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Abstract
This paper introduces an adaptive diffusion partial differential equation (PDE) for noise
removal, which combines a total variation (TV) term and a p-Laplacian (1 < p ≤ 2)
term. Utilizing the edge indicator, we can adaptively control the diffusion model, which
alternates between the TV and the p-Laplacian( 1 < p ≤ 2) in accordance with the image
feature. The main advantage of the proposed model is able to alleviate the staircase effect
in smooth regions and preserve edges while removing the noise. The existence of a weak
solution of the proposed model is proved. Experimental results confirm the performance
of the proposed method with regard to peak signal-to-noise ratio (PSNR), mean structural
similarity (MSSIM) and visual quality.

Keywords Image denoising · TV · p-Laplacian · Adaptive equation · Weak solution

1 Introduction

Image denoising is an important step in low-level image processing and computer vision.
Image denoising aims to preserve important structure features including edges and corners
while removing the noise in the image. The variational [4, 6, 8, 11, 12, 16, 19] and par-
tial differential equations (PDEs) [9, 10, 13–15, 18, 23] based methods are very popular for
removing noise during the last two decades [3]. Despite the success enjoyed by these meth-
ods, there are problems related to fine structure and edge preservation, staircase effect or
over-smoothing of images.
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Consider the following representative minimization problem

min
u

E(u) = 1

p

∫
Ω

|∇u|pdx, (1)

where the minimizer u is the restored image, Ω ⊂ R
2 is the image domain with 1 ≤ p ≤ 2.

The formal gradient flow associated with the functional E(u) is given by,

∂u

∂t
= div(|∇u|p−2∇u), (2)

when p = 1, it is the widely used total variation (TV) based scheme proposed in 1992
[16]. In [6], the existence and uniqueness of TV minimization was proved in the space
of functions of bounded variation (BV), and the corresponding gradient flow was treated
in [1, 2]. The TV-based model performs better at preserving edge sharpness and location
while removing noise but creates patchy or staircase effect within homogeneous, smooth or
moderate gradient regions [7]. Choosing p = 2 results in isotropic diffusion, which removes
the noise and solves the staircase problem but is at the expense of edge blurring. Taking a
fixed value 1 < p < 2 results in an anisotropic diffusion, which is somewhere between
TV model and isotropic smoothing. However, there is a trade-off between edge preservation
and piecewise smooth regions reconstruction.

In order to mitigating the drawbacks of TV-based and isotropic diffusion, various
remedies have been proposed [6, 8, 12, 24]. For instance, Chamboll and Lions [6] pro-
posed minimizing the following energy functional, which combines TV-based and isotropic
diffusion

min
u∈BV (Ω)

E(u) = 1

2β

∫
|∇u|≤β

|∇u|2dx +
∫

|∇u|≥β

|∇u| − β

2
dx. (3)

Here β is a fixed positive number and it is a threshold of |∇u|. As |∇u| ≤ β, it means
isotropic diffusion. As |∇u| ≥ β, the TV energy is used. This model is successful in restor-
ing images in which homogeneous regions are separated by distinct edges. However, this
model is closely linked to β and a fixed threshold can lead to bad results [8, 24]. In order to
solve this problem, Zhou et al. [24] introduced a locally adaptive version of the model (3):

min
u

E(u) = 1

2β(x)

∫
|∇u|≤β(x)

|∇u|2dx +
∫

|∇u|≥β(x)

|∇u| − β(x)

2
dx, (4)

where the adaptive parameter β(x) is obtained by solving a separate energy minimization
problem. This model can remove noise while preserve the edge. However, Zhou [24] lacks
a strong theoretical foundation.

Recently, motivated by the correspondence between the variational and PDE methods for
imaging problems, Surya Prasath et al. [18] proposed adaptive forward-backward diffusion
equation (AFBD for short) of the following form:

∂u

∂t
= div

(
h(∇Gσ ∗ u)|∇u|p−2∇u

)
, (5)

where p ≥ 1. h(∇Gσ ∗ u) is an edge detector and given by,

h(∇Gσ ∗ u) = 1

1 + k|∇Gσ ∗ u|2 , (6)

where k > 0. Gσ denotes the two-dimensional Gaussian kernel Gσ = (2πσ)−1

exp(−|x|2/2σ 2), σ > 0 is a constant. The authors proved the existence of weak solutions
for (5). As p = 1, their experimental results showed that their model overcome well-known
edge smearing effects of the heat equation by using gradient dependent diffusion function.
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However, the resulting image in the presence of the noise also showed staircase effect. When
p > 1 (for example p = 1.5, see Section 3 Figs. 3g, 4g, 5h), the model (5) alleviates the
staircase effect but dose not preserve the edge.

