Multimedia Tools and Applications (2019) 78:19361-19386
https://doi.org/10.1007/511042-019-7286-0

@ CrossMark

Handwritten multilingual word segmentation using
polygonal approximation of digital curves for Indian
languages

Deepika Gupta' - Soumen Bag'

Received: 13 July 2018 / Revised: 11 January 2019 / Accepted: 27 January 2019 /
Published online: 11 February 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Multilingual Optical Character Recognition (OCR) is difficult to develop as different lan-
guages exhibit different writing and structural characteristics and it is very difficult to
generalize their segmentation process. Character segmentation plays an important role in
developing OCR for handwritten languages. The exactness of character segmentation is the
integral factor of OCR. In this paper, we exploit this limitation and propose a approach
based on the polygonal approximation of the word, which works on more than one Indian
languages. This work depicts the novel approach for script independent character segmen-
tation of handwritten text utilizing basic structural properties of the languages. Digitally
straight line segments (DSS) of the word is obtained by applying Polygonal approximation
to the word. The segmentation of character is language independent and works considerably
with skew words as well. Experiments are carried out with four popular Indian languages,
Hindi, Marathi, Punjabi, and Bangla. The average success rate for character segmentation of
four languages is 90.07% which is satisfactory compared with other existing methods. We
use shadow and cumulative stretch feature set with random forest, support vector machine
(SVM), multi-layer perceptron (MLP), and convolutional neural network (CNN) classifiers
for character recognition. On experimentation, it is observed that our proposed method
provided good accuracy for character segmentation and recognition.

Keywords Character segmentation - Deep learning - Handwritten - Indian languages -
Multilingual - OCR - Script independent

b4 Deepika Gupta
deepika.guptaal9 @gmail.com

Soumen Bag
bagsoumen @gmail.com

Department of Computer Science and Engineering, Indian Institute of Technology (ISM),
Dhanbad 826004, India

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-019-7286-0&domain=pdf
mailto: deepika.guptaa19@gmail.com
mailto: bagsoumen@gmail.com

19362 Multimedia Tools and Applications (2019) 78:19361-19386

1 Introduction

Optical character recognition (OCR) is the electronic conversion of the printed or handwrit-
ten scanned document into the machine understandable text. It is the process of changing
the physical text information to digital form so that it can be edited, stored, or used for many
other machine processes. The main advantage of this process is that it is helpful in entering
the data from printed data records without human intervention. Basic OCR system includes
various steps of pre-processing, feature extraction and classification.

Character segmentation is a pre-processing step in OCR. It is the process of separat-
ing the word image into individual character images. It is the fundamental and critical
step of OCR. The performance of OCR degrades due to incorrect character segmenta-
tion. Segmentation of characters is a complex task in Indian scripts of cursive handwriting
style. Character segmentation becomes difficult with the variation in writing styles, skew
variability etc.

A large number of works are done on various scripts like Roman, Chinese, and Arabic
[11, 15, 16, 24] etc. Various strategies in character segmentation are consolidated in an early
study by Casey and Lecolinet [12]. Various techniques for character segmentation for Indian
scripts are proclaimed in [34]. Methodologies used by researchers for segmenting Hindi and
Bangla languages are united in [4]. A survey on recognition of Devanagari script is given
in [23]. Work from the 1970s of printed and handwritten OCRs are consolidated in the sur-
vey. Bansal and Sinha [6] have proposed a two pass algorithm for segmenting Devanagari
script. In the first pass, the word is segmented into easily separable characters. Separated
characters are classified into composite and non-composite characters based on statistical
information about the height and width of the characters obtained after the first pass. Char-
acters classified into the category of composite characters are segmented in the second pass
of the algorithm. Hanmandlu and Agrawal [18] have used structural properties of Hindi
language for segmentation. Sarkar et al. [44] have proposed a non-linear fuzzy member-
ship function for header line estimation. Then used a non-linear fuzzy function to identify
the segmentation points on the header line. An adaptive Hindi OCR is proposed in [28]. In
this, Hindi scripts are first identified from bilingual and multilingual documents based on
structural properties and then character segmentation is applied on the identified word. A
horizontal projection approach is used for dissecting the word into characters. Another work
of handwritten Hindi text segmentation based on header line removal is reported in [36].
In this, the header line is detected by estimating the average line height and then the char-
acters are segmented. Srivastava and Sahu [47] have also used the header line detection
and removal approach for handwritten Hindi text segmentation. Ramteke et al. [41] have
reported segmentation of Marathi handwritten text based on header line detection. One of
the early research on Bangla character segmentation is based on recursive contour follow-
ing [10]. Pal and Dutta [35] have used a concept based on water reservoir principle for
character segmentation of Bangla. Bag et al. [3] have proposed a method based on ver-
tex characterization of outer isothetic polygonal covers. Roy et al. [42] have presented a
approach for skew detection, correction, and character segmentation. In this work, segmen-
tation points are extracted on the basis of some patterns observed in the handwritten words.
Basu et al. [7] have proposed a two step fuzzy technique for segmentation of Bangla words.
In a recent work of handwritten Bangla OCR [1], distance based segmentation approach
is used for line, word, and character segmentation. Lehal and Singh [27] have developed a
Gurmukhi OCR system for machine printed text. The recognition of the text is done at sub-
character level. The word is divided into sub-characters in the segmentation phase and in
the recognition phase these sub-characters are classified and combined to form Gurmukhi

@ Springer

Multimedia Tools and Applications (2019) 78:19361-19386 19363

characters. Lehal [26] has presented a complete OCR for printed multi-font Gurmukhi
script. Kumar and Sengar [25] have proposed a bilingual character segmentation compris-
ing Gurmukhi and Devanagari script based on the horizontal and vertical projection of the
word. Sharma et al. [45] have proposed an iterative approach based on the header line, aspect
ratio and vertical and horizontal projection profiles for handwritten Gurmukhi text. Man-
gala and Kaur [29] have proposed an end detection algorithm for segmentation of touching
and broken characters in handwritten Gurmukhi words. They also used horizontal and verti-
cal profile projection for isolated character segmentation. Number of works have been done
for character segmentation for Indian languages, but most of the methods work on removal
of the header line followed by post-processing to segment the characters of the words [13,
28, 31, 36, 37, 46] as discussed above.

OCR of Indian scripts is an ongoing topic of research as not much of work is done on
multilingual OCR of Indian scripts. However, it is troublesome for skewed word images.
Implementing a generalized character segmentation method for more than one language is a
trivial task due to the variation in writing styles and structural properties of languages. Few
research works have been done for multilingual character segmentation for Indian scripts [2,
17, 22, 30]. But all of them, use different approaches for segmenting different languages
and combine these approaches to make a single module. All these works are based on script
identification and then applying character segmentation for the corresponding script.

Implementing a generalized method for character segmentation without removing header
line, which works on more than one language and also handles skewed words motivates us
for this work. The novelty of the work lies on the fact that our proposed method does not
identify the language before segmentation and handles all the languages using a single seg-
mentation approach, unlike previous works. Following key features of the proposed method
illustrate the novelty of the proposed work.

— Proposed method does not identify language before segmentation.

— It uses a single approach to segment the words of different languages.
— It performs character segmentation without removal of header line.

