressions.

NPCR = �i,jD(i, j)

W × H
× 100% (22)

D(i, j) =
{

0, c1(i, j) = c2(i, j)

1, c1(i, j) 	= c2(i, j)
(23)

UACI = 1

W × H

[
�i,j

|c1(i, j) − c2(i, j)|
255

]
× 100% (24)

Here c1 and c2 are two cipher images obtained by encrypting plain images with two
different keys, k1 and k2 such that k1 and k2 differ in only one bit. W and H are width
and length of the image. The results of NPCR and UACI values for different MR images
are shown in Table 5. The encryption scheme provides high key sensitivity if NPCR value
is above 99.5% and UACI value lies between 33.3% to 33.8% [40]. The results in Table 5
show that the proposed encryption scheme provides high key sensitivity.

6.4 Cryptanalysis

The secrecy of the data blocks stored in cloud, when the adversary gets access to all the
ciphertexts, is mathematically analyzed in this section. It is also assumed that adversary
can have knowledge about some data blocks, which is a valid assumption in scenarios
where adversary knows the type of data being stored. Thus, the adversary knowing only the

Table 5 Key sensitivity analysis
Datasets NPCR UACI

Dataset 1 99.71% 33.54%

Dataset 2 99.71% 33.52%

Dataset 3 99.71% 33.56%

Dataset 4 99.71% 33.52%

Dataset 5 99.71% 33.45%

Dataset 6 99.71% 33.49%

Dataset 7 99.71% 33.54%

Dataset 8 99.71% 33.51%

Dataset 9 99.71% 33.54%

Dataset 10 99.71% 33.54%

Dataset 11 99.71% 33.43%

Dataset 12 99.71% 33.52%

Dataset 13 99.71% 33.51%
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ciphertexts can mount a ciphertext only attack whereas the adversary having access to some
plaintexts in addition to ciphertexts can mount a known-plaintext attack.

6.4.1 Ciphertext only attack

Since in the proposed homomorphic encryption scheme, the random vectors are designed
properly to retain the randomness properties under linear combination operations, no
attempt of the adversary on ciphertexts can remove the effect of random vectors. Also the
random vectors are designed in such a way that for a message of block length ‘p’ , the
random vectors have Hamming weight ≈ p/2, so that no information about the matrix G

chosen for encryption is leaked. Hence, the adversary is left with the only option of brute
force attack to retrieve the data. The probability that the adversary retrieves the original
data block through brute force attack can be evaluated from the keyspace of the proposed
encryption scheme.

Theorem 3 The adversary observing data stored in the DSS succeeds in retrieving the

original data blocks with a probability 1/
(
gp

∑p

i=0
1

gigp−i

)
·
(∏r

j=1(q
dj − 1)

)

Proof In order to extract the original message block, mi from corresponding ciphertext
block ci , where the relationship between mi and ci is through p × p matrix G and p × 1
vector, ri as shown in (1), the adversary need to try all combinations of encrypting matrix,
G and random vector ri for a successful attack.

The key space for G is formed by all the p × p self-invertible invertible matrices over
Fq . Finding the number of self-invertible or involutory matrices is equivalent to finding the
number of matrices satisfying G2 − I = 0 due to property 2 of involutory matrix mentioned
in Section 4.2. The number of matrices that satisy the condition, G2 − I = 0 over a finite
field is given as Theorem 1 in [15]. Hence the number of p × p involutory matrices, |G|
over Fq is given by

|G| = gp

p∑

i=0

1

gigp−i

(25)

where gi = ∏i−1
k=0(q

i − qk), 0 < i < p and g0 = 1.
As mentioned in Section 4.1, each random vector, ri of length ‘p’ is generated using

LFSR with an initial state consisting of ‘L’ symbols and feedback polynomial of degree L,
where L is related to p and q as p ∼= c(qL − 1), for a non zero integer c. The initial state
and feedback polynomial form the part of the secret key. The key space corresponding to
the random vector generation includes all possible combinations of feedback polynomial,
g(x) and initial state of LFSR, k(x) from which consecutive states for reseeding the LFSR
circuit are derived. It is well known from LFSR theory that for generating keystream with
maximum length, the feedback polynomial should be primitive. The number of primitive
polynomials of degree ‘L’ over finite field, Fq is φ(qL − 1)/L, where φ represents the Euler
totient function. The initial state of LFSR which acts as the seed should satisfy the condition
that the degree of polynomial corresponding to gcd (k(x), xL − 1) is zero (see Theorem 2).
The number of such initial states, k(x) is given by

