
https://doi.org/10.1007/s11042-019-08535-8

Detecting action-relevant regions for action
recognition using a three-stage saliency detection
technique

XiaofangWang1 ·Chun Qi2

Received: 16 November 2018 / Revised: 5 October 2019 / Accepted: 26 November 2019 /

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Dense tracking has been proven successful in action recognition, but it may produce a large
number of features in background, which are not so relevant to actions and may hurt recog-
nition performance. To obtain the action-relevant features for action recognition, this paper
proposes a three-stage saliency detection technique to recover action-relevant regions. In
the first stage, low-rank matrix recovery optimization is employed to decompose the overall
motion of each sub-video (temporally split video) into a low-rank part and a sparse part, and
the latter is used to compute initial saliency to discriminate candidate foreground from defi-
nite background. In the second stage, using the dictionary formed by the patches in definite
background, the sparse representation for each patch in candidate foreground is obtained
based on motion and appearance information to compute the refined saliency, which ensures
the action-relevant regions tend to be distinguished more clearly from background. In the
third stage, the saliency is spatially updated based on the motion and appearance similarity
so that the action-relevant regions can be better highlighted due to the increase of spatial
saliency coherence. Finally, a binary saliency map is created by comparing the updated
saliency with a given threshold to indicate action-relevant regions, which is fused into
dense tracking to extract action-relevant trajectory features in a video for action recognition.
Experimental results on four benchmark datasets demonstrate that the proposed method
performs better than the conventional dense tracking and competitively with its improved
versions.

Keywords Action recognition · Saliency detection · Action-relevant region ·
Dense tracking

� Xiaofang Wang
wxf2012@stu.xjtu.edu.cn

Chun Qi
qichun@mail.xjtu.edu.cn

1 School of Electronic and Information Engineering (Department of Physics), Qilu University
of Technology (Shandong Academy of Sciences), Jinan, China

2 School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China

Multimedia Tools and Applications (2020) 79:741 –74333

Published online: 23 December 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-019-08535-8&domain=pdf
http://orcid.org/0000-0002-7575-4355
mailto: wxf2012@stu.xjtu.edu.cn
mailto: qichun@mail.xjtu.edu.cn

1 Introduction

The videos captured from realistic scenes usually contain various types of human actions,
which range from simple gestures such as running and clapping to complex activities such
as ice dancing and basketball. Recognizing what actions are performed in videos is an
important task in computer vision, which can be applied to intelligent video surveillance,
patient monitoring, human-machine interaction, etc. Although extensive researches have
been devoted, it is still a challenge to extract discriminative features from realistic videos
for action recognition.

The dense tracking technique, which extracts trajectory features by tracking densely sam-
pled points across frames [44], has shown to be successful in action recognition. However,
the traditional dense tracking does not discriminate between action-relevant regions (i.e., the
regions corresponding to the body parts or objects that participate in the action) and back-
ground, and may produce dense features in both areas, especially in the presence of camera
motion. In contrast, when human recognizes actions in a video, he instinctively focuses his
eyes on action-relevant regions and only gives a glance at surroundings occasionally. Thus,
the features most useful for action recognition are those from action-relevant regions. The
background features may encode some contextual information for action recognition, but
they are generally far less informative than those in action-relevant regions. Incorporating
them into action recognition may degrade recognition performance.

An intuitive improved mechanism is to perform dense tracking only in action-relevant
regions, where the central issue is how to differentiate these regions from background. Since
the action-relevant regions are usually more salient than background, many methods [33, 39,
40, 53] rely on saliency detection technique to gain high saliency for action-relevant regions
so that they can be highlighted and discriminated. However, action-relevant regions cannot
be always equivalent to salient regions. For example, some large action-relevant regions
(e.g., the big torso of runner) may be not so salient for the uniformmotion in them, and some
background regions may also obtain high saliency for the irrelevant object motion (e.g., leaf
swinging) in them. In these cases, a common saliency detection method may lead to wrong
action-relevant region detection. Thus, for recovering action-relevant regions, a saliency
detection method should be designed to exploit the difference between these regions and
background more precisely. Partly inspired by the multi-stage idea used in many saliency
detection methods [8, 14, 21, 38], we deduce that, if some definite background regions with
very low motion saliency are segmented at first, the action-relevant regions will be easier
to discriminate based on the fact that they tend to be distinct from the definite background
regions more clearly than other regions. In Fig. 1, we try reconstructing some video frames
using the linear combination of definite background regions in terms of motion information
and find that the reconstruction errors of action-relevant regions are much larger than that of
other regions. Based on this observation, we propose a three-stage saliency detection method
to detect action-relevant regions for action recognition. Considering saliency does not vary
considerably in a small spatiotemporal area, we temporally split a video into sub-videos,
and detect the saliency of each sub-video on patch level.

