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Abstract
Saliency in a scene describes those facets of any stimulus that makes it stand out from the
masses. Saliency detection has attracted numerous algorithms in recent past and proved to
be an important aspect in object recognition, image compression, classification and retrieval
tasks. The present method makes two complementary saliency maps namely color and tex-
ture. The method employs superpixel segmentation using Simple Linear Iterative Clustering
(SLIC). The tiny regions obtained are further clustered on the basis of homogeneity using
DBSCAN. The method also employs two levels of quantization of color that makes the
saliency computation easier. Basically, it is an adaptation to the property of the human visual
system by which it discards the less frequent colors in detecting the salient objects. Fur-
thermore, color saliency map is computed using the center surround principle. For texture
saliency map, Gabor filter is employed as it is proved to be one of the appropriate mecha-
nisms for texture characterization. Finally, the color and texture saliency maps are combined
in a non-linear manner to obtain the final saliency map. The experimental results along with
the performance measures have established the efficacy of the proposed method.

Keywords Saliency detection · Regional principal color · Color saliency · Texture saliency

1 Introduction

In a scene, the human visual system (HVS) does not attend all the regions uniformly. It
is heavily biased towards certain objects and such behavior is persistent for all the sub-
jects. These preferential objects are known as salient objects within the scene. Similarly,
the human visual system (HVS) is also biased towards certain spatial regions or objects in
the image as well. These spatial regions or objects are known as salient regions or salient
objects within the image. The salient objects do not depend upon the purpose of the image
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analysis instead the salient objects are determined in the context of the human visual system
(HVS). The detection of these preferential objects is known as as saliency detection. More-
over, the formation of gray scale maps of these preferential objects are known as saliency
maps. The task of salient object detection includes two important steps : (a) Detection of
the most salient object (b) Segmentation of the accurate regions of these objects. Salient
object detection should not be confused with image segmentation as image segmentation is
a part of the salient object detection process. The present paper addresses the problem of
ascertaining the saliencies to the objects in the form of grayscale saliency maps which can
further be segmented out using Otsu’s thresholding [35] for salient object segmentations.
Salient object detection models are important because of their wide applications in the areas
of computer vision, graphics and robotics. In recent past, the saliency models have been
employed for image segmentation [5, 12], image classification [41, 43], object recognition
[40], image retrieval [6, 14], image and video compression [11], video summarization [20],
image quality assesment [26], visual tracking [27], non-photorealistic rendering [8, 18] and
human-robot interaction [33]. Saliency detection is strictly related to human perception of
visual information; thereby, remains a subject matter for various disciplines comprising
cognitive psychology, neurobiology, and computer vision.

The main objective of the saliency detection is to find those regions which are in agree-
ment with the manually annotated ground truth. In saliency detection algorithms, feature
extraction plays a key role. The existing algorithms can mainly be classified into two cate-
gories. First category of methods employs color as the principal feature in order to compute
saliency maps [1, 2, 8, 10, 15, 19, 27, 32]. These methods are unable to handle complex
texture images. The second category consists those methods which use both color and tex-
ture [7, 52]. However, a very few methods come under this category, as the use of textural
features for saliency detection has not been explored much. In this category, some of the
methods have proposed adaptive fusion strategy for combining the two feature maps i.e.
color and texture. In order to compute the adaptive fusion, they have proposed the compu-
tation of the optimum fusion ratio of the color and texture. To the contrary, the adaptive
combination does not always yield good results. Therefore, the method presented in this
paper does not employ the adaptive fusion strategy, rather it uses a linear combination
approach, so that the contribution of the two maps can easily be varied, wherever necessary.
For texture map, the present method employs directional filters which not only produce a
prominent texture map for prominent texture images but also contribute enough in the final
saliency for objects with prominent orientation (as shown in Fig. 1d).

