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Abstract

The exponential growth in the medical images is making the healthcare industry move
towards cloud-based paradigm, which has vast storage and high end processing facilities.
However, moving medical images containing highly sensitive data to third-party cloud
servers brings in serious security threats. Even though encrypting medical images before
outsourcing using traditional encryption schemes seem to be a feasible solution, that can
not support encrypted domain processing. In this paper, we propose an affine Hill cipher
based scheme for encrypted domain medical image fusion. The random vectors used in this
scheme are carefully designed to preserve the randomness and security properties when
operations are performed on the encrypted data. The proposed scheme offers data privacy
and supports encrypted domain processing with no additional storage burden at the cloud
side and very low computational burden at the healthcare provider side. The security of the
proposed scheme is evaluated through extensive cryptanalysis in terms of resistance against
various statistical attacks. The performance of the proposed scheme is analyzed by com-
paring various metrics of encrypted domain MR-CT/PET image fusion results with those
of plaintext domain fusion. The values of structural similarity index, normalized correlation
coefficient and structural content are 1 and the image quality index is 0.999, which show
that the proposed encrypted domain image fusion provides same accuracy levels as that of
plaintext domain image fusion.
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1 Introduction

Medical image fusion plays a crucial role in accurate diagnosis and treatment of diseases.
Medical images of various modalities can provide different information. For example, com-
puted tomography (CT) image give information on dense structures such as bones; and
positron emission tomography (PET) image provide functional information while mag-
netic resonance (MR) imaging provide information on soft tissues. Image fusion helps the
doctor for better diagnosis by combining the complimentary features in images of differ-
ent modalities. As medical images of different modalities acquired by different devices
are of high resolution for precise diagnosis, it impose huge storage cost to the health care
providers. In addition, due to the exponential growth in medical images generated per day,
the biggest challenge faced by the health care providers/industry is the storage, processing
and management of this huge amount of medical images being generated.

In recent years, with the advent of cloud platform offering high end storage and comput-
ing facilities, health care industry is now shifting the medical data to the cloud environment
[28]. Although cloud storage and computing relieves the healthcare providers from the bur-
den of data storage, maintenance and processing cost, it also brings in several security
threats since the outsourced data is stored in third party cloud servers. One of the major
security challenges that need to be addressed is to protect privacy or confidentiality of data,
when highly sensitive data like medical images are outsourced, especially when processing
operations are to be performed on these data. Although traditional encryption schemes like
AES provide data confidentiality, they will not support operations on the encrypted medical
images.

Homomorphic encryption schemes are a special class of encryption schemes, which
allow to perform some operations on the encrypted data without any knowledge of the
decryption function. Image fusion techniques involve only linear operations and an additive
homomorphic encryption scheme is sufficient for encrypting the medical images to be out-
sourced. The most popular additive homomorphic encryption schemes available in literature
are Paillier [23] and secret sharing schemes [30]. Paillier scheme is computationally expen-
sive due to the modular exponentiation operation over a finite field of large size. Moreover,
the storage overhead of Paillier scheme is twice since the size of ciphertext is double that
of plaintext. Secret sharing scheme (SSS) has lesser computational complexity compared to
the Paillier scheme due to linear encryption and decryption operations. But in SSS [22, 34],
different image shares generated from a single image need to be stored in storage devices of
multiple non-colluding cloud service providers in order to provide adequate security. This
brings in additional restrictions on storage. Furthermore, since size of each image share is
same as the size of original image, the storage overhead increases with the number of image
shares being stored.

As the encryption and decryption operations have to be done at the health service
provider (client) side, it is desirable to have an additive homomorphic encryption scheme
with low computational complexity. Moreover, since data outsourcing cost charged by the
cloud depends on the amount of data stored in the cloud, it is required to minimize the stor-
age overhead incurred due to the ciphertext expansion. This motivated us to design a low
complex additive homomorphic encryption system based on Hill cipher [35] since it satis-
fies the requirements in terms of computational complexity and storage overhead. This is
due to the fact that the encryption and decryption operations of Hill cipher are linear and
as the size of ciphertext is same as that of plaintext, there is no storage overhead. How-
ever, original Hill cipher scheme is prone to known-plaintext attack. Hence, in order to use
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Hill cipher for secure image fusion, it is necessary to modify it in such a way that, it is
computationally infeasible for an adversary, who has access to all data stored in the cloud
and some knowledge about the plaintext, to retrieve the plaintext. But since such an
adversary cannot have access to encrypting machine, chosen plaintext attack need not be
considered as a valid attack. This assumption will not cause any loss of generality, due to
the fact that in all practical applications, the client machine will be geographically separated
from the cloud servers. This paper attempts to enhance the security of the Hill cipher so that
it can withstand the known-plaintext attack, preserving additive homomorphism.
The major contributions of this work are listed below.