The framework is shown in Fig. 2. In a realistic video, background motion caused by
camera movement is usually uniform and lies in a low-rank subspace, while action motion is
often irregular and sparse. In the first stage, we employ low-rank matrix recovery (LRMR)
[48] to decompose the overall motion of a sub-video into a low-rank part and a sparse part
and use the latter to compute initial saliency. Thus, some definite background regions will
gain very low saliency and can be segmented at first. Among the rest (candidate foreground)
regions, the action-relevant ones tend to be distinct from the definite background regions

Multimedia Tools and Applications (2020) 79:741 –743337414

Fig. 1 Reconstruction error produced by reconstructing the video frames using the linear combination of
definite background regions in terms of motion information

more clearly than the background ones. Thus, in the second stage, we learn sparse repre-
sentation (SR) for candidate foreground regions using the dictionary formed by the definite
background regions based on motion and appearance information, and use reconstruction
error to compute refined saliency, so that the action-relevant regions have more chance to be
highlighted. Considering saliency should be spatially coherent and some incorrect saliency
values can be remedied by their neighboring saliency values, in the third stage, we spatially
update the saliency based on the motion and appearance similarity to increase coherence.
Comparing the saliency with a given threshold, a binary saliency map is created to indicate
action-relevant regions. Finally, we fuse binary saliency maps into dense tracking to extract
action-relevant trajectory features for action recognition.

Fig. 2 Framework of the three-stage action-relevant region detection method

Multimedia Tools and Applications (2020) 79:741 –74333 7415

The contributions of the proposed method are three-fold: 1) We propose to segment
some definite background regions at first based on the initial saliency obtained from the
sparse part of the motion produced by LRMR algorithm. 2) By obtaining the sparse rep-
resentation for the candidate foreground regions based on the dictionary formed by the
definite background regions and computing the refined saliency using reconstruction error,
the action-relevant regions are more likely to be highlighted. 3) Saliency is updated in spa-
tial domain to increase coherence, so that some incorrect saliency values can be rectified
using their neighboring saliency values.

It is worth noting that, although the action-relevant region detection method is proposed
to improve the dense tracking technique for action recognition, it is essentially a separate
technique and can also be applied to many other existing action recognition frameworks
such as the ones based on dense sampling [42], context modeling [5] and deep learning [4]
to detect the actors and related objects or emphasize the action-relevant features.

The rest of this paper is organized as follows. Section 2 gives a review on the related
works. Section 3 details the three-stage saliency detection method for recovering action-
relevant region . Section 4 introduces saliency-based dense tracking for action recognition.
Section 5 describes the experimental settings, datasets and results. Section 6 draws the
conclusion.

2 Related works

2.1 Action recognition

In the past decades, extensive researches have been devoted to human action recognition
and its related tasks, which involve recognizing actions in videos [7, 13, 26, 29, 33, 41,
44], recognizing activities from sensor data [18–20, 22], recognizing and detecting human
actions in untrimmed videos [9, 51], etc. We just focus on the works that are most related to
the proposed method.

In early researches, interest point tracking plays an important role in action recognition.
To obtain long-term information for action recognition, Matikainen et al. [26] and Mess-
ing et al. [27] track a set of interest points in a video sequence through KLT tracker [23] to
extract trajectories. Sun et al. [36] extract trajectories by tracking SIFT salient points over
consecutive frames via pairwise SIFTmatching. Sun et al. [37] and Bregonzio et al. [1] com-
bine KLT tracker and SIFT matching to increase trajectory duration and density. However,
recent researches show that it is more successful to extract features with a finer granularity
by dense tracking. Wang et al. [44] extract dense trajectories by tracking densely sam-
pled points across video frames via dense optical flow to describe actions and significantly
improve the recognition performance.