In case of color saliency, a regional principal color contrast is proposed which employs
color features to detect saliency on the same scale as of the input image. In due course of
color saliency computation, the method employs the region pair contrast measurement [31]
which is found to be more efficient than the pixel pair contrast. The method starts with
the quantization of colors which quantizes further using color histograms. Furthermore, the

Fig. 1 a Input Image b Ground Truth c Color Saliency Map d Texture Saliency Map e Final Saliency map
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quantized image is segmented into regions and the principal color of each region which is
employed for saliency computation. Moreover, two types of spatial relationships are also
computed and employed with regional principal color. Again, the two saliency maps namely
color and texture are also combined together using linear combination to form final saliency
map. Then, the present method is compared with [1, 2, 10, 15, 19, 22, 32, 51].

The major motivation to the proposed method comes from the fact that, in real life, most
of the time we are encountered with textural objects in addition to the color. Additionally,
texture is considered as a primary low level cue along with color for object recognition
and identification tasks. Thus, it is not justified to ignore one of the important recognition
features for saliency detection. As in [31], authors have completely ignore texture. Thus,
authors have proposed a modified method based on [31] which also takes into consideration
texture features, extracted using Gabor filter (Fig. 2).

The remainder of the paper is organised as follows: Section 2 presents a brief overview of simi-
lar works related to visual saliency detection, Section 3 describes the Gabor Filter used in the pre-
sentwork. Section 4 describes the super pixel segmentation employing SLIC. Section 5 describes
the proposed method which has further been subdivided into Color and Texture saliency
maps. Section 6 presents the experimental prerequisites, procedure and a comprehensive
discussions on the output results. The paper ends with a conclusive summary.

2 Related work

In literature, various methods for visual saliency have been proposed. The earlier methods
exploit features extracted from blocks. One of the most acclaimed methods under this cate-
gory is proposed by Itti et al. [19]. They devised an algorithm on the basis of the behavior of
visual receptive field, and employed the centre surround differences. Along the same line,
Hu et al. [17] used polar transformation for representing an image in 2D space and mapped
them to 1D subspace. Subsequently, Generalized Principal Component Analysis (GPCA) is
applied where salient regions are computed using feature contrasts and regional geometric
properties. Similarly, Rosin et al. [39] proposed an efficient and parameter free approach
whereas Valenti et al. [46] linearly combined the curvedness, color boosting and iso-centre
clustering. On the other hand, Achanta et al. [2] proposed a frequency tuned filter to com-
pute pixel saliency. Moreover, Frintrop et al. [24] used an information theoretic approach to
compute saliency using Kullback-Leibler divergence. Wang et al. [48] suggested a saliency
method based on non-local reconstruction; the method targeted more on image singular-
ity. Hu et al. [53] proposed a pixel based saliency method assimilating compactness and
local contrast using diffusion process. Ma and Zhang [38] introduced a different approach
employing local contrast in order to create a saliency map which is extended further

Fig. 2 a Input Image b Color Saliency Map c Texture Saliency Map d Final Saliency map
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employing a fuzzy growth model. Harel et al. [45] modified the method of Itti et al. [19] by
normalizing the feature maps so that discernible parts are highlighted and allowed to inte-
grate with other important maps. Goferman et al. [10] proposed a method for context aware
saliency employing low and high level features with global considerations. The proposed
saliency is some how different from the earlier proposed saliencies. Li et al. [28] formulated
this problem in terms of cost sensitive max-margin classification problem.

The approaches discussed above detect the salient objects based either on pixels or
patches. The main deficiency in these approaches are: first, the high contrast edges become
prominent instead of salient objects; and second, the boundaries of salient objects are not
well localized. Therefore to overcome these issues, region based methods are proposed.