1. A symmetric key additively homomorphic encryption scheme based on affine Hill
Cipher is proposed to provide confidentiality of outsourced data and to support linear
operations in the encrypted domain.

(a) Inorder to reduce the computational complexity involved in finding the inverse of
the key matrix during decryption, self invertible matrices are used in this work.

(b) In the proposed scheme, different random vectors are generated for different data
blocks through a novel design method based on a combination of linear feed-
back shift registers (LFSR) which helps to improve security of Hill cipher based
encryption scheme.

(¢) The method for reseeding the LFSR is designed so that randomness and secu-
rity properties will be preserved while homomorphically combining the blocks.
Through mathematical analysis, it is proved that the linear combination of
encrypted blocks neither nullifies the effect of individual random vectors nor
destroys the randomness properties.

2. The suitability of the proposed encryption scheme for encrypted domain MR-CT image
fusion is analyzed through comparing simulation results in encrypted domain with those
of plaintext domain in terms of various subjective and objective performance metrics.
It is verified that encrypted domain image fusion provides same accuracy levels as that
of plaintext domain image fusion.

3. Security of the proposed encryption scheme against cipher text only attack and known
plaintext attack is established through cryptanalysis and in terms of resistance against
different statistical attacks.

The rest of the paper is organized as follows. Section 2 presents the summary of related
works while Section 3 details the system model and adversary model considered. Section 4
gives the description of the proposed homomorphic encryption scheme and Section 5 pro-
vides the detailed performance analyses. The security analyses is described in Section 6
followed by concluding remarks in Section 7.

2 Related work

In this section, the recent works on homomorphic encryption schemes and methods for
securing medical images are discussed in detail.

The idea of processing encrypted data was first addressed by Rivest et al. [26]. Fully
homomorphic encryption schemes which allow any computations on encrypted data was
introduced by Gentry [10]. Several schemes [4, 5, 11] were proposed following this
work. Even though many schemes with optimizations were proposed, these schemes still
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remain computationally complex and impractical. Whereas partially homomorphic encryp-
tion schemes support computations only for either multiplication or addition. RSA [27],
Paillier [23] and Goldwasser-Micali [12] are some of the cryptosystems that support partial
homomorphism. RSA is homomorphic over multiplication whereas the other two schemes
are additively homomorphic which allow linear combination operations on the encrypted
data.

Among the additive homomorphic encryption schemes, Paillier is the widely used for
image processing works on encrypted domain [21, 25, 32]. The basic image scaling and
cropping operations in encrypted domain is proposed in [21]. A reversible data hiding
approach based on Paillier scheme, where the hidden data is directly embedded into the
encrypted images is proposed in [32]. A digital watermarking scheme for secure transmis-
sion of medical images based on Paillier encryption is introduced in [25]. In this scheme, the
encrypted watermark image is directly embedded into the encrypted image. However, the
Paillier scheme suffers from the following issues. The storage overhead of Paillier scheme
is twice as the size of ciphertext is double the plaintext size. Moreover, in Paillier scheme,
to provide 128-bit security, the modulus required is a prime number of size 2048bits.
Hence, this scheme has high computational complexity due to the modular exponentiation
operations involved during encryption and decryption.

Some notable works for securing medical images during storage or/and transmission
have been proposed in [8, 9, 31, 36]. A watermark embedding scheme based on Arnold
transform for ensuring authentication of medical images is proposed in [31]. For confi-
dentiality of medical images, the watermarked images are encrypted through chaos-based
encryption in [36]. For secure transmission and storage of the medical images in the cloud
server, the outsourced images are encrypted using elliptic curve cryptography, whose keys
are chosen using hybrid swarm optimization in [9]. A hybrid encryption scheme developed
from AES and RSA is used for securing medical data while transmission in IoT environment
is presented in [8]. Even though all these works ensure secure storage or transmission of
medical images, these schemes are not designed to support secure processing in encrypted
domain.