Due to the harmful impact of background features, the improved techniques of dense
tracking draw much attention in action recognition. To emphasize action-relevant features,
some research works propose to improve dense tracking through saliency detection. Wang
et al. [40] recover action-relevant regions in a video by detecting saliency through
LRMR and perform dense tracking in these regions to extract action-relevant tra-
jectories. Vig et al. [39] employ saliency-mapping algorithms to find informa-
tive regions and highlight the descriptors in these regions. Yi et al. [53] com-
pute saliency maps from color, space and optical flow to obtain the trajecto-
ries containing only foreground motion. Because background trajectory features are
mostly induced by camera motion, some research works aim to eliminate them

Multimedia Tools and Applications (2020) 79:741 –743337416

by removing camera motion from videos. Wang et al. [41] prune background trajectories by
estimating homography using RANSAC to cancel out camera motion from optical flow. Jain
et al. [10] estimate dominant camera motion with a 2D affine motion model and separate
it from optical flow. Wu et al. [49] use low-rank optimization to decompose dense trajec-
tories into camera-induced component and object-induced component and use the latter to
describe actions.

2.2 Saliency dection

Our action-relevant region detection method is partly inspired by some related works on
image or video saliency detection, which adopt a somewhat multi-stage idea. Gao et al.
[8] propose to use a first-pass RPCA to identify the likely regions of foreground, and then
employ a second-pass block-sparse RPCA with fine-tuned parameter λ to accomplish a
finer saliency detection. Tong et al. [38] first compute saliency using a bottom-up method to
build background and foreground dictionaries, and then obtain saliency map using the LLC
algorithm [43]. Li et al. [14] first extract boundary segment features to form background
templates, then reconstruct the image by dense and sparse appearance models based on the
templates and use reconstruction error to measure saliency.

Simlar to our method, there are also some research works [35, 52] employing the combi-
nation of LRMR and SR for saliency detection. Yan et al. [52] first transform image patches
into feature space via SR using a learned dictionary, and then compute the saliency from
the sparse part produced by performing LRMR over the transformed features. A similar
pipeline is adopted in [35] for video saliency detection. The feature matrix of video cuboids
is first obtained based on group SR and then decomposed into a low-rank part and a sparse
part; the sparse part is used to compute saliency.

Although we also use a multi-stage idea and a combination of LRMR and SR, the
pipeline of our method is totally different from above saliency detection methods. We first
compute the initial saliency based on the sparse part of motion produced by LRMR to decide
candidate foreground and definite background, then calculate the refined saliency by learn-
ing SR to reconstruct the candidate foreground regions based on the dictionary formed by
the definite background, and finally improve the saliency by an updating operation. This
pipeline is specially designed to compute saliency by exploiting the difference between
action-relevant regions and background, which helps to obtain high saliency contrast and
thus is better at action-relevant region detection.

3 Action-relevant region detection

Considering that action-relevant regions do not vary considerably in short time, we split the
temporal duration of a video to obtain a number of short sub-videos and compute a saliency
map for each sub-video to indicate the action-relevant regions of all frames in it. Besides,
since saliency also does not vary significantly in a small spatial region, we spatially divide
each sub-video into a number of small patches and detect the action-relevant regions in it
on patch level.

Assuming a video with T frames is denoted by V = [I1, I2, · · · , IT], where It
is the frame at time t , by splitting the temporal duration evenly, we can divide the
video into K non-overlapped sub-videos, i.e., V = [V1,V2, · · · ,VK], where Vk =[
I(k−1)w+1, I(k−1)w+2, · · · , Ikw

]
, and w is the temporal length of the sub-video. Then, each

Multimedia Tools and Applications (2020) 79:741 –74333 7417

sub-video is further spatially divided into MN non-overlapped patches with equal spatial
size s × s. The divided Vk can be represented by a block matrix

Vk =

⎡

⎢⎢⎢
⎣

P1 P2 · · · PN

PN+1 PN+2 · · · P2N
...

...
. . .

...
P(M−1)N+1 P(M−1)N+2 · · · PMN

⎤

⎥⎥⎥
⎦

(1)

where Pn is the nth patch and its size is s × s × w. In the following, we use Vk as an
example to introduce how to recover the action-relevant regions in each sub-video through
three-stage saliency detection.