— Works well on skewed words up to an angle of £10°.

— Works well on words with broken header line.

— Proposed method segments broken words correctly.

This is significant as a single method can be used to develop multilingual OCR for Indian
languages. To our best knowledge, only a single work is done by Bhattad and Chaudhuri [8]
on using a single approach for bilingual character segmentation of Bangla and Devana-
gari. But this work does not perform segmentation of modifiers. In this paper, we propose
a method to segment multilingual handwritten words into characters using the polygonal
approximation of the word.

The architecture of rest of the paper is as follows. Section 2 discusses characteristics of
all the four languages, Hindi, Marathi, Punjabi, and Bangla. Section 3 extends the proposed
methodology for character segmentation. Experimental results and analysis of results are
discussed in Section 4. Concluding remarks and scope for future work are given in Section 5.

2 Properties of languages
The Government of India have recognized 22 languages namely, Assamese, Bengali

(Bangla), Bodo, Dogri, Gujrati, Hindi, Kannada, Kashmiri, Konkani, Maithili, Malayalam,
Marathi, Manipuri, Nepali, Odia, Punjabi, Sanskrit, Santali, Sindhi, Tamil, Telugu, and Urdu

@ Springer

19364 Multimedia Tools and Applications (2019) 78:19361-19386

as official languages. Among these four popular languages are Hindi, Marathi, Punjabi, and
Bangla collectively spoken by approx 723 million people worldwide.

2.1 Properties of Hindi language

Hindi language is written in Devanagari script. It is the most prominent language spoken in
India. It consists of 13 vowels and 33 consonants.

Like English language, there is no case of uppercase and lowercase of characters. Writing
mode of this language is from left to write. Two or more characters are combined to form a
word by joining header lines of individual characters.

2.2 Properties of Marathi language

Marathi language is also written in Devanagari script. Over 73 million people speaks
Marathi in India resulting it as the fourth most spoken language in India and ranks nineteenth
in the list of most spoken languages in the world [19]. As it is also written in Devanagari
scripts, so it has the same properties as of Hindi language.

2.3 Properties of Punjabi language

With over 100 million speakers worldwide, it is ranked tenth most widely spoken language
in the world [20]. With 30 million speakers in India, it is ranked 11th most spoken language
in India. Punjabi is most widely spoken language in Pakistan. Gurmukhi script is used to
write the Punjabi language. It comprises 10 vowels and 41 consonants. Punjabi words are
also connected by header line. Its writing mode is from left to right.

2.4 Properties of Bangla language

Bangla language is written using Bangla script. The basic character set of Bangla comprises
11 vowels and 39 consonants. It is the second most spoken language in India and seventh
most spoken language in world [21]. Over 80 million people in India speaks Bangla. Itis also the
national language of Bangladesh. For OCR point of view Bangla is very significant language.

Our algorithm works on exploiting the common structural properties (Fig. 1) of the above
mentioned four languages. The comparative analysis of the above four mentioned languages
is given in Table 1.

Header line

¢~ Y <—Upper zone __, Ve N
E h a; I <+— Middle zone—» S (b
& «— Lower zone —» -
Hindi Marathi

Baseline Header line—— Baseline
— <« Upper zone— 7~V s
EE’ <—— Middle zone —» ﬂ

- = Lower zone —
Punjabi Bangla

Fig. 1 Structural properties of languages

@ Springer

Multimedia Tools and Applications (2019) 78:19361-19386 19365

Table 1 Comparison of the four Indian languages

Property Hindi Marathi Punjabi Bangla
Language family Indo-European Indo-European Indo-European Indo-European
Native to India India India and Pakistan India and
Bangladesh
Region Northern India Mabharashtra Punjab Bengal
Script Devanagari Devanagari Bangla Gurmukhi
Writing Mode Left to right Left to right Left to right Left to right
Zonal division of Divided into Divided into Divided into Divided into
words 3 zones 3 zones 3 zones 3 zones
Uppercase letters Absent Absent Absent Absent
Lowercase letters Absent Absent Absent Absent
Headerline Present Present Present Present
Invisible Baseline Present Present Present Present
Number of 33 33 41 39
consonant
Number of vowels 13 13 10 11
Number of speakers 120 73 30 80
in India (in million)
Official language in India India India India and
Bangladesh

3 Proposed method

In this work, we have considered header line and baseline for character segmentation and
modifiers’ segmentation. In our proposed method header line of the word is not removed
to perform character segmentation. The whole method is divided into four phases. First
phase is preparatory phase in which input word is transformed in the required form for
the algorithm. In second phase, polygonal approximation is done to find out the straight
line segments of the word. On these segments, we perform the traversing to find out the
segmentation points on the header line. On the basis of these segmentation points, word is
divided into the characters. In the next two phases, upper and lower modifiers, if any, are
segmented using statistical information about the individual components of words. Figure 2
depicts the system architecture of the proposed method.

3.1 Preparatory stage

Optical scanning of the document results into raw input image for OCR system. Pre-
processing is the first phase of document image analysis. The purpose of this stage is to
improve the quality of the image. Two pre-processing methods are applied to make input
ready for the next phase.

— This stage reads the input image of word and then performs binarization using Otsu’s
method [33]. Otsu’s method works on fixed global thresholding. Converting gray scale
image to binary image is the first step of OCR.

— On the binarized input, thinning is applied using [49]. This is a fast parallel algorithm.
In thinning, the image regions are reduced to one-pixel width characters.

@ Springer

19366 Multimedia Tools and Applications (2019) 78:19361-19386

Input Word Binariz.atif)n and Characte.r
Thinning segmentation

="

Segmente}? Lower modifier Upper modifier
C(()IilponeT ® |@——| segmentation (if | €=/ segmentation (if
shown in any) any)
alternate colors)

. g =
gx EX X

=

Fig.2 System architecture of the proposed method

These mentioned pre-processing techniques, namely binarization and thinning are important
as our proposed method solely depends on these two methods. Polygonal approximations of
a digital curve are based on chain code property. As chain code works on single pixel width
characters, so for this purpose thinning is applied. To perform thinning, image binarization
is an important pre-processing step. If any stroke is lost in the binarization process, then the
approximate shape of the character will be inaccurate, so as the segmentation of the word
which in result affects the performance of OCR.

3.2 Character segmentation

Figure 3 outlines the proposed method for character segmentation. Following steps describe
the process in detail.

1. Binarized thinned word obtained in Section 3.1 is the input for this process (Fig. 3b).

2. Polygonal approximation [9] is applied on the binarized thinned input word image to
do the character segmentation of word. This algorithm determines digital straightness
of the one-pixel width word obtained after thinning. It describes digital straight line
segments (DSS) from digital curve. The number of such segments required to cover
the word is few. As a result, the data set required to represent the word is reduced to
a large extent. Since, our proposed method of segmentation is based on the structural
properties of the four mentioned languages so, it requires storing the information of the
structure and shape of the words in efficient manner. The structure of the word can be
represented with very less data after applying the polygonal approximation and can be
accessed efficiently. It transforms the huge pixel data of words to simple graph with
considerable less data points and makes the traversal of points simple and possible.
Polygonal approximation gives the approximate points of segments (Fig. 3c). When
we combine these approximated points, we get the approximated shape of the word as
shown in Fig. 3e.