In order to alleviate the staircase effect in smooth regions and preserve edges while
removing the noise, we propose a novel adaptive PDE model based on TV equation and
p-Laplacian equation. Our proposed model can have the following form

∂u

∂t
= div

(
h(∇Gσ ∗ u)|∇u|p−2∇u + μ(1 − h(∇Gσ ∗ u))

∇u

|∇u|
)

, (7)

where 1 < p ≤ 2 , μ > 0 is a constant.
Now let us mention the advantage of the proposed model. Firstly, the proposed model

joints TV term which is edge preserving and p-Laplacian (1 < p ≤ 2) term which helps
in effective noise removal. In homogeneous regions, we make use of the p-Laplacian term
to reduce the noise and avoid the staircase effect; and near edges, we utilize the TV term
to preserve them. By using the edge indicator h(∇Gσ ∗ u), we roughly segment the image
into two subregions, i.e., the homogeneous regions and the region’s nearby boundaries. In
the homogeneous regions, the magnitude of |∇Gσ ∗u| is small, thus the edge detector func-
tion h(∇Gσ ∗ u) is close to one, so the proposed model acts as the p-Laplacian equation
(1 < p ≤ 2) to remove the noise and alleviate the staircase effect; in the region’s nearby
boundaries, the magnitude of |∇Gσ ∗u| is large, then the edge detector function h(∇Gσ ∗u)

takes smaller value (close to zero), so the proposed model acts as the TV diffusion equation
to preserve the edge. Secondly, in contrast to the previous anisotropic diffusion PDEs, we
prove the existence of a weak solution of the proposed equation, which is very important for
the numerical computation. Thirdly, experimental results on different noisy images indicate
the advantage of the proposed adaptive model. The proposed approach is proven to pro-
vide better edge preserving with effective noise removal both theoretically and illustrated
experimentally using a variety of example.

The rest of the paper is organized as follows. In Section 2, we give some important
lemmas and then prove the existence of a weak solution of the proposed problem. Section 3
details the numerical aspects and shows comparison denoising results on noisy images.
Finally, Section 4 concludes the paper.

2 Existence of weak solutions

The problem (7) is complemented with the initial condition

u(x, 0) = u0, (8)

and boundary condition
∂u

∂nnn
= 0, (9)

where nnn = (n1, n2) is the outward normal direction on ∂Ω , In this section, we establish the
existence of a weak solution of the proposed model (7), (8) and (9).

2.1 Weak solutions and themain result

The symbol ‖ · ‖ will stand for the Euclidean norm in L2(Ω). The corresponding scalar
product will be denoted by parentheses (·, ·). We will also use this notation for duality
between Lp(Ω) and Lp/p−1(Ω). The symbols C(J ; E), Cw(J ; E), L2(J , E) etc denote



18098 Multimedia Tools and Applications (2019) 78:18095–18112

the spaces of continuous, weakly continuous, quadratically integrable etc functions on an
interval J ⊂ R with values in a Banach space E.

Definition 1 A function u from the class

u ∈ Cw

(
0, T ;L2(Ω)

)⋂
Lp(0, T ;W 1,p(Ω))

⋂
W 1,p/(p−1)

(
0, T ;

[
L2

⋂
W 1,p(Ω)

]∗)
(10)

is called a weak solution to problems (7), (8) and (9) with u0 ∈ L2(Ω) ,
if

(i) there exists z ∈ L∞(Ω × (0, T );R2), ‖z‖L∞(Ω×(0,T );R2) ≤ 1, so that for all v ∈
L2 ∩ W 1,p(Ω),

〈
du

dt
, v

〉
+ (h(∇Gσ ∗ u)|∇u|p−2∇u, ∇v) + μ((1 − h(∇Gσ ∗ u))Z,∇v) = 0 (11)

a.e. on (0,T);
(ii) for all w ∈ Lp(0, T ; W 1,p(Ω)) ∩ W 1,1(0, T ; L2(Ω)), one has

‖u(T ) − w(T )‖2 + 2
∫ T

0

∫
Ω

dw

dt
udxdt

+2
∫ T

0

∫
Ω

h(∇Gσ ∗ u)|∇u|pdxdt

+2μ
∫ T

0

∫
Ω

(1 − h(∇Gσ ∗ u))|∇u|dxdt

≤ ‖u0 − w(0)‖2 + ‖w(T )‖2 − ‖w(0)‖2

+2
∫ T

0

∫
Ω

h(∇Gσ ∗ u)|∇u|p−2∇u · ∇wdxdt

+2μ
∫ T

0

∫
Ω

(1 − h(∇Gσ ∗ u))Z · ∇wdxdt; (12)

(iii) the initial condition (8) holds in the space L2(Ω).

