
https://doi.org/10.1007/s11042-019-08552-7

3D shape recognition based onmulti-modal
information fusion

Qi Liang1 ·Mengmeng Xiao1 ·Dan Song1

Received: 29 April 2019 / Revised: 3 September 2019 / Accepted: 27 November 2019 /

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The classification and retrieval of 3D models have been widely used in the field of mul-
timedia and computer vision. With the rapid development of computer graphics, different
algorithms corresponding to different representations of 3D models have achieved the best
performance. The advances in deep learning also encourage various deep models for 3D
feature representation. For multi-view, point cloud, and PANORAMA-view, different mod-
els have shown significant performance on 3D shape classification. However, There’s not a
way to consider utilizing the fusion information of multi-modal for 3D shape classification.
In our opinion, We propose a novel multi-modal information fusion method for 3D shape
classification, which can fully utilize the advantage of different modal to predict the label
of class. More specifically, the proposed can effectively fuse more modal information. it is
easy to utilize in other similar applications. We have evaluated our framework on the popu-
lar dataset ModelNet40 for the classification task on 3D shape. Series experimental results
and comparisons with state-of-the-art methods demonstrate the validity of our approach.

Keywords 3D shape · Classification · Multi-view · Multi-modal

1 Introduction

With the rapid development of science in recent years, 3D technology has been widely used
in industrial design, medical industry, architectural design, aerospace, automotive manu-
facturing, education, film and television animation, and other fields. The categories and
numbers of 3D models are increasing year by year, and the classification of 3D models has
become a popular trend in terms of computer vision. The 3D model adds structural infor-
mation compared to 2D images. In the development of 3D model classification, multi-view,
point cloud, PANORAMA, mesh, voxel, etc. are all 3D shape representation methods.

Multi-view is an object that is photographed at a fixed angular interval by tilting the vir-
tual camera down 30 degrees. In other words, Multi-view is a set of series of 2D views.
Su et al. [27] input multiple views into a series of convolutional neural networks to obtain
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descriptors corresponding to the model. Using this descriptor to classify and retrieve 3D
models, it achieves good results on popular data sets. But this descriptor only contains the
visual information of the model. The point cloud is a uniform point-like processing of the
3D model. PointNet inputs the original point cloud into the network to maximize the spatial
characteristics of the point cloud, while the data volume is small and the 3D model can be
efficiently classified [20]. Sfikas et al. [25] used PANORAMA to enter the convolutional
neural networks to effectively classify 3D models. PANORAMA consists of a series of
images that represent the vision and structure information. Mesh data of 3D shapes is a col-
lection of vertices, edges, and faces. A 3D model can obtain several meshes, and the mesh
data has complexity and irregularity [7]. Voxel is the smallest unit of 3D model segmenta-
tion. Similar to the pixel concept of 2D images, it is very complex and is not the popular
method.

All of the above methods are classified models by single modal so that none of these
methods make good use of the structural and visual information of the 3D model. It is a
natural thought that these feature vectors have the same or similar parts. Thus, these fea-
ture vectors contain different modal information, we can take advantage of each other in
the prediction step to robust classification. In order to demonstrate our idea, we propose
a novel Multi-Modal classification Network for 3D shape classification in this work, we
use multi-view, point cloud, and PANORAMA to represent the visual, structural, and sur-
face information of the model. Then use MVCNN, PointNet, and PANORAMA-MVCNN
to get the predict-scores of the 3D model classification. Finally, we propose an effective
fusing approach to fuse the classification results of different models for the final 3D model
classification with different weights.

The main contributions of this paper are summarized in the following two aspects:

• We propose a new multi-modal classification network, which uses predict-scores fusion
and different weighting coefficients to obtain more accuracy classification results.

• The popular dataset is used to demonstrate the performance of the proposed method.
Several classic methods are used for comparison. The final experiment also demon-
strates the superiority of our approach.

The rest of the paper is structured as follows. Section 2 introduces some of the work
related to 3D classification. Section 3 illustrates the details of the multi-modal classification
network. Section 4 gives a lot of experimental results and discussion. Section 5 describes
the relevant details at work. Finally, Section 6 draws conclusions.

2 Related work

3D shape recognition can be divided into four parts according to the different modalities,
mesh-based methods, volume-based methods, view-based methods, and multi-modal fusion
methods.