3.1 Initial saliency detection

In this stage, we compute the initial saliency to differentiate definite background regions
from candidate foreground, which can be accomplished based on the motion difference
between action-relevant regions and background. If a video is captured with a moving cam-
era, the background motion is spatially uniform and lies in a low-rank subspace, while the
action motion is spatially irregular and can be seen as sparse error. For this reason, we use
LRMR to separate the overall motion of a sub-video into a low-rank part and a sparse error
part, and use the latter to measure the initial saliency, which is then used to classify the
patches in the sub-video into a candidate foreground set and a definite background set.

Before utilizing LRMR to detect the saliency of sub-video Vk , we arrange the
motion in it on patch level to form a motion matrix. To this end, we first obtain the
motion vector of each patch by vectorizing the optical flow of all points in the patch
in the order of spatiotemporal position. The motion vector of Pn is formed by xn =
[un

1 vn
1 · · · un

i vn
i · · · un

s×s×w vn
s×s×w], where un

i and vn
i are respectively the horizontal

and vertical components of the optical flow at the ith point in Pn. When the motion vectors
of all patches in Vk are obtained, we stack them column-wise in the order of spatial posi-
tion to obtain a motion matrix X = [

x1 x2 · · · xMN
]
, where X is a 2D matrix and its size

is (2s2w) × (MN).
The overall motion of sub-video Vk is encoded in X. We decompose X into a low-rank

matrix B and a sparse error matrix F by solving the following relaxed LRMR problem [48],

argmin
B,F

‖B‖∗ + λ‖F‖1 s.t. X = B + F (2)

where ‖.‖∗ is the nuclear norm of a matrix, λ trades off rank versus sparsity. According to
[16, 48, 49], the setting of λ is highly dependent on the dimension of the matrix to be decom-
posed. We empirically set λ = 1.1/

√
max(2s2w,MN) based on the recommended settings

in these works. The optimization problem in (2) is solved with the inexact Augmented
Lagrange Multiplier (IALM) algorithm [16].

After decomposition, the uniform background motion in sub-video Vk is mostly
deposited in the low-rank matrix B, while the irregular action motion is mostly conveyed
in the sparse error matrix F. Each column in F encodes the action motion of a patch
in the sub-video. We compute the l∞ norms for all columns in F and obtain a vector
ŝk = [

ŝ1 ŝ2 · · · ŝMN

]
, where ŝn is used to measure the initial saliency of patch Pn in

sub-video Vk .
In general, the patches in action-relevant regions contain irregular action motion and

produce high saliency values in ŝk , while the patches in background contain uniform back-
ground motion and produce small values in ŝk . However, in some cases, some action motion

Multimedia Tools and Applications (2020) 79:741 –743337418

in large action-relevant regions is also uniform and deposited in matrix B, and some back-
ground motion may contain subtle spatial changes and be included in matrix F. Thus, the
initial saliency cannot always correctly distinguish all action-relevant regions from back-
ground. We just compare it with a relatively small threshold Ts to classify all patches into a
candidate foreground set Sf and a definite background set Sb. More specifically,

Sf = {
Pi

∣∣ŝi � Ts, i = 1, 2, · · · , MN
}

Sb = {
Pi

∣∣ŝi < Ts, i = 1, 2, · · · ,MN
} (3)

The threshold Ts is small enough in (3) so that nearly all possible foreground patches are
included in Sf and the patches retained in Sb nearly all come from the true background. If
the saliency of all patches in the sub-video is smaller than Ts , it means that the sub-video
contains no action-relevant regions, and the following steps are not processed.

3.2 Saliency refinement

As a small threshold is used in (3), some background patches with subtle motion changes are
retained in the candidate foreground set Sf . In this stage, to recover the true action-relevant
patches from Sf , we compute refined saliency for each patch in Sf so that the patches in
action-relevant regions can be distinguished more clearly from those in background.

Generally, even though the motion in some large action-relevant regions is spatially uni-
form, it still tends to be distinct from the motion in definite background. On the other hand,
even though the motion in some background regions contains subtle changes, it is still apt
to resemble the motion in definite background. Thus, we learn a sparse representation for
the motion vector of each patch in the candidate foreground set Sf based on the dictionary
constructed by the motion vectors of all patches in the definite background set Sb, and use
the reconstruction error to measure patch saliency. With this technique, the action-relevant
patches in Sf are difficult to reconstruct and thus obtain high saliency, while the background
patches in Sf are easy to reconstruct and thus obtain low saliency. As such, the saliency
contrast between action-relevant regions and background is sharpened.