The use of Arnold transform [31] to scramble the medical images to be fused suffers
from known-plaintext attack (KPA) since the transform matrix used for encrypting the
images to be fused need to be same to support fusion in encrypted domain. Similarly, chaos
based encryption [36] is a one-time pad encryption, where the keystreams generated through
chaotic map acts as a one-time pad. This method is also prone to KPA and the random-
ness properties of the keystream cannot be ensured while homomorphically combining the
encrypted images. The elliptic curve cryptography adopted in [9] can be modified to support
additive homomorphism as detailed in [33]. However, the storage overhead of this elliptic
curve based scheme is double and has high computational complexity. The hybrid encryp-
tion scheme based on AES and RSA [8] cannot be used for encrypted domain processing
since AES does not support homomorphism over encryption.

Hill cipher [35] is a potential candidate for additive homomorphic encryption system
for encrypted domain image fusion due to the linearity in encryption and decryption oper-
ations. Moreover, it introduces no storage overhead and has less computational complexity.
However, the original Hill cipher [35] is susceptible to KPA. A symmetric key additively
homomorphic encryption scheme based on Hill cipher, namely iterated Hill cipher (IHC) is
proposed in [6]. Although the authors claim it to be secure against KPA, later in [38], it is
proved that IHC can be broken through KPA. Another version of Hill cipher that can with-
stand KPA is affine Hill cipher [37]. In this scheme, unique random vectors are added to
the ciphertexts generated through original Hill cipher. Nevertheless, this scheme cannot be
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directly converted to provide additive homomorphism as the randomness properties of the
random vector cannot be ensured while homomorphically combining the data.

In the proposed affine Hill cipher based homomorphic encryption scheme, the linearity
in encryption process is retained in order to preserve additive homomorphism. The random
vectors used for encryption are keystreams generated using linear feedback shift registers
(LFSR) due to the good randomness properties and low structural complexity of LFSR. At
the same time, care has been taken to preserve the randomness and security properties of
the random vectors, while homomorphically combining the data.

3 System model and adversary model
3.1 System model

The system model considered is an end to end secure cloud based medical image fusion
scenario as shown in Fig. 1, where the encrypted medical images of different modalities
are outsourced to the cloud; the cloud fuses the images in encrypted domain and the fused
encrypted image is accessed by the healthcare provider, who further decrypts the fused
image. Multiscale decomposition method is a widely used technique for multi-modal image
fusion [7]. In this method, the images of different modalities are decomposed using wavelets
and the wavelet coefficients corresponding to images of different modalities are combined
using appropriate fusion rule to obtain the fused coefficients. Then the final fused image
is obtained by taking the inverse wavelet transform of the decomposed image consisting
of fused coefficients. The fusion rule generally used are averaging, weighted averaging
etc. which are linear operations [16]. In the system model considered, the preprocessing
of images of different modalities includes image decomposition using appropriate wavelets
and rounding off the pixel values based on the requirements of the encryption scheme.

Long Term Storage
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Fig. 1 System Model for secure medical image fusion
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There is a need for additive homomorphic encryption scheme to facilitate image fusion in
encrypted domain.

3.2 Adversary model

Cloud systems use distributed storage architecture for reliable data storage and securing
data in distributed storage systems (DSS) assumes that the adversaries have access to only
a subset of storage servers. The works on secure DSS [17, 24, 29] aims to resist ciphertext-
only attack against adversaries who have access to only a limited number of servers in the
DSS and is achieved through adding randomness to the data. But in practical DSS such as
those with cloud storage, the storage servers may be distributed in the same geometrical
environment. So in this work, we consider computationally bounded passive adversaries,
who can eavesdrop on all the cloud servers. Also, based on the type of data stored, the
adversary may have knowledge of some plaintexts with which he can try to mount a known-
plaintext attack.