• Mesh-based methods: Mesh data of 3D shapes consist of vertices, edges, and faces,
and the mesh has a stronger 3D shape description capability than other data.

Socher et al. [26] use a model of combined convolutional neural network and recur-
sive neural network to learn the characteristics of RGB-D images for classification.
Novotny et al. [18] use a joint view decomposition meshes to align objects by detecting
unsupervised ways of moving. Hubeli and Gross[10] design a semi-automatic frame-
work to extract surface meshes features that require users to manually enter parameters
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and operators. Kokkinos et al. [15] solve the direction ambiguity problem by construct-
ing a shape context (ISC) meta-descriptor based on the development within the 3D
shape. Feng et al. [7] propose a MeshNet based on face-unit and feature splitting to
solve the complexity and irregularity of traditional meshes.

• Volume-based methods: Representing 3D models in voxel and point cloud first, the
convolution operation can be performed like a two-dimensional image.

Wu et al. [30] use the convolution depth belief network to represent the geometric
3D shape as the probability distribution of the binary variables on the 3D voxel grid and
realize the active recognition object through view planning. Brock et al. [1] train voxel
variational autoencoders to provide the possibility of voxel representations in model
classifications. Qi et al. [20] design a network that directly applied to point cloud data,
which has a good effect on 3D model classification. However, PointNet cannot capture
the local structure, which results in low accuracy in identifying fine-grained patterns
and poor ability to generalize complex scenes. Qi et al. [22] propose PointNet++ that
learns local features by processing a set of points sampled in the metric space in a
hierarchical manner.

• View-based methods: Compared with 3D data features, computer vision processing
2D images is more mature and faster, so it is necessary to reduce the dimensionality
of 3D models. The earliest work based on view recognition 3D model was that Murase
and Nayar [17] get a large number of images by the object changing posture and light-
ing conditions to form the certificate space, and classify the 3D model by matching
the appearance. Kanezaki et al. [11] design otationNet based on convolutional neu-
ral network, which uses partial multi-views for reasoning. The viewpoints train object
data sets in an unsupervised learning manner, select perspectives, estimate categories
and poses. Su et al. [27] propose multi-view CNN (MVCNN), which uses different
perspective images as raw data and inputs novel CNN framework training to obtain
high-accuracy shape descriptors. Sfikas et al. [25] input model PANORAMA into the
convolutional neural network for 3D model classification based on the fisher vec-
tor. Schneider et al. [24] provide different benchmarks for different sketches, perform
classification-driven analysis, and extract the semantic features of the sketch.

• Multimodal Fusion Methods: Each 3D classification method has a good perfor-
mance, and different methods are multiplied by different weights to achieve mutual
compensation.

Chen et al. [3] use a 3D point cloud to generate 3D candidate frames in autonomous
driving scenarios, and then multi-view features obtained by fusing Frac-talNet and
Deeply-Fused Net. Gonzalez et al. [9] use the detection to obtain RGB spectral map and
depth image fusion to improve the accuracy of identifying two-dimensional objects.
Enzweiler et al. [6] detect pedestrians by blending features, clues, and improve classi-
fication goals. You et al. [32] propose PVnet. It combines point cloud and multi-view
data to compensate each other.

3 Method

Figure 1 shows the framework of our work, which mainly includes three steps: 1) Multi-
modal data generation: we utilize OpenGL to extract visual and PANORAMA information
and employ Point cloud to extract point cloud information for each 3D model; 2) Multi-
modal network learning: it is used to get the predict-scores of 3D model based on different
modalities. we trained the network on the single modal independently, and we get the best
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Fig. 1 Our MIFN framework is composed of 4 parts: multi-view network, point cloud network,
PANORAMA-view network and predict-score fusion part. Multi-view network: The structure of MVCNN
is employed, the view pooling layer that conducts max-pooling across all views. Point cloud network: The
classic PointNet structure is employed. This network takes n points with 3-dimensional coordinates as input.
Then in spatial transform net, a 3 × 3 matrix is learned to align the input points to a canonical space. For
EdgeConv, it extracts the local patches of each point by their k-nearest neighborhoods and computes edge
features for each point by applying a 1× 1 convolution with output channels M’, and then generates the ten-
sor after pooling among neighboring edge features. PANORAMA-view network: It also utilizes the structure
of MVCNN. However, we retrain the parameter of MVCNN based on PANORAMA view data. The predict-
score fusion part: based on the predict-score produced by the above three networks, this fusion part defines
the weight of different modal predict-score by statistic experiment and utilize the advantage of different
modal predict-score for a better classification result

performance on each modal; 3) Classification Fusion: we propose an effective classifica-
tion fusion method to utilize the advantages of different classifiers for a more accurate
classification result of the 3D model. In the next part, we will detail these three steps