In some cases, the motion of some action-relevant patches happens to resemble that of
background patches, but its appearance (e.g., color) may be distinct from that of background
ones. To enable action-relevant patches to have more chances to gain big reconstruction
error, we combine appearance with motion to refine the saliency of each patch in Sf . To this
end, we form a color matrix for the centered frame of the sub-video on patch level. When
sub-video Vk is spatially divided into patches, the centered frame Ick in it is also divided as

Ick =

⎡

⎢⎢
⎢
⎣

p1 p2 · · · pN

pN+1 pN+2 · · · p2N
...

...
. . .

...
p(M−1)N+1 p(M−1)N+2 · · · pMN

⎤

⎥⎥
⎥
⎦

(4)

where pn is the nth patch and its size is s × s. We obtain the color vector of each patch
by vectorizing the color values of all pixels in it. The color vector of pn is formed by
an = [

Ln
1 an

1 bn
1 · · · Ln

i an
i bn

i · · · Ln
s×s an

s×s bn
s×s

]T
, where Ln

i , a
n
i and bn

i are the color
values of the ith pixel in pn in Lab space. By stacking the color vectors of all patches in
the order of spatial position, we obtain the color matrix of Ick , i.e., A = [

a1 a2 · · · aMN
]
,

where A is a 2D matrix and its size is (3s2) × (MN).

Multimedia Tools and Applications (2020) 79:741 –74333 7419

The motion and appearance information of Vk can be combined by concatenating the
motion and color matrices into a feature matrix G

G =
[
X′
A′

]
(5)

where X′ and A′ are respectively formed by the normalized columns in X and A. Each
column in G is the feature vector of a patch in Vk , whose length is (2s2w + 3s2). The
feature vectors of all patches in Sf are stacked column by column in given order to form the

candidate foreground feature matrixXf =
[
xf

1 xf

2 · · · xf
R

]
, where xf

r is the feature vector

of the rth patch in Sf , and R is the number of patches in Sf . Similarly, the feature vectors of
all patches in Sb form the definite background feature matrix Xb = [

xb
1 xb

2 · · · xb
S

]
, where

xb
s is the feature vector of the sth patch in Sb, and S is the number of patches in Sb.
Then, the refined saliency for each patch in Sf can be computed by learning a sparse

representation for the corresponding vector in Xf using Xb as dictionary. Take the rth patch

in Sf for example, the sparse representation for xf
r can be obtained by solving the following

optimization problem

min
αr

∥∥
∥xf

r − Xbαr

∥∥
∥
2

2
+ λ‖αr‖1 (6)

where λ is a regularization parameter that trades off reconstruction error versus sparsity, and
αr is the reconstruction coefficient vector.

Considering background patches in Sf are more correlated with the patches that are
spatially close to them in definite background set Sb, we assign a weight to each atom in Xb

to further enable those patches to be reconstructed easily. Specifically, the weight for the ith
atom xb

i is computed by

wi = exp

(
dist (cr , ci)

σw

)
(7)

where cr and ci are the centers of the patches corresponding to the reconstructed xf
r and

atom xb
i respectively; dist (cr , ci) is the normalized Euclidean distance between them; σw

is a parameter adjusting the decay speed of weight, which is set to 0.05. The weights of all
atoms form a weight vector wr = [

w1 w2 · · · wS

]
. Introducing wr in (6), we obtain the

weighted sparse representation optimization problem [3]

min
αr

∥∥
∥xf

r − Xbαr

∥∥
∥
2

2
+ λ‖diag(wr)αr‖1 (8)

We solve (8) using the optimization toolbox of SPArse Modeling Software (SPAMS) [24],
and empirically set λ = 0.15. When the sparse representation is obtained, we compute the
reconstruction error to measure the saliency of the rth patch in Sf

sr =
∥∥∥xf

r − Xbαr

∥∥∥
2

(9)

Since (7) produces smaller weight for the shorter distance, the background patches in Sb that
are spatially close to the reconstructed patch are emphasized in (8), which helps to obtain
lower reconstruction error for the background patches in Sf .