Remark 1 Let us present a motivation for this definition of solution to (7), (8) and (9).
Consider a pair (u, Z) of sufficiently smooth functions satisfying (11), (12) and (8). Then,
testing (11) by 2(u − w) and integrating in time, we deduce

2
∫ T

0

∫
Ω

d(u − w)

dt
· (u − w)dxdt + 2

∫ T

0

∫
Ω

dw

dt
· (u − w)dxdt

+2
∫ T

0

∫
Ω

h(∇Gσ ∗ u)|∇u|p−2∇u · ∇(u − w)dxdt

+2μ
∫ T

0

∫
Ω

(1 − h(∇Gσ ∗ u))Z · ∇(u − w)dxdt = 0.
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we get

‖u(T ) − w(T )‖2 + 2
∫ T

0

∫
Ω

dw

dt
udxdt

+2
∫ T

0

∫
Ω

h(∇Gσ ∗ u)|∇u|pdxdt

+2μ
∫ T

0

∫
Ω

(1 − h(∇Gσ ∗ u)) |∇u|dxdt

= ‖u0 − w(0)‖2 + ‖w(T )‖2 − ‖w(0)‖2

+2
∫ T

0

∫
Ω

h(∇Gσ ∗ u)|∇u|p−2∇u · ∇wdxdt

+2μ
∫ T

0

∫
Ω

(1 − h(∇Gσ ∗ u))Z · ∇wdxdt

+2μ
∫ T

0

∫
Ω

(1 − h(∇Gσ ∗ u)|∇u|dxdt

−2μ
∫ T

0

∫
Ω

(1 − h(∇Gσ ∗ u))Z · ∇udxdt

Due to (12), we have

∫ T

0

∫
Ω

(1 − h(∇Gσ ∗ u)) |∇u|dxdt≤
∫ T

0

∫
Ω

(1 − h(∇Gσ ∗ u))Z · ∇udxdt .

On the other hand,

(1 − h(∇Gσ ∗ u))|∇u| ≥ (1 − h(∇Gσ ∗ u))Z · ∇u.

All these can be true if and only if

|∇u| = Z · ∇u

i.e.

Z = ∇u

|∇u| (13)

Substituting (13) into (11) and integrating by parts, we infer∫
Ω

[
∂u

∂t
− div(h(∇Gσ ∗ u)|∇u|p−2∇u) − μdiv

(
(1 − h(∇Gσ ∗ u))

∇u

|∇u|
)]

vdx

+
∫

∂Ω

(
h(∇Gσ ∗ u)|∇u|p−2 + μ

1 − h(∇Gσ ∗ u)

|∇u|
)

∂u

∂nnn
vdH1 = 0. (14)

Testing (14) by any v compactly supported in Ω , we deduce (7). By arbitrariness of v, we
deduce(

h(∇Gσ ∗ u)|∇u|p−2 + μ
1 − h(∇Gσ ∗ u)

|∇u|
)

∂u

∂nnn
= 0, H1 − a.e. in ∂Ω .

Since h(∇Gσ ∗ u)|∇u|p−2 + μ
1−h(∇Gσ ∗u)

|∇u| is non-vanishing, the boundary condition (9) is
satisfied.

Now we are ready to formulate one of our main result:
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Theorem 1 Let u0 ∈ L2(Ω). Then there exists a weak solution to (7), (8) and (9) in the
class (11).

2.2 Auxiliary problem

We recall the following abstract observation [20, 25]. Assume that we have two Hilbert
spaces, X ⊂ Y , with continuous embedding operator i : X → Y , and i(X) is dense in Y .
The adjoint operator i∗ : Y ∗ → X∗ is continuous and, since i(X) is dense in Y , one-to-one.
Since i is one-to-one, i∗(Y ∗) is dense in X∗, and one may identify Y ∗ with a dense subspace
of X∗. Due to the Riesz representation theorem, one may also identify Y with Y ∗. We arrive
at the chain of inclusions:

X ⊂ Y ≡ Y ∗ ⊂ X∗.

Both embeddings here are dense and continuous. Observe that in this situation, for f ∈
Y , u ∈ X, their scalar product in Y coincides with the value of the functional f from X∗ on
the element u ∈ X:

(f, u)Y = 〈f, u〉.
Such triples (X, Y,X∗) are called Lions triples.

We will work with the Lions triple (Hr(Ω), L2(Ω), (Hr(Ω))∗), where r > 2(p + 1) is
a fixed number. Denote by A the Riesz bijection between the spaces Hr and (Hr)∗ (which
are not identified).