3.1 Data processing

Multi-view(MVModal) Since the size and angle of the 3D model data are not uniform, we
first use the NPCA[19] to calibrate the 3D model. Then place a virtual camera every 30
degrees from the Z-axis around the 3D model. The lens points to the 3D model centroid and
tilts down 30 degrees. Finally, get twelve views of the three-dimensional model by OpenGL
visualization tools.

Point cloud(PC modal) The point cloud data is obtained by meshing the surface of the
3D model and using the centroid of the grid to represent the mesh. Due to the different
volume of the 3D model, we need to process the surface of each 3D model, which need to
be subdivision to get more mesh. Here we use the butterfly subdivision [5] algorithm to get
more points. At last, we obtain 1024 points of each 3D model and then convert the PLY
model into point cloud data.

PANORAMA-view(PV modal) PANORAMA view is a set of 2D images that contains the
surface information of a 3D model. When we get the PANORAMA view, we need to project
the surface of the 3D model onto the surface of the cylinder with the centroid of the 3D
model as the origin. The radius R of this cylinder is the three times the maximum distance
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from the surface of the 3D model to the axis of the cylinder, and the hight of this cylinder
is 2R. Taking the Z-axis as an example, we use a series of point sets s(ϕ,z) to represent the
projected data, where ϕ is the angle of the point of the 3D shape, and z is the height of the
point. According to this point set, we can get a panorama of four different data for each axis.
1)the position of the model’s surface in 3D Space(SDM). 2)the orientation of the model’s
surface(NDM). 3)the gradient map of NDM. 4)three-channel graphics consist of the above
three kinds of graphics. So for each model, we can get 12 views for three-axis projections
like Fig. 2.

3.2 MIFN:Multi-modal classification network

In order to utilize the advantages of different modalities of 3D shapes, we design the Multi-
modal Information Fusion Network(MIFN), which uses a new strategy in the prediction
part. Comparing with the traditional method, instead of using the prediction score of single
modal, we refer to all modal information of the 3D shape. To make the final prediction cor-
rectly represent the 3D shape while maxing the precision of the prediction, we process each
model according to the method of data preprocessing in Section 3.1. Each modal products its
own modal-level prediction using its own network, and a consensus function is designed to
aggregate these modal-level predictions into the final prediction scores of different classes
named model-level prediction. This model-level prediction score is more reliable and infor-
mative than the original modal-level prediction since it aggregates three modality prediction
results and gets more credible results. However, we train the single-modal network and
update the parameters separately. In this way, the single modal network can get the best
performance.

For a 3D shape M, we can get K modalities data P1, P2, · · · , PK after preprocess-
ing. Then, these modalities data are feed into their own networks M1, M2, · · · .M3. At
last, Multi-modal Information Fusion Network (MIFN) aggregate the prediction scores of
different modalities as follows:

MIFN(P1, P2, · · · , PK) = H(G(M(P1 : W1),M(P2 : W2), · · · M(PK : WK))) (1)

Here, WK represents the parameters of Mk which is updating by feeding single modal data
PK into it and produce the modal-level prediction score. G is the aggregate function that
combines the outputs from Mk to aggregate the modal-level prediction scores. Based on this

Fig. 2 The PANORAMA views of 3D model on three axis which consist of SDM, NDM gradient map of
NDM and 3-channel images
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aggregate result, we use Softmax function H predicts the probability of each class for the
3D shape. In our MIFN, the aggregate function is of great importance. It should retain useful
information as soon as possible. Meanwhile, it should be able to treat each modality differ-
ently, since different modalities have different characteristics and have different advantages
in category prediction. So we want this function can aggregate modality information, not
a function that happens to a model. We will provide the details on function G in the next
subsection.