4 Proposed scheme for encrypted domain processing

The design of the proposed scheme for image fusion in encrypted domain is inspired from
the Hill cipher [35] construction. In original Hill cipher, the encryption of a plaintext vector,
m of length ‘p’ is done by multiplying it with a secret invertible random matrix, G of size
p x p and the plaintext is decrypted by multiplying the ciphertext with the inverse of G
matrix. The set of all possible keys or key space in the case of Hill cipher is the set of all
possible invertible p x p matrices from the space of all p x p matrices. Iterated Hill cipher
(IHC) [6] is proposed as a homomorphic encryption scheme and it extends the key space to
the set of all p x p matrices. An initialization vector of length ‘p’ and the iteration number
are kept secret in addition to G in the case of iterated Hill cipher. In IHC, the encryption and
decryption are done using an iterative algorithm and the encoding results corresponding to
the k" and (k — 1)'" iteration form the ciphertext, where k is the number of iterations. Thus
the size of ciphertext in the case of IHC will be double the size of plaintext, which will result
in storage overhead. The authors claim that iterated Hill cipher can be made secure against
known plaintext attack by changing the initialization vector during every encryption. But it
is proved in [14] that this will spoil the homomorphic property offered by the encryption
scheme. Furthermore, in [38], the authors showed that it can be broken through known
plaintext attack even if the initialization vector is changed during every encryption. An
improved version of the Hill cipher which can withstand known plaintext attacks is Affine
Hill cipher [20, 37]. Affine Hill cipher construction relies on adding unique random vectors
to the ciphertexts generated through original Hill cipher. But this scheme cannot be directly
converted to support homomorphic operations since the randomness and security properties
of the random vector cannot be ensured while homomorphically combining the image (data)
blocks.

An affine Hill cipher based additive homomorphic encryption scheme is proposed in
this paper to securely store the data in cloud and to support encrypted domain processing.
While designing the scheme, care has been taken to preserve the randomness and security
properties of the random vector, while homomorphically combining the data. In addition,
in this work self invertible or involutory matrices are used as key matrix, G. This facilitates
the use of same matrix, G for encryption and decryption and reduces the computational
complexity involved in finding the inverse of G matrix during decryption.
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The details of the proposed encryption scheme are as follows:

Encryption The ciphertext, ¢; € qu of length ‘p’ whose elements are chosen from finite
field, Fy, corresponding to i™" plaintext, m; € F(f is given by

¢i=Eg(mi) =G -m;+r; Y]
where G € qu *P is a self-invertible matrix and r; € qu is a random vector which is
different for each plaintext.

Decryption The plaintext, m; € F,f corresponding to the ciphertext, ¢; € qu can be
retrieved by
m; = Dk (¢i) = G.(¢; —ri) 2

Homomorphic property The encryption operation supports additivity and homogeneity
properties which are the requirements for an additive homomorphic encryption scheme. Let
mip,my € Ff represent two plaintext messages and ry, 1> € Ff represent the corresponding
random vectors. Then homomorphic properties of the encryption scheme can be defined as

Additivity
Ex(my) + Eg(my) = (Gmy +r1) + (G.mo +17)
G.(my +mp) + (r1 +12)

Eg(mi +m2) 3

Homogeneity
B.-Ex(my) = B.(G.my +r1) = G.fm; + Bry

Eg(pmy) “)

where B € F, represents a scalar.

To ensure additive homomorphism as given in (3) and (4), it is essential to design random
vectors ‘r;” properly. For (5) to hold, it is required that sum of random vectors rj +r, should
yield a random vector with properties same as that of 7| and r. Similarly for (4) to hold, the
scalar multiple of random vector § - r; should also have same randomness properties as 7.
During decryption operation to retrieve the plaintext, it is essential to have the knowledge of
the effective resultant random vector. Since encryption and decryption are done at the client
side, the client can remove the effect of the random vectors with the help of keys used for
generating it.

Following section discusses how random vectors can be designed to satisfy these required
properties.