Multimedia Tools and Applications (2020) 79:741 –743337420

Similarly, we calculate the saliency values of all patches in Sf . Combining them with
those of the patches in Sb, which are obtained with LRMR in the first stage, we construct a
patch-level saliency matrix Sk according to the patch position in the divided sub-video Vk

Sk =

⎡

⎢
⎢⎢
⎣

s1 s2 · · · sN
sN+1 sN+2 · · · s2N
...

...
. . .

...
s(M−1)N+1 s(M−1)N+2 · · · sMN

⎤

⎥
⎥⎥
⎦

(10)

where the element sn is the saliency of patch Pn in the divided Vk . If all the elements in Sk

are smaller than a small threshold, no patch in Vk contains action motion, and Sk is set to
zero. Otherwise, the values in it are rescaled to [0, 255].

3.3 Saliency updating

Through saliency refinement, the action-relevant patches have more chances to gain high
saliency contrast against background, but there are still some outliers that cannot be cor-
rectly highlighted. In this stage, we further improve the saliency detection results through a
spatial updating operation.

When the saliency is computed patch by patch in the first two stages, the spatial coher-
ence of saliency between neighboring patches is ignored. In fact, the saliency values of the
adjacent patches located in the same body part or background should be spatially coher-
ent. If the spatial saliency coherence is enhanced, some wrongly suppressed action-relevant
patches may be highlighted due to the high saliency of their adjacent action-relevant patches,
and on the other hand, some wrongly highlighted background patches may be suppressed
due to the low saliency of their adjacent background patches. Based on this observation, we
update the saliency value of each patch by adding a weighted sum of the saliency values of
its spatially adjacent patches. The weight is the probability that two patches belong to the
same body part or background, which is measured by the motion and appearance similarity
between the two patches in the centered frame of the sub-video.

To update the saliency value of Pn, we first compute the motion and appearance similarity
between pn and each 8-neighborhood patch pi in the centered frame of Vk

dn,i = exp

(
−dist (Hn, Hi)

σd

)
(11)

where Hn and Hi are the feature vectors formed by concatenating the HOG and HOF fea-
tures of patch pn and pi respectively, dist (Hn,Hi) is the Euclidean distance between Hn

and Hi , and σd is a parameter adjusting the decay speed of similarity, which is empirically
set to 0.5. Based on the patch similarity, the saliency value of Pn is updated by

s′
n = sn +

∑

pi∈N(pn)

dn,i ∗ si

∑

pi∈N(pn)

dn,i

(12)

where N (pn) is the neighborhood of pn in the centered frame. When all the saliency
values in Sk are updated, we resize it to the original spatial size of the video through
nearest-neighbor interpolation to generate a pixel-level saliency matrix S̃k . By thresholding

Multimedia Tools and Applications (2020) 79:741 –74333 7421

each element in S̃k with a given threshold T ′
s , we obtain the binary saliency map Mk for

sub-video Vk

Mk (x, y) =
{
1 S̃k (x, y) � T ′

s

0 otherwise
(13)

where S̃k (x, y) is the saliency value of the pixel (x, y) in any frame of the sub-video
and Mk (x, y) is the action-relevant region indicator of (x, y). If Mk (x, y) = 1, the pixel
belongs to action-relevant regions, otherwise it belongs to background.

4 Saliency-based dense tracking and action recognition

To evaluate recognition performance, we fuse binary saliency maps into dense tracking
technique [44] to extract trajectories in action-relevant regions. Feature points are densely
sampled on a grid spaced by 5 pixels and tracked from one frame to the next using filtered
dense optical flow. When the points are tracked in the next frame, we see them as candi-
date succeeding trajectory points and employ the binary saliency map to determine whether
they are in action-relevant regions or not. Only those located in action-relevant regions are
regarded as valid trajectory points. To ensure dense coverage of trajectories, if no tracked
point is found in a 5 × 5 neighborhood in action-relevant regions, a new point is sampled
and added to the tracking process. After the tracking process is finished, all points on the
same track form a trajectory. We remove static trajectories and those with sudden large
displacements, which are mostly irrelevant to the interested action.