3.3 Multi-modal information fusion

Through the above analysis, we know that aggregate functions are the most important part
of our framework(MIFN). In this section, we will introduce our idea of designing aggre-
gate functions. According to the different modal learning independently, we can get three
modal-level prediction scores based on different modality data. These scores represent the
probability that a single modality predicts a model as a class, but these are based on features
learned by a single modal. Obviously, the reliability of a single modal prediction is not very
high, we can make a simple addition on the predict-scores as equation (2). But in this way,
we ignore the difference between multi-modal, so we use a linear weighted average method
to fuse these modal-level prediction scores as equation (3). In this work, we employ the
weighted fusion method to fuse the three modal-level prediction scores. The framework of
this method is shown in Fig. 1. The detail is shown in (1).

S =
K∑

i=1

M(PK : WK) (2)

S =
K∑

i=1

αiM(PK : WK) (3)

where M(PK : WK) represents the modal-level prediction score produced by MVCNN,
PointNet and PANORAMA-MVCNN respectively based on different modalities of 3D
model. αi is the weight of different modal-level prediction scores in order to balance the
Multi-view, Point cloud and PANORAMA-View. The fusion score is also processed by
softmax to get the class label. The related experimental is shown in Section 4.2.

4 Experiment

4.1 Datasets

One well-known dataset was used to prove our ideas. It is ModelNet.ModelNet consists
of two versions of this dataset and they are publicly available for download: ModelNet10
and ModelNet40. ModelNet10 comprises 4899 CAD models split into 10 categories. The
training and testing subsets of ModelNet10 consist of 3991 and 908 models. ModelNet40
comprises 12,311 CAD models split into 40 categories. The training and testing subsets of
ModelNet40 consist of 9843 and 2468 models. The ModelNet dataset is manually filtered
to remove 3D models that do not belong to the specified category, but in particular, the pose
in terms of translation and rotation of ModelNet10 dataset is normalized, and ModelNet40
dataset does not.
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4.2 Comparison the combinations of different modal networks

In this work, we propose a novel predict-score fusion method to fuse the multi-modal infor-
mation extracted by these different modal networks. The goal of this design is to utilize
the advantages of different modal networks to get more accuracy classification results. In
order to demonstrate the performance of this approach, we compare the classification results
of a single modal network with the combinations of different modal networks. The corre-
sponding experimental results are shown in Table 1. From this table, we can find that the
combination of different modal networks brings a significant improvement in performance
compared with a single modal network. Here, MV+PC brings a 4% and 1.5% improvement
over MV and PC respectively. MV+PV brings a 2% and 6% improvement over MV and
PC respectively. PC+PV brings a 0.25% and 6.5% improvement over PC and PV respec-
tively. Finally, MV+PC+PV brings a 5%, 3% and 9% improvement over each single modal
respectively. We can find that the PC network brings the biggest improvement under dif-
ferent conditions. Meanwhile, the single modal network PC also gets the best classification
results compared with another single modal network. There are reasons to think that the
point cloud data represents more information on 3D modal.

After the analysis of Section 3.3, we know that in order to let the different modalities
play their respective advantages and maximize their advantages, we should take weights on
different modalities and maximize the advantages of the modality. For example, in the previ-
ous experiment, we know that the point cloud works best. Naturally, we think that the power
of the point cloud is a bit more important, and related experiments have proved this. From
Fig. 3 we can see that when the weights of Point Cloud, Multi-view and PANORAMA-view
is set to the parameter α1 = 0.7, α2 = 0.2 and α3 = 0.1, we can get the best results. Com-
paring with the method of directly averaging without increasing the weight, we get a gain
of 0.54% after increasing the weight, and we can find that the modality PC has the biggest
weight. This experiment result demonstrates the effectiveness of the proposed method.

4.3 Comparison to state-of-the-art methods onModelNet-40

To validate the efficiency of the proposed MIFN, 3D shape classification experiments have
been conducted on the Princeton ModelNet dataset [31]. Totally, 127,915 3D CAD models
from 662 categories are included in the ModelNet dataset. ModelNet40, a common-used
subset of ModelNet, containing 12,311 shapes from 40 common categories, is applied in
our experiments. We follow the same training and test split setting as in [31].