∏r
j=1(q

dj − 1), where dj is the degree

of fj (x) which corresponds to the irreducible factors of xL − 1 [18]. Therefore, the key
space corresponding to LFSR circuit which generates the random vectors is φ(qL − 1)/L ·∏r

j=1(q
dj − 1). It should be noted that it is only required to satisfy L − s ≥ N , for linear



Multimedia Tools and Applications (2019) 78:20609–20636 20631

independence of random vectors where ‘ s’ is the degree of polynomial which is gcd (k(x),
(xL − 1)). So it is possible to choose the full key space of k(x) without any restriction for a
sufficiently large value of L. Therefore, in general, the total keyspace is at least |G| ·φ(qL −
1)/L ·∏r

j=1(q
dj −1). Hence the probability that an adversary succeeds in retrieving the key

with brute force attack on keyspace is at least 1/ |G| · φ(qL − 1)/L · ∏r
j=1(q

dj − 1).

Considering a small field size, q = 257, block size, p = 16, length of LFSR, L = 11, the
keyspace is approximately 21119 and for a larger field size, q = 4091, the keyspace becomes
approximately 21677. Therefore, the average computational complexity of the adversary in
mounting a successful ciphertext only attack is at least O(21118) and O(21676) for q = 257
and q = 4091 respectively. The computational complexity of the adversary in mounting a
ciphertext only attack further increases with increase in block size, p.

6.4.2 Known-plaintext attack

In scenario where an adversary knows the type of data and possess some plaintext blocks to
be homomorphically combined, the attack boils down to known plaintext attack (KPA). In
KPA, the attacker can retrieve the key, G with the help of ‘p’ plaintext blocks if he succeeds
in removing the effect of random vector, ri from the ciphertext. It is possible to separate
the effect of G matrix and random vector, ri by making the plaintext part zero through
linear combination of known plaintext pieces. The cryptanalysis of the iterated Hill cipher
detailed in [38] mounts a known-plaintext attack which uses the idea of generating an all
zero plaintext by taking the linear combination of known plaintexts in such a way that the
result of linear combination is zero. The steps in the cryptanalysis [38] can be summarized
as follows.

1. Represent ciphertext, c in terms of plaintext vector, m and random vector, r as c =
[
A1 A2

]
.

[
m

r

]
= A1.m + A2.r , where A1 and A2 are 2p × p matrices and c is of

length 2p.
2. If m is all zero vector, then ciphertexts can be considered as codeword, r generated by

matrix A2 and finding a parity check matrix, H such that H .A2 = 0 will help to remove
the random vector, r from ciphertext.

3. All zero plaintext vector, m = 0 can be obtained by taking the linear combination of any
‘2p’ plaintexts. It is well known that by taking ‘2p’ samples, ‘p’ linearly independent
samples can be obtained with high probability.

4. Homomorphically create encryption of zero by taking the linear combination of
corresponding ciphertexts using the same coefficients.

5. Arrange these ciphertexts as columns of a matrix, C and find H matrix such that H ·C = 0.
6. Using the H matrix, the random vector, r can be removed from ciphertext and the

A1 matrix can be found from the knowledge of any ‘p’ linearly independent plaintext
message blocks.

Theorem 4 If each message block is encrypted with different random vector, then the
proposed homomorphic encryption scheme is secure to known-plaintext attack

Proof If same random vector is used for encrypting every message block, then the adver-
sary will be able to retrieve the G matrix and random vector, r using any p + 1 known
plaintexts. In the proposed encryption scheme, since the random vector is changed during
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each encryption, it will not be feasible to retrieve encryption matrix G in KPA. It can be
proved that our encryption scheme is resistant to the known-plaintext attack on iterated Hill
cipher. The arguments are as follows:

Using step 1, our encryption scheme can be represented as c = [
G I

] ·
[

m

r

]
=

Gm + Ir , where G is a p × p self-invertible matrix and I is a p × p identity matrix. For
mounting the aforementioned cryptanalysis on our scheme, the attacker should be able to
find a parity check matrix such that H .I = 0. Since the null space of Identity matrix is
zero, the attacker cannot find such a matrix, H . As a result, the attacker will not succeed
in decoupling the G.m from random vector. Thus the proposed homomorphic encryption
scheme resists known-plaintext attack given in [38].