4.1 Design of random vector

As the image fusion technique mainly involves averaging and weighted averaging opera-
tions, linear combination can be considered as the generalized operation that is required in
the encrypted domain image fusion. In order to ensure homomorphism for linear operations,
the set of random vectors used for encryption should be closed under linear combination
operations. That means linear combinations of random vectors should yield random vec-
tors of the same randomness properties. In order to satisfy these requirements, we are
using a well-designed combination of LFSRs for generating random vectors. The proper
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design of the random vectors is important as the randomness properties offered by the
LFSR keystream will be spoiled if the linear combination of random vectors yield a null
vector while linearly combining ciphertexts. Therefore, the secret initial states of LFSR
used for generating different random vectors should also be derived properly to retain the
randomness properties of the random vector in the linearly combined ciphertext.

It is well known that keystream constituting one period of the LFSR output, satisfy
Golomb’ s randomness properties [19]. Also linear combination of these output keystreams
is a keystream generated from the linear combination of corresponding states.

Theorem 1 The keystreams generated by the LFSR satisfies superposition property.

Proof (1) Additivity property —The sum of the keystreams is a new keystream generated by
an initial state which is the sum of initial states corresponding to individual keystreams.

Letk(x) = ko+kix +hox? 44 kr_1xE 1 be the polynomial representation of initial
state and g(x) = go+g1x +gox2+- - -+ gz x* be the feedback polynomial of LFSR, where
ki, g € Fy. Then the state of the L-length shift register of LFSR initially consists of values,
ko, k1, ko, - -+, kp—1, which are coefficients of k(x) and the tap weights of the feedback
connections of the LFSR are decided by go, g1, g2, - - - , gL, the coefficients of g(x). Hence,
the output sequence with period g — 1 generated by the LFSR can be represented as

L-1 i

a(x) = f(x)/g(x), wheref(x) =Y | Y kjgij |+ ©)

i=0 \j=0

Suppose k1(x) = k1o + k11x + kipx2 4+ -+ kip—ixE "V and kp(x) = koo + koix +
kpax? 4 - -+ kpp—1xE~1 are two different initial states of the LESR with the same feedback
polynomial g(x). Let a;(x) and a>(x) represent the output sequences generated by LFSR
corresponding to intial states, k1 (x) and k2 (x) and feedback polynomial, g(x). Then using
(5), a1 (x) and a;(x) can be represented in terms of k;; as

L1 [ i
a](x): Zkljgi_j x! /g(x)
Li=0 \/j=0 i
(-1 (i N
ax(x) = > kajgij | x| /g 6)
| i=0 \j=0 |
The sum of output sequences or keystreams, a1 (x) +a (x) of the LFSR can be expressed
as
-1 (i '
a(x) + a(x) = D Gy +kopgiog | x| /g
| i=0 \j=0
-1 [ i '
= > ksjgioy | x| /gx)
| i=0 \j=0

= a3(x) @)

where a3 (x) is a keystream generated by the initial state k3(x) = k1 (x) + k2(x). Equation 7
shows that the sum of keystreams result in another keystream, a3 (x), which can be generated
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by an LFSR with initial state, k3(x), which is equal to the sum of the initial states, k1 (x)
and k»(x). O

Proof (2) Homogeneity property —The scalar multiple of a keystream is a new keystream
generated by an initial state which is the scalar multiple of the initial state corresponding to
original keystream.

Let a(x) be the keystream generated by key, k(x). Then b(x) = - a(x) is the keystream
generated by kg(x) = B - k(x)

-1 { i
Bra)=pB-| D> (D (kj)ei-j|x|/etx)
i=0 \j=0
(-1 [ i A
= Z Zﬂ'kjgifj x| /g(x)
| i=0 \j=0
_L—l i
= Zkﬂ./’gl*j x| /gx)
| i=0 \j=0
= b(x) (®)
O

Due to these properties of LFSR keystream, the random vectors for the proposed homo-
morphic encryption system are chosen as the output keystreams of an LFSR. The initial state
of the LFSR, k(x) and the feedback polynomial g(x), which decide the feedback connec-
tions of the LFSR are kept secret and form part of the secret key of the proposed encryption
scheme. The length of the random vector ‘p’ is to be chosen as a value close to an integral
multiple of period of LFSR to ensure randomness properties, i.e., p = c(qgX — 1) , where
‘L’ is the length of LFSR and ‘c’ is a nonzero integer.