@ Springer

Multimedia Tools and Applications (2019) 78:19361-19386 19367

(a) (b)

by
et %f%a‘\v g f%ai“v

) ®

Fig. 3 The process of character segmentation ainput word image, b binarized thinned word, cdetected
approximated points, d detection of header line, edifferent points considered for segmentation (junction
points are shown in green color are header junction points are shown in magenta color), fresult of charac-
ter segmentation (modifiers remain connected), g bounding boxes for upper modifier segmentation, h result
of upper modifier segmentation, i baseline detection, j baseline junction point detection (rectangular box is
baseline region and red point in this region is baseline junction point), k bounding box (shown in red color)
for lower modifier segmentation, and 1 result of lower modifier segmentation and final segmented output

3. Junction point is defined as the point which have more than two neighbors. We identify
all the junction points among all the approximated points. The green points are the
junction points of the word (Fig. 3e).

4. We define header junction points as the junction points residing on the header line. We
identify all the header junction points out of all the junction points. All the junction
points which are on the header line are detected even if the word is skewed upto an
angle of +10°. In this process, the word is divided into stripes vertically (Fig. 3d). In
each vertical section, row with maximum object pixel density is detected as header line.
Red boxes in the figure show the header line for that particular region. Thus header line
is detected irrespective of the skewness of the word so as the header junction points are
determined. Magenta points in Fig. 3e are the header junction points.

@ Springer

19368 Multimedia Tools and Applications (2019) 78:19361-19386

5. 'We combine the approximated points to get the approximated shape of the word which
resemble a graph structure (Fig. 3e). These points are traversed to determine the seg-
mentation points. Traversing is done for all the header junction points headerJ P
obtained in step 4. If the end point or another header junction point is reached while
traversing from source header junction point S, then S is marked as segmentation point.
Following steps describes traversing in detail:

Step 1: Initialize a queue Q as empty and source S as a header J P.

Step 2: Each approximated point is connected to its neighbors, so, we check the
neighbors. If neighbor point p of S is a junction point and its not visited yet, then p is
marked as visited and inserted to queue Q.

Step 3: If it is a header J P, then we do not need to traverse further for S. Point p is
marked as visited and as segmentation point. Traversing is terminated for point S and
Q is made empty.

Step 4: If Q is empty then, no more points are remaining for traversal, it ensures that
all the junction points reaching from header junction point header J P are traversed.

Step 5: If Q is not empty, then all the points reaching from headerJ P are not
traversed. So, point is deleted from Q, and this becomes new source S for traversal and
steps 2—5 are repeated.

Step 1-5 are repeated for each header J P.

Figure 4 explains the traversing method to determine the segmentation points on
the example word image. Both the cases of traversal described above are shown in the
example. In this example, four points Ji, J>, J3, and J4 are the header junction points
and E1, E;, and E3 are the end points. Green points are the junction points of the word
(‘c’ becomes junction point due to the presence of small cut). We start traversing from
Jy following the direction shown by arrows and reach to the point E; via 3 points
‘a’, ‘b’, and ‘c’. This is one path of traversal (Fig. 4a). On reaching point Eq, queue

becomes empty, so, traversing is completed for header junction point J;. Another path

of traversal is possible starting from J; to E; following the direction via points ‘a’,

‘c’, and ‘b’ (Fig. 4b). In this path, we reach to end point E; through junction point ‘a’.

Since, all the other points reaching from ‘a’ are not discovered yet so, we backtrack and

traversing continues following the direction of arrows as shown in Fig. 4b. On reaching

to junction point ‘b’, traversing stops as all the points are discovered and queue becomes
empty. We got the end point and did not reach to any other header junction point in
this traversal so, header junction point J; is marked as segmentation point. Similarly,
starting from J,, we reach to E>. Whereas, starting from header junction point J3, we
get to end point E3 following the direction of the arrows via 2 junction points ‘d’ and

‘e’. But on reaching to E3, queue is not empty as junction point ‘e’ reaching from J3

is not traversed completely (neighbor point of ‘e’ is still not visited). So, traversing

backtracks from E3 and another header junction point Jy is reached, which is the part
of same character. Therefor, among Ji, Ja, J3, and J4, header junction Ji, J», and Js

(a) Path 1 (b) Path 2

Fig.4 Detection of segmentation points using PointTraversal procedure

@ Springer

Multimedia Tools and Applications (2019) 78:19361-19386 19369

are considered for segmentation while J3 remains connected to the character. Even
presence of small cuts and merges does not create any problem in traversal as data set
required to represent the word is few after applying the polygonal approximation so as
the cuts and merges are few in the word. All the points follows the same procedure and
results into character segmentation (as explained in the given example).

6. We segment the word into individual characters after we get the segmentation points.
The word is divided into individual characters with modifiers attached to it (Fig. 3f).
We perform the segmentation of both upper and lower modifiers one by one. In the next
sections, we explain the process of modifiers segmentation.

Algorithm 1 SegmentUpModifier.

1: Initialize header J P[1 : N] = < junction points lying on header line>

2: Initialize W,[1 : N] = < width of characters associated with header J P in the word>
3: fori < 1to N do

4: Define a bounding box Bp; of width wy; and of height h; over header J P[i]; ©

wp; = W,; and hy,; is calculated using (1).

5 Calculate number of pixels n,; present inside By;;

6 ifn, >0, then > modifier is present
7: if W.; > 6,, then > 60y, is threshold for width
8 Segment upper modifier associated with jeaderJ P[i];

9 else
10: Upper modifier remain connected with header J P[i];

11: end if

12: end if

13: end for

3.3 Upper modifier segmentation

After the character segmentation, the statistical information of the word width is utilized to
do the upper modifier segmentation. Our proposed method for upper modifier segmentation
is advantageous as all the upper modifiers are segmented using this single logic. We do not
categorize the modifiers to segment them as reported in earlier literatures [5].

Procedure SegmentUpModifier in Algorithm 1 explains the approach for segmentation
of upper modifiers.

1. We determine the presence of upper modifier with the help of bounding box. A rect-
angle bounding box Bj (Fig. 3g) is drawn over each header junction point header J P
which belongs to the character (Line 1-4). The width of this box is equal to the width
of the character and height (%) of the box is calculated using (1).

hp; = |header J P} —mid_point,| (1)
where,
mid_point; = (start_row + headerJ P})/2 2)

where, start_row is the start row of word image.

2. Next, to detect the upper modifier, we calculate the number of pixels n, present inside
each By. If n;, > 6,, upper modifier is present (Line 5-6). We determine the value of
6, as 30 on the basis of experimental analysis (Section 4.4).

@ Springer

19370 Multimedia Tools and Applications (2019) 78:19361-19386

f
- Y
w w <—>‘<—>

wo

a b ch
4—+—>

w; Wy wq w2

wq

Fig.5 Explanation of upper modifier segmentation with example

3. After we identify the modifier, we compare the width of character W, associated with
the header junction point over which the modifier is connected (Line 7).

4. The upper modifier is segmented from the character if W, > 0, (threshold), where
W, is width of character (Line 8—-10). Otherwise, upper modifier stays associated to the
character.