Region based methods, generally, segment an input image into regions aligned with the
intensity edges and then compute the regional saliency map. The initial methods under this
category have computed a regional saliency score [29]. In Yu et al. [50], it is computed in
terms of background score. The background score of each region is computed employing the
observations from the background and salient regions. Moreover, there are methods which
defined saliency in terms of uniqueness of global region contrasts [49]. Perazzi et al. [36]
decomposed the image into homogeneous regions and, handled local and global contrast
in a unified manner. Similarly, Chang et al. [4] employed a graphical model framework by
fusing the objectness and regional saliency where these two terms are computed collectively
by using the energy function. Jiang et al. [21] defined the regional objectness as the average
objectness values of the pixels and employed it for regional saliency computations.

The methods described are based on regional saliency computations. These methods
are found to be advantageous in comparison to block based methods because their regions
are fewer in numbers. the regions are few in numbers. Thus, saliency can efficiently be
computed. Additionally, the region based methods lead to the extraction of more informative
features as the regions are non-overlapping and homogeneous. Therefore, in the present
work authors have employed the region based framework.

3 Gabor filter

Gabor filters are widely used in describing textures. They perform very well in classifying
images with different textures. The neuroscientists believe that receptive fields of the human
visual system (HVS) can be represented as basis functions similar to Gabor filters [34]. A
Gabor function is a gaussian modulated sinusoid [9]. In spatial domain, the gabor filter is
represented as a two dimensional impulse given by

g(x, y) = 1
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exp(j2πFx + φ) (1)

where F and φ are the frequency and phase of the sinusoidal wave. The values of σx and
σy are the size of the gaussian envelopes in the x and y directions respectively. Moreover
σx/σy is known as aspect ratio denoted by γ . Correspondingly, in spatial-frequency domain
the gabor filer is given by

G(u, v) = exp(−2π2[(u − F)2σ 2
x + v2σ 2

y ]) (2)

The selection of appropriate parameters for gabor filter has always been important in
gabor based image processing. In literature, a great deal of work has been done on this
subject in order to restrict the degree of freedom of gabor filters based on neurophysiological
findings [37].
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In the present work a directional filter bank (Fig. 3) of 40 filters with 5 scales and 8
orientations are used. The filters are separated from each other by 22.5◦ so that a finer
quantization can be obtained.

4 SLIC

Superpixels can be defined as clustering of pixels having homogeneous characteristics. It
provides an appropriate way to compute local image features and minimize immensely the
intricacy of the image processing tasks. The superpixels have been proved beneficial for
depth estimation, image segmentation, skeletonization, body model estimation and object
localization. In literature, various method have been employed for superpixel segmentation;
but, they suffered from high computational cost, poor quality segmentation, inconsistent
size and shape, and a number of parameters which neeed initilaization. SLIC [3] stands for
simple linear iterative clustering and employs a local clustering of pixels in the 5d space
defined by L, a, b values of the CIELAB color space and the spatial co-ordinates x, y. The
major advantages of SLIC are: easy to implement, less computational cost and a single
parameter in the form of number of desired superpixels. However, it has a limitation; the
RGB image has to be converted to CIELAB colorspace which can be ignored to the offered
benefits.

The algorithm starts by sampling K in regularly spaced cluster centres and by moving
them to the seed locations corresponding to the lowest gradient position in an m×m neigh-
bourhood (In the present work, m = 3). The algorithm not only avoids the placement over
edges but also avoids the selection of a noisy pixel. Every pixel in the image is associated
with a cluster centre whose area overlaps with this pixel. After all the pixels are associated
with the nearest cluster center, a new center is computed as the average labxy vector of
all the pixels belonging to the cluster. We then iteratively repeat the process of associating
pixels with the nearest cluster center and recompute the cluster center until convergence is
reached.

At the end of this process, a few stray labels may be there i.e a few pixels present in the
vicinity of a larger segment having the same label but not connected to it. Although, it is
rare, it is possible. At last, connectivity is enforced by relabeling the disjoint segments with
the labels of the largest neighboring cluster.