In the proposed scheme, it is required to generate different random vectors correspond-
ing to different data blocks to retain homomorphism over linear operations. In order to
facilitate generation of a distinct random vector corresponding to each distinct data block to
be homomorphically combined, it is required to derive different initial states for the LFSR
from the initial secret key through a proper design method. Therefore, next attempt in the
design of proposed encryption scheme is to devise a method for generating multiple initial
states from the initial secret key.

4.1.1 Properties of random vector
The random vector should be generated to satisfy the randomness and security properties.

Randomness property If N image blocks are to be linearly combined during image fusion,
it is required to have at least N linearly independent random vectors for encryption. This
is to ensure that, when ciphertext blocks are linearly combined, the corresponding random
vectors obtained through linear combination operation will not yield a null vector so that
the security of encryption operation is retained. From the previous discussions on LFSR
theory it can be clearly seen that, linearly independent initial states of an LFSR will result in
linearly independent random vectors. Also, since each state of an LFSR of length L forms a
L-dimensional vector in a vector space V over Fy, there can be only L linearly independent
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initial states. Therefore, the minimum possible length of LFSR ‘L’ has to be chosen as at
least N ie, Length of LESR, L > N, where N is the number of data blocks to be combined.
Now, in order to ensure that the generated random vectors are linearly independent, the
initial state s; of LFSR corresponding to each message block m; where 1 <i < N, can be
derived from the initial key k = (ko, k1, k2, - - - , kp—1) by a cyclic shifting operation. To
complete the design of random vector for encryption, it is required to arrive at the number
of cyclic shifting operations that can be performed on a vector of length ‘L’ so that the set
of shifted vectors remain linearly independent.

Theorem 2 For an LFSR of length L, the set of L initial states generated by cyclically shift-
ing an initial secret key k(x) are linearly independent if gcd (k(x), x* — 1) is a polynomial
of degree zero.

Proof Let the initial state of LFSR which acts as the secret key be represented as k =
(ko, k1, ko, -+, kp—1) , where k; € F,. Then define a shift operator, T : V > V by

T(ko, ki, ko, kp—1) = (kp—1, ko, k1, -+, kp—2) 9

If the initial secret key, k and its L — 1 shifted versions are arranged as rows of a matrix,
K, it will form a L x L circulant matrix as shown in (10).

k ko ki - kp—o k1
Tk kp—1 ko --- kp—3 kp—2

K = : = . : (10)
TL2k ky ky - ko ki
TL-1k ki ky -+ ki—1 ko

All the ‘L’ initial states obtained by taking the cyclic shifted versions of k(x) will be
linearly independent if the circulant matrix is full rank.
Let U denote the circulant matrix whose entries are
U = { 1,j —i=1(modL)

0,j—1i% 1(modL) (b

Then the L x L circulant matrix K corresponding to k is given by K = ZiL:_()] kiU
where U® = I, the identity matrix of size L x L and U is obtained by cyclically shifting
each row of U with shift operator 7. Now, if K is invertible over F,, then there exists a
circulant matrix M = ZiL:_()] m;U', where m; € Fy such that K.M = I.

If k(x) = ZiLz_Ol kix' be the polynomial representation of circulant matrix, K, then
finding the inverse of K is equivalent to finding a polynomial m(x) = ZiL:_Ol mix! in Fylx]
such that

k(x).m(x) = l[mod(xL — 1] (12)
The congruence modulo (x* — 1) follows from the equality UX = I. Using Extended
Euclidean algorithm, (12) can be written as

k(x).m(x) +1(x).xF = 1) =1 (13)

Thus the L x L circulant matrix will be of full rank if ged (k(x), (xL — 1)) = v, where v is
a non-zero integer in Fy. In general, if degree of gcd (k(x), (xE = 1)) is ‘s’ , then the rank
of circulant matrix is * L — s’ . So if s = 0, then the matrix K will be full rank and all the
rows are linearly independent. O
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So for encrypting N image blocks, the length of LFSR should satisfy L — s > N where
s = degree of ged (k(x), (xL — 1)) for the initial secret key polynomial, k(x).