Since mounting a known-plaintext attack by separating the contribution of the random
vector ri and matrix G is not possible, the key can be retrieved only by guessing the random
vector and then finding the key matrix G by solving linear equations. Attacker can mount
a KPA with ‘p’ plaintext-ciphertext pairs (mi, ci). From relationship between plaintext-
ciphertext pairs ‘p’ linear equations can be formed with (p2 + p) unknowns, where p2

unknowns are from G matrix and p unknowns are from random vector, ri . Since with inclu-
sion of additional plaintext-ciphertext pairs new unknowns are also added in the form of
random vectors, increasing number of equations will not directly give a solution. Hence a
successful attack need following steps.
1. Pick ‘p’ plaintext-ciphertext pairs (mi, ci).
2. Check whether the message matrix is invertible. If so, proceed to step (3); else return to

step (1).
3. Choose one set of initial keys k1, α1 and feedback polynomial g(x).
4. From p equations between pairs (mi, ci) solve for G matrix.
5. Repeat steps (3) and (4) for all possible sets of keys k1, α1 and g(x) and form the table

of possible solutions of G.
6. Pick a new plaintext-ciphertext pair (mj , cj ).
7. Try with all possible solutions of G from the table and solve for G.

The number of possibilities of the key set k1, α1 and g(x) are given by φ(qL − 1)/L ·∏r
j=1(q

dj −1)·(q−1)L−1, where φ(qL−1)/L,
∏r

j=1(q
dj −1) and (q−1)L−1 represent the

number of possible feedback polynomials, g(x), initial states, k(x) and α1 values for LFSR
respectively. So in step (5) attacker has φ(qL − 1)/L · ∏r

j=1(q
dj − 1) · (q − 1)L−1 possible

solutions for G and he has to try all these possibilities to solve for G in step (7). Therefore,
the keyspace of the known-plaintext attack is 2 ·φ(qL − 1)/L ·∏r

j=1(q
dj − 1) · (q − 1)L−1.

Considering a small field size, q = 257, block size, p = 16, length of LFSR, L = 11, this
keyspace is approximately 2175 and for a larger field size, q = 4091, the keyspace becomes
approximately 2263 . Therefore, the average computational complexity of the adversary in
mounting a successful known-plaintext attack boils down to O(2174) and O(2262) for q =
257 and q = 4091 respectively. It should be noted that an adversary can successfully mount
this KPA only if he possesses p + 1 plaintext-ciphertext pairs. Since the number of data
blocks, N is chosen to be at most equal to L in order to preserve the randomness properties
in the homomorphically combined data blocks, it will be infeasible for an adversary to
have so much information about the plaintext data. In MR-CT image fusion described in
Section 4.4, N = 2 since the average of corresponding MR and CT image blocks are taken
for fusion. Moreover, it is only required to use same G for encrypting data blocks to be
homomorphically combined. So the aforementioned attack possibility can be prevented by
using different keys for different sets of data blocks to be homomorphically combined.
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6.5 Storage overhead and computational complexity

Storage overhead and computational complexity are two important parameters that deter-
mine the efficiency of the proposed encryption scheme. The storage overhead can be
expressed in terms of the ciphertext expansion ratio, which is defined as the ratio of the
size of ciphertext to the size of the plaintext. In the proposed encryption scheme, since the
size of ciphertext is same as the size of plaintext, this scheme will not introduce any storage
overhead.

The computational complexity of the encryption scheme can be expressed in terms of
number of additions and multiplications. For encrypting a message block of size p, it is
first multiplied with a G matrix of size p × p, which is then followed by the addition
of a random vector of size p. Multiplying the message block with matrix G involves p2

multiplications and (p2 − p) additions in Fq while addition by the random vector involves
p additions. So, the computational complexity for encrypting each message block includes
p2 modular multiplications and p2 modular additions. Since the decryption operation also
involves similar operations, the computational complexity of decryption is same as that of
encryption. The bit complexity of modular multiplication and modular addition operation
are O((logq)2) and O(logq) respectively. Thus, the computational complexity of encryption
and decryption process for the proposed scheme is O(p2(logq)2) bit multiplications and
O(p2.logq) bit additions.