In order to prove the theorem 1 we first need to study the following auxiliary problem:
⎧⎪⎨
⎪⎩

∂u
∂t

+ εA(u) = div(h(∇Gσ ∗ u)|∇u|p−2∇u) + μdiv
(
(1 − h(∇Gσ ∗ u)) ∇u

ε+|∇u|
)

,

u(x, 0) = u0,
∂u
∂nnn

∣∣
∂Ω×(0,T ) = 0 .

(15)
Here ε > 0 is parameter.

The weak form of (15) is the following Cauchy problem, where the first equality is
understood in the sense of the space (Hr)∗, whereas the second and the third ones are in the
sense of space L2:

du

dt
+ R(u) + μQε(u) + εA(u) = 0, u | t=0 = u0 . (16)

The operators R : Hr → (Hr)∗ and Qε : Hr → (Hr)∗, which respect the boundary
condition, are determined by the duality

〈R(u),w〉 =
(
h(∇Gσ ∗ u)|∇u|p−2∇u, ∇w

)
,

〈Qε(u),w〉 =
(

(1 − h(∇Gσ ∗ u))
∇u

ε + |∇u| ,∇w

)
, ∀w ∈ Hr .

We do not use a notation for partial time derivative since we treat (16) as an ODE in a
Banach space.

Lemma 1 Let u0 ∈ L2(Ω). The Cauchy problem (16) admits a solution u in the class

L2(0, T ;Hr(Ω)) ∩ H 1(0, T ; (Hr(Ω))∗) ∩ C([0, T ];L2(Ω)). (17)
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The solution satisfies the following inequality:

‖u(t∗) − w(t∗)‖2 + 2
∫ t∗

0

∫
Ω

dw

dt
udxdt + 2

∫ t∗

0

∫
Ω

h(∇Gσ ∗ u)|∇u|pdxdt

+2μ
∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ u))|∇u|dxdt

≤ ‖u0 − w(0)‖2 + ‖w(t∗)‖2 − ‖w(0)‖2 + 2
∫ t∗

0

∫
Ω

h(∇Gσ ∗ u)|∇u|p−2∇u · ∇wdxdt

+2μ
∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ u))
∇u

ε + |∇u| · ∇wdxdt

+2με

∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ u))
|∇u|

ε + |∇u|dxdt + ε

2

∫ t∗

0
〈Aw,w〉dt, (18)

for every t∗ ∈ [0, T ] and for every sufficiently regular test function w : Ω̄ × [0, T ] → R.

Proof

Note that Ω is bounded, the embeddings Hr(Ω) ⊂ C1(Ω̄) is compact. The operators
R : C1 → (Hr)∗ and Qε : C1 → (Hr)∗ are continuous. Moreover,

‖R‖(Hr (Ω))∗ ≤ ‖R‖(H 1(Ω))∗ ≤
∫

Ω

∣∣∣h(∇Gσ ∗ u)|∇u|p−2∇ u |dx

≤
∫

Ω

|∇u|p−1dx ≤ C‖u‖p

C1(Ω̄)
]

‖Qε‖(Hr (Ω))∗ ≤ ‖Qε‖(H 1(Ω))∗

≤
∫

Ω

∣∣∣∣(1 − h(∇Gσ ∗ u))
∇u

ε + |∇u|
∣∣∣∣ dx ≤ C

Here, C is independent of ε. Therefore, R and Qε : Hr → (Hr)∗ are compact operators.
These give opportunity to secure existence of solutions to (16) in (17) by an application
of the Leray-Schander degree theory (a systematic approach to parabolic problems of kind
(16) may be found, e.g., in [25]).

We now fix a sufficiently smooth function w : Ω̄ × [0, T ] → R. Testing (16) with
2(u − w), 0 ≤ t∗ ≤ T , in the sense of ((Hr)∗, H r) duality, and integrate in time to obtain

‖u(t∗) − w(t∗)‖2 + 2
∫ t∗

0

∫
Ω

dw

dt
udxdt + 2

∫ t∗

0

∫
Ω

h(∇Gσ ∗ u)|∇u|pdxdt

+2μ
∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ u))
∇u

ε + |∇u| · ∇udxdt

= ‖u0 − w(0)‖2 + ‖w(t∗)‖2 − ‖w(0)‖2 + 2
∫ t∗

0

∫
Ω

h(∇Gσ ∗ u)|∇u|p−2∇u · ∇wdxdt

+2μ
∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ u))
∇u

ε + |∇u| · ∇wdxdt − 2ε
∫ t∗

0
〈Au, u − w〉dt . (19)
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Note that the following equality holds

∫ t∗

0

∫
Ω

(1−h(∇Gσ ∗ u))
∇u

ε + |∇u| · ∇udxdt =
∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ u))|∇u|dxdt

−ε

∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ u))
|∇u|

ε + |∇u|dxdt .