Security property If the initial states of the LFSR for generation of random vectors are
derived from initial secret key by simple linear shifting operations, it can cause security
leakage as discussed below:

Let c1 and ¢, be the ciphertexts corresponding to plaintexts m and mj, which are to
be linearly combined in the encrypted domain. Then the data blocks m and m; will be
encrypted with the same self-invertible matrix, G and random vectors r| and r respectively
as

ci=Gm| +r (14)

cr=Gmy+nr (15)

where o = Tr(r1), Tr represents the right shift.
It c/2 represents the ciphertext obtained by left shifting c,, then

¢y =Tr(c2) = TL(G - mp) + Tp(r2) (16)

where T, represents the left shift.
Therefore,

c1—c¢y = G-[my —Tr(m)]+r1 — Tp(r2)
= G -[m; — Tr(ma)], )

Thus the effect of random vector can be removed from ciphertext. So to enhance the
security, the LFSR initial state needed for generating successive random vectors are derived
by shifting the previous initial state and multiplying with a random element from F. This
helps to prevent the security leakage while preserving linear independence and there by
randomness properties.

Algorithm 1 For generating random vector.

Input: ki, a1, g(x)
Output: r;
1: fori =1:N do
2 r; = LFSR-PRNG(k;)
3 kiy1 = Tri(ky) - a;
4 aj4+1 = LFSR-State(w;)
5: end for
6: return r;

Algorithm 1 gives the procedure for generating random vectors. The inputs to the algo-
rithm are initial secret key of LFSR, k; and feedback polynomial, g(x) and initial seed
o) to generate random multiplier «;. Output is random vector, r; used for encrypting each
data block, m;. In this algorithm, LFSR-PRNG refers to the pseudorandom number gener-
ator based on LFSR which outputs ‘N’ random elements to form random vectors, r; used
for encryption based on the initial state, k; and the feedback polynomial g(x). LFSR-State
refers to LFSR state updation with initial state ; and outputs a single random element.
Tri(k1) in the algorithm indicates right shift of the initial state k1 by ‘i’ bits.
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4.2 Design of key matrix

Random invertible matrices are used as key matrix in original Hill cipher. However, the
complexity in finding such a matrix increases with increase in the size of the matrix and field
size, g. Moreover, during decryption the inverse of the matrix needs to be computed which
will increase the decryption time and complexity. In order to overcome these problems, in
this work we make use of self-invertible or involutory matrix [1] as key matrix. A matrix,
G is said to be self-invertible if G~! = G. Let G be a p x p involutory matrix, which can
G Gz
Gy G
An involutory matrix over any field will satisfy the following properties.

be written as G = :|, where G;;, 1 < i, j <2 are matrices of order p/2 x p/2.

1. The determinant of an involutory matrix is 1, i.e., |G| = *1.
2. The square of an involutory matrix is an identity matrix, i.e., G> = I

Assuming |G| = —1 and from G~! = G, the involutory matrix G can be obtained by
solving the equation, G12G21 = I — (G11)2, since Gy = —G1j.

Algorithm 2 For generating key matrix.

Input: p, y

Output: G

Randomly choose a p/2 x p/2 matrix as G 11
Obtain Gy = —Gqy

Generate G1p =y (I — Gyy) or y(I 4+ G1y)
Then obtain Go; = (I + Gy1)/y or (I — G11)/y
return G

B e

Algorithm 2 give the steps for generating involutory key matrix, G. The inputs to the algo-
rithm are the size of matrix, p and a random element, y, where y € F;. In this algorithm,
the subblocks, G2 and G of the matrix are generated from the factors of I — (G )2,

4.3 Key space

The secret key for the proposed encryption scheme consists of the self invertible matrix,
Ge F(f *P the initial states, k;, o; of two LFSRs and the feedback polynomial g(x) of LFSR.

4.4 Proposed secure medical image fusion

The complete schematic of the proposed encrypted domain MR-CT/PET image fusion
over cloud is shown in Fig. 2. As mentioned in Section 3.1, we have considered DWT
based MR-CT/PET image fusion using averaging rule. The hospital (client) computes the
DWT of captured MR and CT/PET images using Haar wavelet. Then the client gener-
ates the encrypted MR and CT/PET images from their decomposed images using proposed
Hill cipher based encryption scheme. For encryption, these decomposed images are first
divided into blocks, and passed through pre-processsing operation. Pre-processing of image
is required to ensure that the pixel values are integers after decomposition and averaging dur-
ing fusion. Encrypted image blocks are sent to cloud for long term storage and image fusion.
The cloud performs the encrypted domain image fusion of the encrypted MR and CT/PET
image vectors. In order to retrieve the final fused image, the health care provider (client)
access the encrypted version of the fused MR-CT/PET image from the cloud. The client then
performs the decryption of the fused image vectors and post-process the decrypted DWT
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fused coefficients in order to match the results in the plaintext domain. The post processed
fused image thus obtained after decryption is in DWT domain. Then the final fused MR-CT/
PET image is generated by computing the inverse DWT of the post processed image.