This process is explained in Fig. 5. In first two figures, two modifiers are shown.
In first case, w; < 6, while wo > 6,, so, upper modifier is segmented at point b but
remains connected to a. The reverse of this is true in second case. So, upper modifier is
segmented at point c. In next two figures, w > 6,,, so upper modifier is segmented at
points e and f. In last figure, modifiers at points g is segmented as wy < 6,,. We have
taken the value of 6, as 10 on the basis of experimental analysis (Section 4.4). Figure 3h
shows the result of upper modifier segmentation of the input word. Some image results
for upper modifier segmentation for four different languages are shown in Fig. 6. In
case upper modifier is not connected properly to the character of the middle zone and

Segmented
Word

a9
e ol

Segmented
Word

_ o
SHe

Jrgre

Original Word Original Word

[)

STt

IR

(b)

\i]

e
.

a)

Segmented Segmented

Original Word

Word

Original Word

Word

757

)

DIGK

N -

e

%@5

Fig.6 Image examples for segmentation of upper modifier for a Hindi, b Marathi, ¢ Punjabi, and d Bangla

languages

3757
=

@ Springer

©)

(d

ety
)

Multimedia Tools and Applications (2019) 78:19361-19386 19371

appears partly on top of two characters, width of the nearest character is compared as
the upper modifier automatically comes in the bounding box over the character which
is nearer to the modifier (Fig. 7). In the given example of Hindi language, point ‘p’ is
nearer to header junction point ‘a’ than point ‘b’ so width of the character associated
with header junction point ‘a’ is compared resulting in to the proper segmentation of
upper modifier.

Algorithm 2 SegmentLowModifier.

1: Baseline < DetectBaseline()
2: Initialize baseJ P[1 : N] = <junction points lying on baseline region>
3: Initialize W,.[1 : N]= < Width of characters associated with baselineJunction Points

(9,1

S0 ® 3D

in the word>

. fori < 1to N do

Define a bounding box in lower zone LBy,; of width wp; and of height hp; over
baseJ Pli]; > wp; = We; & hyp,; is calculated using (3).
Calculate number of pixels n,; present inside L Bp;;
ifn, ;=0 then > modifier is present
Segment lower modifier associated with baseJ P[i];
end if
. end for

3.4 Lower modifier segmentation

The method used to segment lower modifiers is similar to the upper modifier segmentation
method as discussed in Section 3.3. In case of upper modifiers, we work on the junction
points lying on header line. Similarly, for lower modifier we consider the the junction points
lying on the baseline region. Baseline is the invisible line that separates the middle zone
from lower zone of the word (Fig. 1). The advantage of this method is that all the mod-
ifiers are handled using this single approach only. The method is explained in procedure
SegmentLowModifier in Algorithm 2.

L.

This procedure starts with detecting the baseline using procedure DetectBaseline in
Algorithm 3. To detect the baseline, sudden changes in horizontal density of object
pixel from middle row to end row of image is considered (Line 1-4). It is observed that
sudden changes in density is found at the end of lower zone but it is not correct if the
modifier is present (Fig. 3i). So, to generalize the baseline detection, concept of pixel
density of word in different zone is considered. The first detected baseline is named as
Baseline.,q (Line 6). To overcome this problem, second baseline Baselinegsecona is
detected (Line 7). We calculate the difference n, ;; if of number of pixels lying in both

i{?ﬁ{éﬁ
b)

()

AN
RERT-FRENAN

(

Fig.7 Examples of upper modifier segmentation for Hindi in case of modifier appears partly between two
characters a Input word, b approximated points of word, and ¢ segmented output

@ Springer

19372 Multimedia Tools and Applications (2019) 78:19361-19386

rows of Baselinesecong and Baseline,,q (Line 9-11). If Npgirf < 5 (value taken as
per experimental analysis) then Baseline,,q is considered as baseline (Line 12—-13);
otherwise Baselinesecong 18 the baseline (Line 15).

Algorithm 3 DetectBaseline.

1: Find start_row, end_row of word image;
2: Calculate mid_row = (start_row + end_row)/2;
3: Get horizontal density of number of object pixels from mid_row to end _row;
4: Baseline < row with sudden change in density; > value taken is 20
5: if Baseline is closer to end _row then > value taken is 5
6: Baseline,,q = Baseline;
7: Baselinegecong = row with next sudden change in density;
8: end if
9: Calculate number of pixels nj,, , of row Baselinegnq;
10: Calculate number of pixels np ... of row Baselinesecond;
11: Calculate difference np ;; cr = 11p g rong = Mpenal’
12: if Rpgiry is significantly less then > value taken is 5
13: Baseline < Baselinegecond;
14: else
15: Baseline < Baselineg,g;
16: end if

Figure 8 shows the two cases for detecting the baseline. In first word of image n, ;; if
is less as both the rows Baselinee,q and Baselinegeconq lying in middle zone which
is highest zone of object pixel density. On the other hand, in case of presence of lower
modifier (second word of image), row Baseline,,q is in lower zone (low object pixel
density) and row Baselinesqconq is in middle zone (high object pixel density). Due to
which Npaiff will be higher in this case. So, in case of first word of Fig. 8, Baselineg,q
is Baseline and in second word, Baselinegeconq is Baseline. All the values which are
considered are based on experimental analysis.

2. We define baseline junction points baseJ P as the junction points lying in the baseline
region (Fig. 3j). We identify all the baseline junction points baseJ P after the baseline
is detected.

3. Bounding box are drawn for each baseJ P (Fig. 3k) (Line 4-5). Width of bounding
box is equal to the width of the character associated with the baseJ P and height A, is
calculated using (3).

hp; = |baseJ P — end_row| 3)

where, end_row is the end row of the word image.
4. Calculate the total number of pixels inside the bounding box. If number of object pix-
els are greater than the threshold 6; then modifier is present. We disconnect the lower

<« Baselineeeond —»- M 5 [

<—Baselinee,y

Without lower modifier With lower modifier

Fig.8 Example of baseline detection

@ Springer

Multimedia Tools and Applications (2019) 78:19361-19386 19373

modifier from that baseline junction point (Line 6-9). We set the value of 6; as 30 (on
the basis of experimental analysis)(Section 4.4). Figure 31 shows the result of lower
modifier segmentation for the input image of Fig. 3a. Figure 3l is the final segmented
output of the input word. Image results of lower modifiers’ segmentation for all the four
languages are shown in Fig. 9.

4 Experimental results and discussion

We discuss the experimental results and analysis of results of our proposed method in this
section.

4.1 Experimental dataset

We have taken about 3000 handwritten words of each of the four language for our experi-
mental purpose resulting 12000 handwritten words in total. Out of four languages, dataset
for Hindi and Bangla are obtained from [43] and dataset for Punjabi is obtained from [32].
Marathi dataset is collected from 20 individuals of different age group. Each Marathi
image is digitized at 300 dpi resolution using Cannon Pixima E560 flat-bed scanner. The
implementation has been done on MATLAB.