(a) Real Part of Gabor filter (b) Magnitude of Gabor filter

Fig. 3 Gabor filter bank
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5 The proposedmethod

The proposed method is divided into three main parts namely, (a) Formation of Color
Saliency Map (b) Formation of Texture Saliency Map and finally, a step which combines
both. The present method employ superpixels segmentation, which segments an image into
several smaller homogeneous regions. It has been used as a prior step in many computer
vision tasks because of its pivotal role in object boundary preservation. Furthermore, the
true color RGB image is subjected to minimum variance quantization and regional principal
colors.

5.1 Formation of Color Saliency Map

In a 24-bit RGB image, there are 2563 number of colors. Out of these, a handful number
of colors are frequently used. The color shades which have minute differences are not only
difficult to recognize but most of the time categorizes into one another. Furthermore, these
less frequent colors have no contribution in saliency detection and increase computational
complexity during saliency computations. The frequent colors are not only crucial but also
decisive for salient objects detection. Thus, it is wise to discard the infrequent colors and
replace them with the frequent color values. For this reason, the present method (Fig. 4)
quantizes the true color image into 256 colors employing minimum variance quantization.
The resultant image is subjected to superpixel segmentation, which divides it into a number
of regions. For superpixel segmentation, SLIC algorithm has been used, the parameter i.e.
number of superpixels is taken as 3000. As mentioned in previous section; SLIC is used
because of less computational overhead compared with other algorithms. However, it results
into over segmentation. Thus, to make the number of segmented regions manageable and
extracting a meaningful information from them, DBSCAN clustering is used. The DBSCAN
clustering algorithm is robust to outliers and requires only two parameters. However, it
produces homogeneous regions, it does not discard the presence of other colors or color
shades in these regions. Therefore, in each region we searched for regional principal color
by employing color histogram. The color histogram can be used to know the frequency of
frequent occuring color shades and can replace the other colors. After this step, we have
superpixels from which saliency is computed.
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Fig. 4 Color saliency map

With no previous information about the size and location of the salient object, the
saliency value of a specific color in a color image can be described mathemaically, in terms
of the global color contrast values as:

Sal(ci) =
N∑

j=1

nd(ci, cj ) (3)

Here, ci is the color for which color saliecy has been determined, N denotes the number
of colors, n is the total number of pixels having color cj and d is the euclidean distance
between color values ci and cj . Furthermore, Cheng et al. [8] replaced the saliency value of
a color with p most similar colors in the LAB color space.

Salsmth(ci) = 1

(p − 1)G

p∑
j=1

(G − d(ci, cj )Sal(ci)) (4)

where, N is same as in the previous equation, p = �δ × N� represents number of similar
colors to ci and G = ∑p

j=1 d(ci, cj ) represents sum of color contrasts between ci and other
colors.

As it has already been established that human visual system (HVS) uses a centre surround
principle [24] for scanning a scene. Moreover, the attention shifts from one salient region
to the next most salient region. Along the same line, researchers [23, 44] have found that
in an image the regions at the centre are prone to be more salient than those present at the
boundaries. Thus, this concept of centre bias has been mathematically, employed as gaussian
distribution by [21, 42, 47, 49]. Thus, the regional saliency [31] of a region considering the
distance between two regions

Salreg(si) = niSal(ri) +
∑
j �=i

njψ(ri, rj )e
−d(ri ,rj )2 (5)

where ni represents the number of pixels in regions ri , nj represents the number of pixels
in rj and d(ri, rj ) denotes the euclidean distance between regions ri and rj normalized to
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[0, 1]. Whereas ψ(ri, rj ) can be defined as

ψ(ri, rj ) =
{

Sal(ri) − Sal(rj ) if Sal(ri) > Sal(rj )

0 otherwise

}
(6)

Further more, color saliency after incorporating the regional and image centre bias

Salcol(ri) = Salreg(ri)

ed(ri ,C)2/δ
(7)

Here, δε(0, 1] represents the strength of the response of the spatial weighting.