The detailed steps of the proposed encrypted domain MR-CT image fusion with the
required mathematical expressions are shown in Algorithm 3. Since single level Haar
wavelet decomposition involves division by 2 and averaging the encrypted image blocks
involves another division by 2, the original image pixels are preprocessed by multiplying
with 4. The pixels of the corresponding encrypted MR and CT image vectors are added and
multiplied with multiplicative inverse of 2 to obtain average of the encrypted image vec-
tors. The effect of the preprocessing done before encryption is removed after decryption in
the post processing step. In a similar manner, the steps for the proposed encrypted domain
MR-PET image fusion can be obtained by replacing CT images with PET images.

Algorithm 3 For secure medical image fusion.

Input: MR image, IMR CT image, I°T
Output: Fused MR-CT Image, 1 fp” R=CT

: Stepl: DWT Computation

: Obtain decomposed MR image,

: Step2: Image Division

: Divide the decomposed MR and CT images into M blocks, / %R and ISJ.T, j =
1,2,---, M

: Step3: Preprocessing

. Generate iij(i, )= Ig”jR(i, j)*4and fng(i, j)= Ing(i, hED!

: Step4: Encryption

: Arrange each MR and CT image block as a column vector represented by I g’jR and [ SJT
respectively, each with size p

9: Multiply each image vector with G matrix of size p x p to obtain G - [ ij and G - fng.

10: Add random vector, rj’."’ R and erT of size p x 1 to the output of the previous step to

obtain encrypted MR and CT image vectors, i %R =G-1I g/IjR + rj” R and fng =

I{‘)’IR and CT image, IST using Haar wavelet

T S R

0 3 N W

G- fgf + erT respectively.

11: StepS: Encrypted Domain MR-CT Image Fusion

12: Add encrypted image vectors of corresponding MR and CT images to generate, I; =
IR + 1] (mod q)

13: Multiply this with multiplicative inverse of 2 to generate, /r;

14: Step6: Decryption ~ A

15: Remove the effect of added random vector from the fused image, Ir; = Ir; — (r]M Ry
rJCT)(mod q)

16: Multipy it with inverse of G matrix, G~! to obtain the decrypted fused image vectors,
IFDj =G-!. IF]'

17: Step7: Post-processing

18: Tppy(r, y) = { Mrpj(x, y)/4 Irpj(x,y) < (¢ +1)/2

(Urpj(x,y) —q) /4 Irpj(x,y) > (¢ + 1)/2

19: Rearrange the image vectors into blocks and form the fused image in decomposed form,
Irp

20: Step8: IDWT Computation .

21: Obtain the final fused image, / ?fl R=cT by performing inverse Haar DWT of Irp

22: return I;YIR_CT
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Fig.2 Flow Diagram for proposed secure medical image fusion

5 Performance analysis

In this section, the accuracy of encrypted domain image fusion is analyzed in terms of
subjective and objective performance metrics.

5.1 Simulation results and analysis

To evaluate the performance of the proposed encryption scheme, the fusion of medical
images of different modalities are considered. Simulations of the proposed scheme are per-
formed on PC with Intel(R) Xeon(R) CPU E3-1226 v3 3.3 GHz 16GB RAM running on
Windows 10 Professional equipped with MATLAB R2015b environment.

For simulation, we have used standard MR, CT and PET image datasets from the Harvard
university site which are available at http://www.med.harvard.edu/aanlib/home.html. MR
and CT images of size 512 x 512 are first decomposed using single level 2D Haar wavelet.
The decomposed MR and CT images to be encrypted are divided into 64 blocks and each
block is encrypted by multiplying with