Original Word Se%r\;f;ged Original Word Se%l\r/;e;(lited
g q ' (N O

p <

o :
g Srae UGS UAgT
(a) (b)

Original Word SCervnOCng Original Word SC%OCJEM
A A I W
J72 J12 | HG| RG
" | — ~<_

(c) (d)

Fig. 9 Examples of lower modifier segmentation for a Hindi, b Marathi, ¢ Punjabi, and d Bangla languages

@ Springer

19374 Multimedia Tools and Applications (2019) 78:19361-19386

4.2 Results for character segmentation

Method described above performs segmentation for four Indian languages. Some of the
image results for Hindi and Marathi languages are shown in Fig. 10 and for Punjabi and
Bangla languages are shown in Fig. 11. The proposed methods handles some special cases
like broken words, words without header line and skewed words as well. These cases are
described as follows:

Character Segmentation of Skewed Words: As described in Section. 3.2, methods
works well on skewed words. Image result for skewed words for all four different languages
are shown Fig. 12.

Character Segmentation of Broken Words:

In handwritten text, the word can be broken in two ways. Many time while writing in
flow, some of the characters are broken from the words. This makes character segmentation
difficult. Few examples of broken words are given in Fig. 13. This is first type of broken
word. Our proposed method works well on input with broken characters. Segmentation is

Tnput word Segmented word || Tnput word Segmented word
Froan | Jeas oTETe
—— v B
TEOEd | ATIF S
AR Aty

IR | TR | oy | SN

v | | JEL | FEL

e hraga | @I

(a) Hindi (b) Marathi

Fig. 10 Experimental results for Hindi and Marathi languages. Alternate colors of gray and black is used to
represent the segmented components

@ Springer

Multimedia Tools and Applications (2019) 78:19361-19386

19375

Input word

Segmented word

Input word

Segmented word

¥77=

~)
(Y 1=y
gy CA

TS

= ,
Chicdal

RN

ECL

&g

"} ﬁ‘:«'\:

RN

g727

> (‘A PN

fam

C—~

H

=

SIE

(L

SCA

T CA

ENS®

Tl d

@T‘@

Clias

ST

Pﬁ,

| Cag T

HISERRREEER

_ \
71X 2

=
AT

ATY

(a) Punjabi (b) Bangla

Fig. 11 Experimental results for Punjabi and Bangla languages. Alternate colors of gray and black is used to
represent the segmented components

performed on the remaining connected part of the word (Fig. 14). The broken parts of the
word do not require any segmentation and can be considered as they are for classification.

In second type of broken word, header line is broken in middle resulting two or more
parts in a single word. These type of words are found mainly in Bangla only. To handle these
kind of cases, connected components are found in the word image and the proposed method
is applied for each component resulting into segmented individual characters. Figure 15
shows the image example for words broken from header line.

Character Segmentation of Words without Header line: Many writers do not put
header line while writing in flow. Due to the absence of header line, segmentation becomes
difficult. These type of cases are also found mainly in Bangla language. To overcome
this problem, we estimated header line of the word using a linear curve fitting-based
method proposed in [39]. After estimating the header line, character segmentation is applied
as discussed in Section 3. Some of the image example for Bangla language are given
in Fig. 16.

Detailed experimental results for all four languages: Hindi, Marathi, Punjabi, and Bangla
are reported in Table 2, Table 3, and in Table 4 for character segmentation, upper modifiers’

@ Springer

19376

Multimedia Tools and Applications (2019) 78:19361-19386

Original Word

Segmented Word

Original Word

Segmented Word

el

AT

x

AT Al

O

AfaTAed

AETATT

fﬂ\kf ald

(a)

b)

Original Word

Segmented Word

Original Word

Segmented Word

T3z

Sr ety

TS
I3 SIJ3

Fig.12 Examples of character segmentation of skewed words for a Hindi, b Marathi, ¢ Punjabi, and d Bangla
languages

rnica

segmentation, and lower modifiers’ segmentation respectively. Lower modifiers in Punjabi
language are not connected to the characters. This is the reason for the 100% accuracy
for lower modifier segmentation for Punjabi language. The combined average accuracy for

Broken_characters
Broken character * U\

4

T

(a) Hindi

(b) Marathi

Broken character

208 o

(c) Punjabi (d) Bangla

Broke} character

Fig. 13 Broken word image examples of Type-I

@ Springer

Multimedia Tools and Applications (2019) 78:19361-19386 19377

Adhd BFNAV

(a) Hindi (b) Marathi
(c) Punjabi (d) Bangla

Fig. 14 Segmentation of broken words of Fig. 13

character segmentation obtained for all the languages is 90.07%. For upper modifiers, the
average accuracy for all the four languages is 90.33%, and in case of lower modifiers, the
obtained average accuracy is 93.99%.

4.3 Character recognition result

In this Section, we discuss the extracted features and classifiers used for character
recognition purpose.

AR IG ARG

TRTTTCST ot CET
V@ F T]
o P

Fig. 15 Broken word image example of Type-1I

@ Springer

19378 Multimedia Tools and Applications (2019) 78:19361-19386

CNYHYI TRV NI H(Y3

Input Estimated header line Output
@ : a8 s : [[:']
Input Estimated header line Output
mq ’ 9“3"" ‘ B [l '?,,Yv- sz p PZ*
+ [L
Input Estimated header line Output
LAYY LAY WA Y Y
o ©O o O o ©O
Input Estimated header line Output

Fig. 16 Image examples of broken header line in word in Bangla language.

4.3.1 Feature extraction

Two categories of features [40] are extracted for each separated binary component of the
word as given below.

i. Cumulative stretch in four different direction, and
ii. Shadow features [14].

Cumulative stretch features are extracted for four directions, namely horizontal, vertical,
left diagonal, and right diagonal. For shadow features extraction, each component is divided
into 8 octant and each octant has 3 sides. Light is projected from 3 different directions and
length of the shadow is computed on each side of octant. Total of 84 cumulative stretch
features and 120 shadow features are obtained resulting into a total of 204 features for each
component.

4.3.2 Classifiers

We have applied the extracted features to three classifiers, namely Multilayer Perceptron
(MLP), Support Vector Machine(SVM), and Random Forest.

MLP: MLP is also known as feed-forward neural network which consists of multiple
layers of computational units interconnected in feed-forward way. MLP maps the input to
the predicted output data. It uses the back propagation learning technique in which output

Table 2 Character segmentation result of all four languages

Language Words Total no. of components Correctly detected components Accuracy (%)
Hindi 3000 9034 8208 90.86
Marathi 3000 14437 12986 89.95
Punjabi 3000 9160 8307 90.69
Bangla 3000 7305 6485 88.77

@ Springer

Multimedia Tools and Applications (2019) 78:19361-19386 19379

Table 3 Upper modifiers’ segmentation result of all four languages

Language Words Total no. of components Correctly detected components Accuracy (%)
Hindi 3000 2501 2278 91.08
Marathi 3000 2388 2151 90.08
Punjabi 3000 2461 2257 91.72
Bangla 3000 1740 1539 88.45

values are compared to the correct answer to get the value of mean square error. This error
is then fed back to the network and weights of the network are updated in order to reduce
the mean square error between the actual and desired outcome of the network. The network
is trained when this value to minimized. In the present work, we use one-hidden layer MLP.

This classifier is widely used for classification in various areas. Pramanik and Bag [38]
have used MLP for classification of Bangla compound characters, Zhang and Sun [50] have
used single layer feed forward neural network to develop a angiosperm genus classifica-
tion system. Wang et al. [48] have also used single layer feed forward neural network for
recognition of facial emotions.