An application of Cauchy’s inequality yields

−2〈Au, u − w〉 ≤ 1

2
〈Aw,w〉.

We derive from (19) that

‖u(t∗) − w(t∗)‖2 + 2
∫ t∗

0

∫
Ω

dw

dt
udxdt + 2

∫ t∗

0

∫
Ω

h(∇Gσ ∗ u)|∇u|pdxdt

+2μ
∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ u))|∇u|dxdt

≤ ‖u0 − w(0)‖2 + ‖w(t∗)‖2 − ‖w(0)‖2 + 2
∫ t∗

0

∫
Ω

h(∇Gσ ∗ u)|∇u|p−2∇u · ∇wdxdt

+2μ
∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ u))
∇u

ε + |∇u| · ∇wdxdt

+2με

∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ u))
|∇u|

ε + |∇u|dxdt + ε

2

∫ t∗

0
〈Aw,w〉dt .

Lemma 2 Let u be a solution to problem (16), then u satisfies a priori bound

‖u‖L∞(0,T ;L2(Ω)) + ‖u‖Lp(0,T ;W 1,p(Ω)) + ‖du

dt
‖L2(0,T ;(Hr (Ω))∗) ≤ C. (20)

The constant C is independent of ε.

Proof

Taking w ≡ 0 in (19), 0 ≤ t∗ ≤ T , we derive

‖ u(t∗)‖2 + 2
∫ t∗

0

∫
Ω

h(∇Gσ ∗ u)|∇u|pdxdt

+2μ
∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ u))
|∇u|2

ε + |∇u|dxdt + 2ε
∫ t∗

0
〈Au, u〉 dt = ‖u0‖2.

Therefore
‖u(t∗)‖2 ≤ ‖u0‖2, (21)∫ t∗

0

∫
Ω

h(∇Gσ ∗ u)|∇u|pdxdt ≤ ‖u0‖2, (22)

μ

∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ u))
|∇u|2

ε + |∇u|dxdt ≤ ‖u0‖2, (23)

2ε
∫ t∗

0
〈Au, u〉 dt ≤ ‖u0‖2. (24)
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Using (21), we deduce
‖u‖L∞(0,T ;L2(Ω)) ≤ ‖u0‖. (25)

Therefore,
|∇Gσ ∗ u| ≤ ‖∇Gσ ‖‖u‖ ≤ C‖u‖ ≤ C. (26)

Thus,

1 ≥ h(∇Gσ ∗ u) = 1

1 + k|∇Gσ ∗ u|2 ≥ C. (27)

Using (22), we get

C

∫ t∗

0

∫
Ω

|∇u|pdxdt ≤
∫ t∗

0

∫
Ω

h(∇Gσ ∗ u)|∇u|pdxdt ≤ ‖u0‖2,
a.e. ∫ t∗

0

∫
Ω

|∇u|pdxdt ≤ C. (28)

Using (25), (28) and Lemma 1, we deduce

‖u‖L∞(0,T ;L2(Ω)) + ‖u‖Lp(0,T ;W 1,p(Ω)) + ‖du

dt
‖L2(0,T ;(Hr (Ω))∗) ≤ C

All the constants C here are ε-independent.

2.3 Proof of theorem 1

Proof of Theorem 1

Let {uk} be a sequence of solutions (16) with ε = εk . Set

Zk = ∇uk

εk + |∇uk| .
Then

‖Zk‖L∞(Ω×(0,T );R2) ≤ 1. (29)

Since (uk, Zk) are the solutions to (16) in the sense of Lemma 1, we have

〈
duk

dt
, v

〉
+(h(∇Gσ ∗uk)|∇uk|p−2∇uk, ∇v)+μ((1−h(∇Gσ ∗uk))Zk, ∇v)+εk〈Auk, v〉 = 0,

(30)

a.e. on (0,T).