5.2 Formation of texture saliencymap

Texture is a collective repetitive pattern that characterizes the surface of real world objects.
It plays an important role in recognition and classification tasks. However, most of the tradi-
tional saliency detection methods did not take into account the texture features. The present
method (Fig. 5) employs Gabor filter [9] for texture characterization. The method has two
parallel passes as shown in Fig. 6. In the first pass the true color RGB image is subjected to
superpixel segmentation employing SLIC and DBSCAN methods as described in the pre-
vious section; whereas, in parallel pass, the colored image has first been converted to gray
scale image, then the obtained gray scale image is subjected to a number of directional filters
varying in scale and orientations. In the present work, 5 scales and 8 orientations of Gabor
filters are used. As a result, the same number of Gabor response images are obtained as the
number of directional filters used. In the due course of feature extraction, all the regions
segmented from the first pass are taken into consideration and response images from the
second pass are used to compute regional mean and variance vectors for each region.
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Fig. 5 Texture saliency map

For each scale, average of all the regional mean and variance vectors are computed.
Thus, N × S regional mean and variance vectors are obtained. These vectors are further
averaged to obtain N , number of regional mean and variance vectors. Thus, representing
each region by a vector consisting of single mean and variance. Moreover, the features so
computed are used as follows:

Mean(μi)(s,o) =
5∑

s=1

8∑
o=1

xi(s, o) (8)

V ariance(Vi)(s,o) =
5∑

s=1

8∑
o=1

yi(s, o) (9)

T extureSaliency =
∑
j �=i

Nj

Ni

[
(μi − μj )

2 + (Vi − Vj )
2
]

(10)

The color and texture saliency maps are combined by employing linear combination.
Linear combination is used because, the corresponding weights can easily be adjusted on
the basis of color and texture content with in the image.

S(rj ) = αScol(rj ) + βStex(rj ) (11)

where α and β are the weights of color and texture saliencies respectively for region rj .

6 Experimental results and discussions

In the present section, performance of the proposed algorithm has been assessed on the basis
of its competence to predict visual saliency maps with reference to Ground Truths (GT).
The GT images are provided with the used dataset. The proposed method has also been
compared with the aforementioned six existing algorithms described in Section 2. Some
results of these algorithms are given in Figs. 7 and 8.

In order to evaluate the performance of the proposed method, MSRA 10K dataset [30]
has been used. As the proposed method is compared with six existing techniques: AC [1],
graph based method (GB) [13], IG [2], Itti’s method (IT) [19], MZ [32] and SR [16]. The
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Fig. 6 Final saliency map

saliency maps of these methods are obtained from the author respective websites for the
purpose of comparison.

6.1 Ground truth dataset: MSRA 10K

The MSRA 10K salient object database is a widely used dataset for salient object detection
and segmentation. It consists of 10000 images and provides salient object annotations in
terms of bounding boxes by 3-9 users. The corresponding ground truths are also provided
with this dataset. The given images are of various sizes and in JPEG format.

6.2 Representative results and analysis

In Figs. 7 and 8, the saliency maps generated from the proposed method and other exist-
ing methods are shown. The assessment procedure has been divided into two parts; first the
subjective assessment of the resultant saliency maps are performed, followed by an objec-
tive assessment of the corresponding images. The subjective assessment of these methods
reveals that the saliency maps of the MZ [32] algorithm have high saliency values at the
boundaries than the inner regions. Whereas, IT [19] is capable of detecting only fragments
of the salient objects. AC [1] is found to be marking the salient object correctly but difficult
to distinguish it from the background. GB [13] method is able to detect the salient object
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Fig. 7 Visual Results of Saliency detection employing different methods. a Original Image, b AC c GB d IG
e IT fMZ g SR and h the Proposed Method

completely in some images whereas partially in others. In case of SR [16] even the bound-
aries are partially detected. IG [2] provides somehow better results for all the images as it
is detecting complete objects. However, the results of IG and all other given methods are
outperformed by the proposed method.
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Fig. 8 Visual Results of Saliency detection employing different methods. a Original Image, b AC c GB d IG
e IT fMZ g SR and h the Proposed Method
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Fig. 9 Precision, recall and F-measure