SVM: SVM is a set of supervised learning methods that analyzes data and recognizes
patterns that is used for classification. In SVM model each data item is plotted as a point in
n-dimensional space, mapped so that the points of the different categories are divided by a
clear gap. In more formal way, a SVM model constructs a hyperplane or set of hyperplanes
in a high or infinite dimensional space that differentiate the two classes. The hyperplane
achieves a better separation if data points of any class are as far as possible. Larger differ-
ence between the hyperplane and the data points leads to the lower generalization error of
the classifier. In this work we have used polynomial kernel in SVM model for classification.

Random Forest: Random forest is a supervised learning method that operates by con-
structing multiple decision tree classifiers during training phase. To classify a new object
on the basis of attributes, the decision of the majority of the trees is chosen by the classi-
fier as the final decision. The random forest classifier avoids the problem of over-fitting by
using multiple trees which re-samples the data during training phase and by changing the
features over different classifier. Moreover, random forest classifier handles the missing val-
ues which makes it more robust to noise. These two advantages of random forest classifier
make this a potential choice for classification.

The recognition of characters is done using above mentioned classifiers. Table 5 shows
the accuracy of each language for all the three classifiers. Among all tested languages,
and classifiers, the Hindi language shows the highest accuracy of 96.09% for MLP classi-
fier. Marathi and Punjabi languages also show the best accuracy for MLP classifier scoring
90.50% and 91.21% respectively. Bangla language shows relatively less accuracy of 85.74%

Table 4 Lower modifiers’ segmentation result of all four languages

Language Words Total no. of components Correctly detected components Accuracy (%)
Hindi 3000 517 484 93.62
Marathi 3000 631 579 91.62

Punjabi 3000 419 419 100

Bangla 3000 435 394 90.57

@ Springer

19380 Multimedia Tools and Applications (2019) 78:19361-19386

Table 5 Character recognition accuracy for each language

Language Classifier Accuracy (%)
Hindi Random Forest 95.10
SVM 95.57
MLP 96.09
Marathi Random Forest 87.24
SVM 89.63
MLP 90.50
Punjabi Random Forest 88.05
SVM 90.85
MLP 91.21
Bangla Random Forest 84.12
SVM 85.74
MLP 83.77

for SVM classifier in comparison to the other three languages. Vast variation in the writ-
ing style of Bangla language results in ample deviation in the dataset which makes the
recognition of characters difficult and consequently affects the recognition accuracy for this
language. Best accuracies obtained by all four languages among all three classifiers are
shown in bold numbers.

We also applied a deep learning architecture for recognition of characters. A deep convo-
lutional neural network (CNN) is a feed-forward multilayer network trained in supervised
mode. CNN consists of a number of layers namely, convolutional layers, pooling layers, and
fully connected layers. There can be any number of fully connected layers after the convolu-
tional layers and pooling layers as in a standard multi-layer neural network. The CNN model
takes the whole binary image of dimension of 32 x 32 as input in a single 1 dimensional
array. So the single 1 dimensional array of size 1024 is selected as features. From the total
data of each language, 80% data is used for training of model and rest of the data is used
for testing. The training data is randomized beforehand to avoid the problem of data over-
fitting. This model is trained with the batch training size of 100 and learning rate of 0.001.
The classifier provides the recognition accuracy for deep learning for all the languages. For
our case, CNN classifier obtains accuracy of 94.71% for Hindi language which is less than
the accuracy obtained by all the other three classifiers. For Marathi and Punjabi languages
CNN shows better accuracy of 89.16% and 89.84% in comparison to random forest classi-
fier for the same. For Bangla language CNN obtains the accuracy of 83.77% which is same
as for MLP classifier.

4.4 Parameter tuning

Figure 17 provides a tuning for choosing the optimal threshold 8, for checking the presence
of upper modifier as discussed in Algorithm 1. We have taken 400 random word images, 100
from each language containing upper modifiers to do the parameter tuning. Figure 17 shows
the graph of accuracy for different values of 9, for all the four languages. Accuracy of upper
modifier segmentation is different for all the languages for various values of 6,,, but all the
languages except Marathi, obtained the best accuracy for upper modifier segmentation for

@ Springer

Multimedia Tools and Applications (2019) 78:19361-19386 19381

100

—&— Hindi
95 —2— Marathi

Punjabi
—o— Bangla

1|
i
0

90

85

80

Accuracy (%)

75

70

65

60
10 20 30 40 50 60

Fig. 17 Tuning of parameter 6,, used in Algorithm 1

6, > 30. Marathi shows a slight decrement in accuracy for threshold > 30. So, choosing 6,
as 30 is the best accuracy for upper modifier segmentation as depicted in Fig. 17.
Similarly, Fig. 18 depicts the tuning of threshold value 6,, of Algorithm 1 for all the
four languages. Same data samples of 400 images have been tested for various threshold
values starting from 8,, = 2. Languages obtained best accuracy for 6,, > 10 except for
Punjabi language as shown in the graphs. Punjabi achieved its best accuracy for 6,, > 8. So,
threshold 6,, > 10 have been chosen as the common threshold for all the four languages.
Tuning of threshold value 6; of Algorithm 2 is shown in Fig. 19 for all the four languages.
Graph for Punjabi language is a straight line at 100%. This is due to the fact that lower

100

—8— Hindi
95 —a— Marathi

Punjabi
—o— Bangla /

90 +

85

80

Accuracy (%)

70 +

65

Fig. 18 Tuning of parameter 6,, used in Algorithm 1

@ Springer

19382 Multimedia Tools and Applications (2019) 78:19361-19386

100

—8— Hindi
95 —a— Marathi

Punjabi
—— Bangla

90

85

80

Accuracy (%)

75

70

65

60

10 20 30 40 50 60

Fig. 19 Tuning of parameter 6; used in Algorithm 2

modifiers are not connected to the character of the middle zone. Due to which segmentation
accuracy is 100% for any value of pixels. Other than Punjabi all the languages obtained
their best accuracy for 6; > 30.

4.5 Comparison with other methods

As per our best knowledge, only a single work of Bhattad and Chaudhuri [8] is reported
for character segmentation for two different languages using a single approach. So to show
the competency of our proposed method we compared character segmentation accuracy of
individual language against state-of-the-art approaches for each dataset. We compared our
method with recent works of Srivastav and Sahu [47] and Sarkar et al. [44] method for Hindi
language, Ramteke et al. [41] for Marathi language, Mangla and Kaur [29] for Punjabi lan-
guage, and Arefin et al. [1] for Bangla language. As the databases used in the above papers
are not available, so to do the comparative analysis, we implemented the above methods and
tested the same on 500 words of each database as discussed in Section 4.1. Table 6 shows
the character segmentation accuracy for the above mentioned methods and our proposed
method. We observe that the performance of character segmentation is much better than the
existing methods for all the languages. The reason behind this is that the compared methods
fail to segment the skewed words. In method proposed by Bhattad and Chaudhuri [8] lower
modifiers are not segmented resulting into the decrement in the accuracy. The segmenta-
tion of upper modifiers are followed by post processing of reconnecting them to original
characters. But our proposed method does not require any post processing for modifier seg-
mentation. Our proposed method is tested for four languages and gives satisfactory results,
whereas [8] is tested only for two languages. The success rate of our proposed method is
91.04% and 89.47% for the Hindi and Bangla languages respectively which is much better
than 80.59% and 82.26% for Hindi and Bangla of method proposed by Bhattad and Chaud-
huri [8]. It is also better than the methods proposed by Sarkar et al. [44] and Srivastav and
Sahu [47] for Hindi language and by Arefine et al. [1] for Bangla language. Arefine et al. [1]