‖uk(t∗) − w(t∗)‖2 + 2
∫ t∗

0

∫
Ω

dw

dt
ukdxdt + 2

∫ t∗

0

∫
Ω

h(∇Gσ ∗ uk)|∇uk|pdxdt

+2μ
∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ uk))|∇uk|dxdt

≤ ‖u0 − w(0)‖2 +‖w(t∗)‖2−‖w(0)‖2+2
∫ t∗

0

∫
Ω

h(∇Gσ ∗ uk)|∇uk|p−2∇uk · ∇wdxdt

+2μ
∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ uk)) Zk · ∇wdxdt

+2μεk

∫ t

0

∫
Ω

(1 − h(∇Gσ ∗ uk))
|∇uk|

εk + |∇uk|dxdt + εk

2

∫ t∗

0
〈Aw,w〉dt, (31)
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for all t∗ ∈ [0, T ], and
uk(0) = u0, (32)

for all sufficiently smooth function v, w : Ω̄ × [0, T ] → R.
To prove the theorem, we are going to pass to limit in (30), (31) and (32) as εk → 0.

Due to (20) and (29), without loss of generality we have

uk → u weakly∗ in L∞(0, T ; L2(Ω)),

duk

dt
→ du

dt
weakly in L2(0, T ; (Hr(Ω))∗),

Zk → Z weakly∗ in L∞(Ω × (0, T );R2),

|∇uk|p−2∇uk → |∇u|p−2∇u weakly in L
p

p−1 (Ω × [0, T ];R2)

Owing to the Aubin-Lions-Simon lemma [17], without loss of generality we may assume
that uk → u inC

([0, T ]; [W 1,2(Ω)]∗). See [18], we know that h(∇Gσ ∗uk) → h(∇Gσ ∗u)

uniformly on C
(
Ω̄ × [0, T ]).

Therefore,∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ uk))Zk · ∇wdxdt →
∫ t∗

0

∫
Ω

((1 − h(∇Gσ ∗ u))Z · ∇wdxdt .

∫ t∗

0

∫
Ω

h(∇Gσ ∗ uk)|∇uk|p−2∇uk · ∇wdxdt →
∫ t∗

0

∫
Ω

h(∇Gσ ∗ u)|∇u|p−2∇u · ∇wdxdt

∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ u))|∇u|dxdt ≤ lim
k→+∞ inf

∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ uk))|∇uk|dxdt .

∫ t∗

0

∫
Ω

h(∇Gσ ∗ u)|∇u|pdxdt ≤ lim
k→+∞ inf

∫ t∗

0

∫
Ω

h(∇Gσ ∗ uk)|∇uk|pdxdt

The first term of (31) is lower-semicontinuous (see [21]), we have

‖u(t∗) − w(t∗)‖2 ≤ lim
k→+∞ inf ‖uk(t∗) − w(t∗)‖2.

The remaining terms of (31) are either linear, or constants, or of order O(εk), Hence, in the
limit we get

‖u(t∗) − w(t∗)‖2 + 2
∫ t∗

0

∫
Ω

dw

dt
udxdt

+2
∫ t∗

0

∫
Ω

h(∇Gσ ∗ u)|∇u|pdxdt + 2μ
∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ u))|∇u|dxdt

≤ ‖u0 − w(0)‖2 + ‖w(t∗)‖2 − ‖w(0)‖2 + 2
∫ t∗

0

∫
Ω

h(∇Gσ ∗ u)|∇u)|p−2∇u · ∇wdxdt

+2μ
∫ t∗

0

∫
Ω

(1 − h(∇Gσ ∗ u))Z · ∇wdxdt;

Passing to the limit in (30), we obtain (11). When t∗ = T , (u, Z) satisfies (8), (11) and (12).
Finally, by density, the test function v and w in (11) and (12) can be take from the space
indicated in Definition 1.
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3 Experimental results

In what follows, we provide some experimental results using our model in image restoration.
The discretized version of the the PDE (7) is utilized out using standard finite difference
scheme via additive operator splitting (AOS) [22].

A discretem-dimensional image can be regarded as a vector f ∈ R
N , whose components

fi(i = 1, · · · , N), display the grey values at the pixels. Pixel i represents location xi .
Let hl denote the grid size in the l direction. We consider discrete times tk := kτ , where
k ∈ N and τ is the time step size. By uk

i and Ck
i we denote approximations to u(xi, tk) and

h(∇Gσ ∗u(xi, tk)|∇u(xi, tk)|p−2+μ(1−h(∇Gσ ∗u(xi, tk))
1

|∇u(xi ,tk)| , respectively, where
the gradient is replaced by central differences.

The simplest discretization of (7) with reflecting boundary conditions is given by

uk+1
i − uk

i

τ
=

m∑
l=1

∑
j∈Nl (i)

Ck
j + Ck

i

2h2l

(
uk+1

j − uk+1
i

)

where Nl(i) consists of the two neighbors of pixel i along the l direction (boundary pixels
may have only one neighbor). In vector matrix notation this becomes

uk+1 − uk

τ
=

m∑
l=1

Al(u
k)uk+1

where Al(u
k) = [al

ij (u
k)] with

al
ij (u

k) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ck
i +Ck

j

2h2l
, j ∈ Nl (i),

− ∑
n∈Nl (i)

Ck
i +Ck

n

2h2l
, j = i,

0, otherwise.