Table 1 Comparisons of
different Model Classification
accuracy on ModelNet10 and
ModelNet40

Method Classification accuracy

ModelNet10 ModelNet40

MV 88.53% 86.93%

PC 91.24% 89.23%

PV 86.57% 82.69%

MV + PC 91.59% 90.83%

MV + PV 89.69% 88.85%

PC + PV 92.39% 89.54%

MV + PC + PV 92.97% 91.86%
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Fig. 3 The X axis represents the weight of the PANORAMA-view modality, the Y axis represents the weight
of the Multi-view modality, the weight of the point cloud is determined by 1 − x − y, and the colorbar
represents the classification accuracy of the 3D model on ModelNet40

In experiments, we have compared the proposed MIFN with various models based on
different representations, including volumetric based models [31], hand-craft descriptors for
multi-view data [4, 12], deep learning models for multi-view data [21, 28], deep learning
models for PANORAMA-Views [29] and point cloud based models [8, 13, 16, 23, 33].

In Table 2, the classification results of all comparedmethods are provided.As shown in the
results, our proposedMIFN can achieve the best performancewith the classification accuracy
of 92.4%.Comparedwith theMVCNNusingGoogLeNet, ourMIFNachieves the state-of-art
accuracy on the classification tasks. For point cloud based models, our MIFN also achieves
the state-of-the-art point cloud based model DGCNN in terms of classification accuracy.

5 Implementation details

Our framework contains point cloud network, multi-view network, and PANORAMA-View
network. For point cloud network, 1,024 raw points for each object are fed into the network.
For Multi-View network, 12 views for each object are fed into the network. The parame-
ters of CNN in multi-view network are initialized by the pre-trained MVCNN model. For
PANAORAMA-View network, 12 views are fed into the network that same to Multi-View
network, differently, the parameters aren’t initialized. We pre-train the model on our dataset
and find the best model to initialize the parameters. At last, we fuse the modal-level predict-
score to generate model-level predict-score, we can use these scores to predict the class of
the model.
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Table 2 Comparisons of classification accuracy on ModelNet40

Method Train config Data representation Classification

Pre train Fine tune #Number of views Accuracy

(1) SPH[12] – – – 68.2%

(2) LFD[4] – – – 75.5%

(3) 3D ShapeNets[31] ModelNet40 ModelNet40 Volumetric 77.3%

(4) VoxNet[14] ModelNet40 ModelNet40 Volumetric 83.0%

(5) VRN[2] ModelNet40 ModelNet40 Volumetric 91.3%

(6) MVCNN-MultiRes[21] – ModelNet40 Volumetric 91.4%

(7) MVCNN,12×[28] ImageNet1K ModelNet40 12 Views 89.9%

(8) MVCNN,metric,12×[28] ImageNet1K ModelNet40 12 Views 89.5%

(9) MVCNN,80×[28] ImageNet1K ModelNet40 80 Views 90.1%

(10) MVCNN,metric,80×[28] ImageNet1K ModelNet40 80 Views 90.1%

(11) PointNet[8] – ModelNet40 Point Cloud 89.2%

(12) PointNet++[23] – ModelNet40 Point Cloud 90.7%

(13) KD-Network[13] – ModelNet40 Point Cloud 91.8%

(14) PointCNN[16] – ModelNet40 Point Cloud 91.8%

(15) DGCNN[33] - ModelNet40 Point Cloud 92.2%

(16) PANORAMA-NN[29] – ModelNet40 PANORAMA-Views 90.7%

(17) MIFN(Our) ImageNet1K & ModelNet40 Point Cloud & 92.4%

ModelNet40 12 Views &

PANORAMA-Views

6 Conclusion

In this paper, we propose a novel modal fusion network: MIFN, which can employ different
modal data for 3D shape classification. In our framework, the model-level predict-scores is
introduced to employ the advantage of different modal networks to predict the label of class.
More specifically, the proposed can effectively fuse more modal information. it is easy to
utilize in other similar applications. The effectiveness of our proposed framework has been
demonstrated by experimental results and comparisons with the state-of-the-art models on
the ModelNet dataset. We have also investigated the effectiveness of different components
of our model to demonstrate the robustness of our framework.
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