@ Springer

Multimedia Tools and Applications (2019) 78:19361-19386 19383

Table 6 Comparison of character segmentation accuracy of the proposed method with the state-of-the-art
methods

Method Language True segmentation (%)

Upper modifier Constituent character Lower modifier

Bhattad and Chaudhuri [8] Hindi - 80.59 -
Bangla - 82.26 -
Srivastav and Sahu [47] Hindi 80.92 82.28 -
Sarkar et al. [44] Hindi 82.40 89.34 88.64
Ramteke et al. [41] Marathi - 73.23 -
Mangla and Kaur [29] Punjabi - 76.39 -
Arefin et al. [1] Bangla - 78.31 -
Proposed Method Hindi 92.42 91.04 92.09
Marathi - 88.72 -
Punjabi - 91.82 -
Bangla - 89.47 -

have also not mentioned the segmentation of modifiers, so this cannot be compared with
our proposed method. For Marathi and Punjabi languages, our method gives the accuracy of
88.72% and 91.82% which is better than the corresponding methods. Upper and lower mod-
ifier segmentations are not mentioned separately in the above papers, so they also cannot be
compared. Only Sarkar et al. [44] and Srivastav and Sahu [47] have provided the segmen-
tation accuracy for the modifiers for Hindi language. So, the segmentation accuracies for
these methods are compared with our proposed method. Accuracies obtained by proposed
method are shown in bold numbers to show the efficacy of the method.

A comparison of the average process speed of above compared method is given in
Table 7. This comparison is carried out with the methods on the same language datasets
as specified above. The method proposed by Bhattad and Chaudhuri [8] is computation-
ally less expensive but shows poor performance. The process speed of our proposed method
depends on the word structure and length of the word. Our proposed method uses polygonal
approximation which is based on chain code, so for this reason, our proposed method takes
much time for processing. Our method shows better computational efficiency for Marathi
and Punjabi language as compared to other methods. Best average process speed for each
language among all the methods is shown in bold.

Table 7 Average process speed (in second) taken by different character segmentation methods

Method Hindi Marathi Punjabi Bangla
Bhattad and Chaudhuri [8] 0.26 - - 0.13
Srivastav and Sahu [47] 0.29 - - -
Ramteke et al. [41] - 0.55 - -
Mangla and Kaur [29] - - 0.51 -
Arefin et al. [1] - - - 0.15
Proposed method 0.44 0.49 0.19 0.31

@ Springer

19384 Multimedia Tools and Applications (2019) 78:19361-19386

5 Conclusion

We have proposed a novel script independent character segmentation technique based on
polygonal approximation. The use of structural properties of all the languages helps us to
generalize the segmentation process. This method is tested on four popular Indian languages
and has given promising results for all the four languages resulting average segmentation
accuracy of 90.07%. We have also performed the character recognition with random forest,
SVM, MLP, and CNN classifiers with satisfying segmentation and recognition results. In
future, we shall extend our work to improve the accuracy by handling the failure cases and
to use this method for character segmentation of more languages.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Arefin N, Hassan M, Khaliluzzaman M, Chowdhury SA (2017) Bangla handwritten characters recog-
nition by using distance-based segmentation and histogram oriented gradients. In: IEEE Region 10
humanitarian technology conference, pp 678—681

2. Arya D, Jawahar C, Bhagvati C, Patnaik T, Chaudhuri B, Lehal G, Chaudhury S, Ramakrishna A (2011)
Experiences of integration and performance testing of multilingual OCR for printed Indian scripts. In:
Joint workshop on multilingual OCR and analytics for noisy unstructured text data, 9

3. Bag S, Bhowmick P, Harit G, Biswas A (2011) Character segmentation of handwritten Bangla text
by vertex characterization of isothetic covers. In: National conference on computer vision, pattern
recognition, image processing and graphics, pp 21-24

4. Bag S, Harit G (2013) A survey on optical character recognition for Bangla and Devanagari scripts.
Sadhana 38(1):133-168

5. Bag S, Krishna A (2015) Character segmentation of Hindi unconstrained handwritten words. In:
International workshop on combinatorial image analysis, pp 247-260

6. Bansal V, Sinha R (2002) Segmentation of touching and fused Devanagari characters. Pattern Recogn
35(4):875-893

7. Basu S, Sarkar R, Das N, Kundu M, Nasipuri M, Basu DK (2007) A fuzzy technique for segmentation
of handwritten Bangla word images. In: International conference on computing: theory and applications,
pp 427433

8. Bhattad AJ, Chaudhuri B (2015) An approach for character segmentation of handwritten Bangla and
Devanagari script. In: International conference on advance computing conference, pp 676680

9. Bhowmick P, Bhattacharya BB (2007) Fast polygonal approximation of digital curves using relaxed
straightness properties. IEEE Trans Pattern Anal Mach Intell 29(9):1590-1602

10. Bishnu A, Chaudhuri B (1999) Segmentation of Bangla handwritten text into characters by recursive
contour following. In: International conference on document analysis and recognition, pp 402—405

11. Bunke H (2003) Recognition of cursive Roman handwriting: past, present and future. In: International
conference on document analysis and recognition, pp 448-459

12. Casey RG, Lecolinet E (1995) Strategies in character segmentation: a survey. In: International conference
on document analysis and recognition, vol 2, pp 1028-1033

13. Chaudhuri B, Pal U (1997) An OCR system to read two Indian language scripts: Bangla and Devnagari
(Hindi). In: International conference on document analysis and recognition, vol 2, pp 1011-1015

14. Das N, Das B, Sarkar R, Basu S, Kundu M, Nasipuri M (2010) Handwritten Bangla basic and compound
character recognition using MLP and SVM classifier. arXiv:1002.4040

15. Dershowitz N, Rosenberg A (2014) Arabic character recognition. In: Language, culture, computation.
Computing-theory and technology, pp 584-602

16. Gao Y, Yang Y (2004) Survey of unconstrained handwritten Chinese character segmentation. Comput
Eng 5:052

17. Garain U, Chaudhuri B (2002) Segmentation of touching characters in printed Devnagari and Bangla
scripts using fuzzy multifactorial analysis. IEEE Trans Syst Man Cybern Part C Appl Rev 32(4):449—
459

@ Springer

http://arxiv.org/abs/1002.4040

Multimedia Tools and Applications (2019) 78:19361-19386 19385

18.
19.
20.
21.
22.
23.