Fig. 1 Test images used in Table 1
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Table 1 Comparative quantitative results of algorithms for several images. Noise are AWGN with standard
deviation 20 and 30

Images σ PM[14] TV[16] Chen[8] Li[12] Zhou[24] AFBD[18] AFBD[18] Proposed
(p=1.5) (p=1)

Lena 20 30.32 31.17 31.20 31.35 31.05 30.71 31.35 31.56

0.9085 0.9165 0.9167 0.9163 0.9006 0.9001 0.9145 0.9251

30 28.27 29.51 29.45 29.64 29.40 29.15 29.68 29.88

0.8634 0.8793 0.8784 0.8817 0.8613 0.8524 0.8793 0.8941

Boat 20 28.87 29.29 29.04 29.17 29.23 28.92 29.31 29.42

0.8919 0.8970 0.8950 0.8979 0.8862 0.8811 0.8961 0.9062

30 26.79 27.54 27.41 27.53 27.43 27.22 27.58 27.74

0.8325 0.8468 0.8443 0.8501 0.8321 0.8258 0.8447 0.8591

Cameraman 20 30.47 31.59 31.62 31.64 31.50 31.33 31.86 32.14

0.8987 0.9094 0.9118 0.9068 0.8923 0.8863 0.9123 0.9217

30 27.92 29.30 29.48 29.38 29.41 29.03 29.49 29.87

0.8432 0.8533 0.8666 0.8641 0.8392 0.8183 0.8665 0.8796

Lake 20 28.64 29.23 29.14 29.24 29.11 28.98 29.28 29.46

0.8982 0.9107 0.9163 0.9189 0.9024 0.8939 0.9168 0.9266

30 26.64 27.51 27.37 27.52 27.39 27.25 27.54 27.77

0.8658 0.8729 0.8779 0.8845 0.8584 0.8505 0.8804 0.8949

Starfish 20 28.02 28.42 27.91 28.20 28.35 28.23 28.55 28.78

0.8422 0.8454 0.8431 0.8505 0.8396 0.8386 0.8491 0.8565

30 25.73 26.32 26.04 26.32 26.32 26.26 26.43 26.67

0.7697 0.7916 0.7834 0.7993 0.7852 0.7826 0.7961 0.8055

Airplane 20 30.37 31.32 31.17 31.31 31.03 30.76 31.42 31.81

0.9168 0.9224 0.9233 0.9247 0.8997 0.8962 0.9262 0.9343

30 28.18 29.36 29.24 29.47 29.11 28.89 29.60 29.87

0.8812 0.8890 0.8891 0.8984 0.8555 0.8459 0.8980 0.9124

Peppers 20 30.65 31.50 31.56 31.62 31.42 30.29 31.01 31.71

0.9225 0.9281 0.9297 0.9307 0.9181 0.9056 0.9275 0.9344

30 28.54 29.78 29.72 29.88 29.75 28.57 29.34 30.05

0.8859 0.8964 0.8954 0.9020 0.8863 0.8709 0.9006 0.9092

Baboon 20 27.19 27.60 27.35 27.64 27.59 28.06 27.82 28.20

0.8920 0.8943 0.8951 0.9026 0.8926 0.8956 0.8973 0.9049

30 25.03 25.69 25.45 25.71 25.62 26.08 25.87 26.09

0.8173 0.8276 0.8267 0.8362 0.8240 0.8299 0.8330 0.8394

Monarch 20 30.65 31.26 31.39 31.46 30.95 30.12 31.54 32.03

0.9434 0.9502 0.9478 0.9516 0.9196 0.9006 0.9536 0.9630

30 28.22 29.04 29.36 29.49 28.86 28.04 29.46 30.04

0.9144 0.9237 0.9197 0.9285 0.8911 0.8549 0.9279 0.9465

Parrot 20 28.46 28.68 28.56 28.65 28.63 27.73 28.72 28.92

0.8197 0.8316 0.8381 0.8387 0.8156 0.8105 0.8357 0.8461

30 26.16 26.41 26.73 26.69 26.47 25.85 26.62 26.92

0.7573 0.7787 0.7897 0.7960 0.7657 0.7342 0.7857 0.8018

The measurements are PSNR(first),and MSSIM(second). The bold values denote the best performance
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Fig. 2 PSNR representation as a function of noise standard deviation. Input image is Lena polluted by AWGN

The additive operator splitting (AOS) [22] scheme is given by

uk+1 = 1

m

m∑
l=1

(I − mτAl(u
k))−1uk

Fig. 3 Qualitative comparative results for algorithms. Input image is Lena corrupted by AWGNwith standard
deviation 20. Zoomed part of Lena is shown for better visual comparison
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The operators Bl(u
k) = I − mτAl(u

k) describe one-dimensional diffusion processes along
the xl axes. Under a consecutive pixel numbering along the direction l they come down to
strictly diagonally dominant tridiagonal matrices which can be efficiently inverted by the
Thomas algorithm, see [22] for more details.