6.6 Comparison with existing homomorphic encryption scheme

Paillier encryption [23] is the most popular additive homomorphic encryption scheme where
addition of two plaintexts is realized by multiplying the corresponding ciphertexts. The
plaintexts are represented as elements of Zn, where Zn denotes the set of integers modulo n
and ciphertexts are represented as an integer modulo n2, where n is a product of two large
primes. So the size of the ciphertext will be double the size of plaintext and this will result
in storage overhead. The security relies on the decisional composite residuosity assumption
which in turn depends on the computational difficulty in integer factorization. So to provide
128-bit security, ‘n’ should be of 2048 bits, which also results in huge data expansion.

For the proposed encryption scheme, the field size, q required to provide 128-bit security
is only 257. Even though q = 257 is sufficient for providing 128-bit security, the com-
putational complexity of proposed scheme is compared using q = 4091 since this value
is used for encrypted domain image fusion. The computational complexity of encryption
and decryption of a message block of size, p = 16 using Paillier and proposed encryption
scheme for providing 128-bit security is compared in Table 6. Since q = 4091, each ele-
ment of message block can be represented using 12 bits. Message block of size p = 16
can be considered as a single message consisting of 192 bits in Paillier encryption scheme
since message, m ∈ Zn, where n = 2048. The encryption process and decryption process in
Paillier scheme requires ‘1’ exponentiation and ‘1’ modular multiplication operations. Each
exponentiation needs 2·(log2y) modular multiplications, where ‘y’ represents the exponent.

Table 6 Comparison of the computational complexity of Paillier and proposed encryption scheme for 128-bit
security

Operation Encryption Decryption

Paillier Proposed Paillier Proposed

No. of bit multiplications 234 216 234 216

No. of bit additions 0 212 0 212
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In Paillier scheme, y ∈ Zn which implies (log2y) = 2048. So each exponentiation operation
is equivalent to 4096 modular multiplications. The bit complexity of modular multiplica-
tion operation is O((log2n)2), where n is modulus value. In Paillier scheme, since modulus
is taken with respect to n2, the number of bit multiplications involved for single modular
multiplication is (2049)2. So the computational complexity of encryption and decryption
for this scheme is O(4097.(2049)2). In the proposed scheme, modular operations are done
with respect to q, where q is of 12 bits since q = 4091. Therefore, the number of bit multi-
plications is 122.p2 and the number of bit additions is 12.p2, considering the bit complexity
of modular addition operation is O(log2n). So the computational complexity of encryption
and decryption for the proposed scheme is O(122.162) bit multiplications and O(12.162) bit
additions. Thus computational complexity of the proposed encryption scheme is lesser com-
pared to Paillier cryptosystem for comparable security levels; Also the storage overhead is
double for Paillier encryption whereas there is no storage overhead for our proposed encryp-
tion scheme for comparable security which is an important advantage in cloud storage
scenario.

7 Conclusion

In this paper, an affine Hill cipher based additive homomorphic encryption scheme is pro-
posed to support encrypted domain image fusion over cloud. The security of the affine Hill
cipher is enhanced through the addition of random vectors. We designed an algorithm for
generating random vectors using a combination of LFSRs and verified that these vectors
preserve the randomness and security properties while homomorphically combining the
encrypted image blocks during fusion. Through mathematical analysis, it is established that
the proposed scheme resists possible ciphertext only attack and known-plaintext attack at
the cloud side. The security of the proposed scheme is also analyzed in terms of resistance
against statistical attacks. The performance of the encrypted domain (ED) medical image
fusion is analyzed in terms of various non-reference and reference based objective met-
rics. The reference based metrics: NCC, SC, SSIM values are equal to 1 and IQI values are
0.999; and MD, AD, NAE and MSE values varies from 10−13 to 10−28. The closeness of the
values of non-reference metrics: H, SD, MI and FMI corresponding to PD and ED results
show that the proposed encrypted domain image fusion provides same accuracy levels as
that of plaintext domain image fusion. Moreover, the proposed homomorphic encryption
scheme does not introduce any storage overhead due to ciphertext expansion and it offers
very low computational complexity. These desirable features make this scheme a suitable
candidate for privacy preserving cloud storage and computing applications. Although our
proposed homomorphic encryption scheme gives good performance in encrypted domain
image fusion, it can support only block-level encryption operations. In our future work, we
will focus on pixel level homomorphic encryption so that DWT can also be computed in
encrypted domain, which helps to further reduce the client computational complexity.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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