The objective assesment includes the computation of Precision, Recall, F-measure and
Mean Absolute Error (Figs. 9 and 10). In order to compute the first three measures i.e. Preci-
sion, Recall and F-measure, the saliency maps obtained from all the methods are thresholded
using Otsu’s [25] thresholding. The thresholding is carried out as follows: let the threshold
value, for a particular image is Tv from Otsu’s method [25]. The saliency regions where
the pixels intensities are above the prescribed threshold Tv are regarded as salient regions,
whereas the values lesser than Tv are considered as non-salient one’s. In this way, images
are converted to binary. In the binary image, white pixels show the salient objects whereas
the black pixels show the non-salient regions. Now, the Precision is defined as the ratio of
pixels that are classified accurately whereas Recall is described in terms of the number of

Fig. 10 Mean absolute error (MAE)
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detected salient pixels to the total number of salient pixels. F-measure score combines both
Precision and Recall. The three measures can be written mathematically as:

Precision = T P

SM
(12)

Recall = T P

GT
(13)

F − measure = (1 + β2)precision × recall

β2 × precision + recall
(14)

where T P stands for true positive, SM for saliency map andGT for ground truth. The value
of β2 is taken as 0.3. The precision, recall and F-measure values are shown in Fig. 9. From
these graphs, it can easily be concluded that our method outperforms the other methods.

The evaluation measures used above are based upon overlapping strategy. These mea-
sures did not consider true negative saliency assignments; hence, may favor those methods
that assigns high saliency to salient pixels but are not able to detect non-salient regions
successfully. For a more comprehensive evaluation, authors have employed Mean Abso-
lute Error (MAE). It takes into account the continuous saliency map in the same form,
instead of changing it to binary and the binary ground-truth both. The two are used after a
normalization in the range[0, 1]. Mathematically, it can be written as

MAE = 1

r × c

r∑
x=1

c∑
y=1

‖S(x, y) − GT (x, y)‖ (15)

where S represents saliency map, GT is binary Ground-truth, r and c represents respective
row and column size of the images.

As depicted in Fig. 10, MZ [32] is showing the highest error, then AC [1], GB [13],
SR [16], IT [19] and IG [2]. The proposed method is showing the lowest value of MAE
which is several times less than the existing methods. As evident from the subjective and
objective assesments, the proposed method outperforms the existing one’s because it has
addressed the problem of saliency computation as two individual and separate subproblems
i.e. color saliency computation and texture saliency computation. The two saliency maps
are combined to obtain the final saliency map. Thus, the constituting saliency maps are
complementing each other whereas the existing techniques have completely ignored the tex-
ture saliency computations. The computational complexity for color saliency map is O(N2)

whereas for texture saliency map it is O(m2n2) where m is the number of orientations and
n is the number of scales for Gabor filter bank.

7 Conclusion

The paper presents a novel method for salient object detection and uses both color and
texture cues. It forms two independent complementary maps for color and texture salien-
cies respectively. The method employs superpixel segmentation and implemented it using
SLIC. The segments resulting from SLIC are tiny and large in numbers. Hence, these tiny
regions are clustered using DBSCAN. The method incorporates two levels of color quan-
tization employing minimum variance quantization and histogram before the computation
of color saliency. The quantizations reduced the overall computation. Moreover, in saliency
computations, centre surround principle is employed. In addition to this, texture features are
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extracted using Gabor filters. Finally, the two complementary maps: color and texture are
combined to obtain the final saliency map. The experimental results proves the efficacy of
the proposed method and outperforms the other state of the art algorithms.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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