To compare the restoration results quantitatively, we use two error measures includ-
ing peak signal-to-noise ratio (PSNR) and mean structural similarity (MSSIM), which are
widely used in the image processing literature. In all these measurements, the greater num-
ber indicates better denoising performance. All the experiments are performed under Matlab
R2014b with AMD FX-7500 CPU at 2.1GHz and 8 GB RAM.

For the sake of verifying the effectiveness of our proposed method for image denoising,
some experiments are practiced to compare the denoising result of the proposed method
with that of the other methods: PM [14] (c(s) = 1

1+(s/K)2
), TV [16] ((2) with p = 1), Chen

et al. [8], Liet al. [12], Zhou et al. [24] and AFBD [18].
In all the experiments in this paper, the time step is set as 0.2. The stopping time was

chosen so that the best PSNR is obtained. In PM [14], the threshold K is calculated using
Canny noise estimator [5]:K = 0.9×mean(|∇u|). We fix p = 1.5, k = 0.02 andμ = 1

3 for

Fig. 4 Qualitative comparative results for algorithms. Input image is Cameraman corrupted by AWGN with
standard deviation 20. Zoomed part of Cameraman is shown for better visual comparison
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our proposed model. The Gaussian convolution in our model is carried out by the discrete
version with rotationally symmetric Gaussian lowpass filter of size 5× 5 with variance 0.8.

Figure 1 shows the test images used in our experiments. The quantitative results pre-
sented in Table 1 compare the proposed method with some state-of-the-art methods using
PSNR and MSSIM for 10 images illustrated in Fig. 1. The test images in this table are
contaminated by AWGN with standard derivation 20 and 30. This table confirms that the
proposed method has the highest PSNR and MSSIM in all cases. The comparisons of PSNR
values with the comparative techniques on the image Lena are plotted in Fig. 2. We see that
the proposed method always yields the highest PSNR in all noise levels.

Figures 3, 4, 5 make a qualitative comparison among the several denoising algorithms.
Figure 3 makes a visual comparison among the denoising methods in zoomed part of Lena
image. As can be seen in this figure, in PM [14] the edges are sharp while image suffers from
isolated points and staircase effect. TV [16], Chen [8], Zhou [24] and AFBD [18] (p = 1)
yield staircase effect. Image of AFBD [18] (p = 1.5) is blurry and contains many of noise

Fig. 5 Qualitative comparative results for algorithms. Input image is Airplane corrupted by AWGN with
standard deviation 25. Zoomed part of Airplane is shown for better visual comparison
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components. The staircasing and blurring effects of Li [12] are more than the proposed
method. Based on the results, the proposed method has the best visual quality.

Figure 4 shows a zoomed part of Cameraman image. PM [14] causes isolated points. TV
[16] and Chen [8] cause staircase effect. The edges in Zhou [24] are sharper than AFBD
[18] (p = 1.5), but both blur the image. The filtered images by Li [12] and AFBD [18]
(p = 1) yield a little staircase effect. The proposed method removes noise while preserving
the feature of image.

Figure 5 compares the methods for zoomed part of Airplane image. The edges in PM [14]
are sharp, but it still suffers from isolated points. Chen [8] and Li [12] blur the images. Many
noise components remain in Zhou [24] and AFBD [18] (p = 1.5). TV [16] and AFBD [18]
(p = 1) still suffer from staircase effect. The proposed method outperforms other methods
in term of feature preservation and improved noise reduction, see, in particular, the number
region of the Airplane is much better preserved in our proposed method compared to other
methods.

4 Conclusion

In this paper, we introduced an adaptive second-order PDE model which can preserve edge
and alleviate the staircase effect while removing the noise. By utilizing a combination TV
diffusion and p-Laplacian term an edge preserving image smoothing method is obtained.
The existence of a weak solution of the proposed model was investigated. Experimental
results show that the proposed method provides superior visual quality than the compared
models and gets better signal-to-noise ratio and mean structural similarity with noise-free
images for the final denoised images. Images expanded using our model are natural looking.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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