24.
25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Hanmandlu M, Agrawal P (2005) A structural approach for segmentation of handwritten Hindi text. In:
International conference on cognition and recognition, pp 589-597
https://en.wikipedia.org/wiki/Marathi_language. Accessed 23 Jan 2018
https://en.wikipedia.org/wiki/Punjabi_language. Accessed 23 Jan 2018
https://en.wikipedia.org/wiki/Bengali_language. Accessed 23 Jan 2018

Jawahar C, Kumar MP, Kiran SR (2003) A bilingual OCR for Hindi-Telugu documents and its
applications. In: International conference on document analysis and recognition, pp 408—412

Jayadevan R, Kolhe SR, Patil PM, Pal U (2011) Offline recognition of Devanagari script: a survey. IEEE
Trans Syst Man Cybern Part C Appl Rev 41(6):782-796

Khorsheed MS (2002) Off-line Arabic character recognition—a review. Pattern Anal Applic 5(1):31-45
Kumar V, Senegar PK (2010) Segmentation of printed text in Devnagari script and Gurmukhi script. Int
J Comput Appl 3:24-29

Lehal GS (2009) A complete machine-printed Gurmukhi OCR system. In: Guide to OCR for Indic
scripts, pp 43-71

Lehal GS, Singh C (2000) A Gurmukhi script recognition system. In: International conference on pattern
recognition, vol 2, pp 557-560

Ma H, Doermann D (2003) Adaptive Hindi OCR using generalized Hausdortf image comparison. ACM
Transactions on Asian Language Information Processing 2(3):193-218

Mangla P, Kaur H (2014) An end detection algorithm for segmentation of broken and touching characters
in handwritten Gurumukhi word. In: International conference on reliability, infocom technologies and
optimization, pp 14

Mohanty S, Dasbebartta HN, Behera TK (2009) An efficient bilingual optical character recognition
(English-Oriya) system for printed documents. In: International conference on advances in pattern
recognition, pp 398-401

Nawab NB, Hassan M (2012) Optical Bangla character recognition using chain-code. In: International
conference on informatics, electronics & vision, pp 622-627

Obaidullah SM, Halder C, Santosh K, Das N, Roy K (2017) Phdindic_11: page-level handwritten
document image dataset of 11 official Indic scripts for script identification. Multimed Tools Appl: 1-36
Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern
9(1):62-66

Pal U, Chaudhuri B (2004) Indian script character recognition: a survey. Pattern Recogn 37(9):1887-
1899

Pal U, Datta S (2003) Segmentation of Bangla unconstrained handwritten text. In: International
conference on document analysis and recognition, pp 1128-1132

Palakollu S, Dhir R, Rani R (2012) Handwritten Hindi text segmentation techniques for lines and
characters. In: World congress on engineering and computer science, vol 1, pp 24-26

Patel C, Desai A (2010) Segmentation of text lines into words for Gujarati handwritten text. In:
International conference on signal and image processing, pp 130-134

Pramanik R, Bag S (2018) Shape decomposition-based handwritten compound character recognition for
Bangla OCR. J Vis Commun Image Represent 50:123—134

Pramanik R, Bag S (2017) Linear curve fitting-based headline estimation in handwritten words for Indian
scripts. In: International conference on pattern recognition and machine intelligence, pp 116-123
Pramanik R, Raj V, Bag S (2018) Finding the optimum classifier: Classification of segmentable com-
ponents in offline handwritten Devanagari words. In: International conference on recent advances in
information technology, pp 1-5

Ramteke S, Gurjar A, Deshmukh D (2016) Automatic segmentation of content and noncontent based
handwritten Marathi text document. In: International conference on global trends in signal processing,
information computing and communication, pp 404408

Roy A, Bhowmik TK, Parui SK, Roy U (2005) A novel approach to skew detection and character seg-
mentation for handwritten Bangla words. In: Digital image computing: Techniques and applications, pp
30-38

Sarkar R, Das N, Basu S, Kundu M, Nasipuri M, Basu DK (2012) Cmaterdbl: a database of uncon-
strained handwritten Bangla and Bangla—English mixed script document image. Int J Doc Anal Recognit
15(1):71-83

Sarkar R, Sen B, Das N, Basu S (2015) Handwritten Devanagari script segmentation: A non-linear fuzzy
approach. arXiv:1501.05472

Sharma DV, Lehal GS (2006) An iterative algorithm for segmentation of isolated handwritten words in
Gurmukhi script. In: International conference on pattern recognition, vol 2, pp 1022-1025

Shinde AB, Dandawate YH (2014) Shirorekha extraction in character segmentation for printed Devana-
gri text in document image processing. In: Annual IEEE India conference, pp 1-7

@ Springer

https://en.wikipedia.org/wiki/Marathi_language
https://en.wikipedia.org/wiki/Punjabi_language
https://en.wikipedia.org/wiki/Bengali_language
http://arxiv.org/abs/1501.05472

19386 Multimedia Tools and Applications (2019) 78:19361-19386

47. Srivastav A, Sahu N (2016) Segmentation of Devanagari handwritten characters. Int J Comput Appl
142(14)

48. Wang SH, Phillips P, Dong ZC, Zhang YD (2018) Intelligent facial emotion recognition based on
stationary wavelet entropy and Jaya algorithm. Neurocomputing 272:668-676

49. Zhang T, Suen CY (1984) A fast parallel algorithm for thinning digital patterns. Commun ACM
27(3):236-239

50. Zhang YD, Sun J (2018) Preliminary study on angiosperm genus classification by weight decay and
combination of most abundant color index with fractional Fourier entropy. Multimed Tools Appl
77(17):22671-22688

Deepika Gupta received B.Tech degree in information technology in 2008 from Uttar Pradesh Technical
University and M.Tech degree in 2011 from National Institute of Technology, Jaipur. She held Senior Soft-
ware Engineer position in Samsung Electronics, India, (2011-2015). Currently, she is pursuing her Ph.D from
Indian Institute of Technology (Indian School of Mines), Dhanbad. Her research interests include OCR for
Indian Scripts and Image processing.

Soumen Bag received B.E. and M.Tech. degree in Computer Science & Engineering from NIT Durgapur
in 2003 and 2008 respectively. He received his Ph.D. degree from IIT Kharagpur in 2013. Presently, he
has been working as an Assistant Professor in the department of Computer Science & Engineering in IIT
(ISM) Dhanbad. He is the recipient of Institute Gold medal for First Class for his Master’s degree. He is also
the recipient of different Fellowships/Scholarships from National and International Societies. He acts as an
Organizing and Programme Committee members for different International Conferences. He is enlisted in
the Marquis Who’s Who in the World, USA, 32nd Ed., 2015. He is a life time member of IUPRAI. He is the
author of several reputed International Journals and Conferences. His research interests are in the areas of
OCR for Indian Scripts, Document Image Analysis, Image Processing, and Pattern Recognition.

@ Springer

	Handwritten multilingual word segmentation using polygonal approximation of digital curves for Indian languages
	Abstract
	Introduction
	Properties of languages
	Properties of Hindi language
	Properties of Marathi language
	Properties of Punjabi language
	Properties of Bangla language

	Proposed method
	Preparatory stage
	Character segmentation
	Upper modifier segmentation
	Lower modifier segmentation

	Experimental results and discussion
	Experimental dataset
	Results for character segmentation
	Character recognition result
	Feature extraction
	Classifiers

	Parameter tuning
	Comparison with other methods

	Conclusion
	References