Four types of trajectory descriptors (Shape, HOG, HOF and MBH) are computed for
all trajectories. To reduce the influence of camera motion, we compute the motion descrip-
tors (Shape, HOF and MBH) from the rectified optical flow, in which camera motion is
removed through the technique used in the improved dense trajectory method [41]. Each
type of descriptors is encoded independently using Fisher vector [31, 32] with the same set-
tings as [41] to obtain the final video-level representation. We use the SVM classifier and
multiple kernel learning to predict action class, where four linear kernels are used, each
corresponding to one type of video-level representation.

5 Experiments

5.1 Experimental settings

We carry out experiments on four benchmark datasets to evaluate the proposed method,
namely, YouTube, Hollywood2, HMDB51 and UCF101. When detecting action-relevant
regions, we resize video frames with a factor of 1/4 for all datasets to reduce computational
costs. The sub-video length is set to w = 5 frames and the spatial size of patches is set to
s = 4 pixels, which are shown to be optimal by the experiments in [40]. We set the initial
saliency threshold Ts = 10, the final saliency threshold T ′

s = 100, which are proved to be
most appropriate by the experiments.

5.2 Action datesets

Hollywood2 dataset [25] is composed of the videos extracted from 69 movies, which fall
into 12 actions classes: answering phone, driving car, eating, fighting person, getting out of

Multimedia Tools and Applications (2020) 79:741 –743337422

car, hugging person, hand shaking, kissing, running, sitting down, sitting up and standing
up. The action videos in it are split into two sets in experiments, i.e., 823 training samples
and 884 test samples.

YouTube dataset [17] consists of 1168 videos, which are divided into 11 action categories:
Basketball shooting, biking, diving, golf swinging, horseback riding, soccer juggling, swing-
ing, tennis swinging, trampoline jumping, volleyball spiking and walking (with a dog). The
videos in each category are grouped into 25 groups. The LOO (Leave-One-Out) scheme on
group basis is employed in experiments, using one group of each category for testing and
the others for training in each run. Recognition performance is measured by averaging the
recognition accuracy over 25 runs.

HMDB51 dataset [12] contains 6,766 video clips extracted from commercial movies as well
as YouTube. In our experiments the original videos are used, which are divided into 51
action categories, each including a minimum of 101 clips. We use the original experimental
setup [12], where three train-test splits are used. For each split, 70 videos are used for
training and 30 videos for testing in each class. Recognition performance is measured by
the average recognition accuracy over three splits.

UCF101 dataset [34] consists of 13,320 video clips collected from YouTube, which are
divided into 101 categories. The videos in each category are grouped into 25 groups. In
our experiments, the protocol with three train-test splits [34] is followed and recognition
performance is reported as the average accuracy over these splits.

5.3 Saliency and action-relevant region detection results

5.3.1 Saliency detection results of different stages

We visualize the saliency detection results of different stages for some action videos from
four datasets in Fig. 3. The videos are all contaminated with various types of camera motion,
such as shaking, travelling and zooming. As indicated in Fig. 3b, the initial saliency obtained
in the first stage can not highlight all the action-relevant regions. The candidate foreground
set and the definite background set are respectively displayed in white and black in Fig. 3c.
Obviously, the former set contains not only nearly all the action-relevant patches, but also
some background patches, and the patches in the latter set nearly all come from background.
As indicated in Fig. 3d, after the saliency is refined in the second stage, the saliency contrast
is greatly sharpened and the action-relevant regions are significantly highlighted. As shown
in in Fig. 3e, after spatially updated in the third stage, the saliency in action-relevant regions
is even more prominent and continuous, which well distinguishes the action-relevant regions
from background.

5.3.2 Final saliency visualization and comparison

We compare the final saliency detection results with that of two recent video saliency
detection methods [21, 45], which are not specially designed for recovering action-relevant
regions and have shown excellent performance in common video saliency detection. To this
end, we randomly select some videos from four action datasets, which are shown in Fig. 4a.
All of them contain various degrees of background motion except the last two. The saliency
is computed using the three methods under their default parameter settings and the binary

Multimedia Tools and Applications (2020) 79:741 –74333 7423

Fig. 3 Saliency detection results of different stages: a sample frame, b initial saliency of the first stage, c
candidate foreground set (white) and definite background set (black), d refined saliency of the second stage,
and e updated saliency of the third stage

saliency maps are all obtained with threshold T ′
s = 100. From Fig. 4b and c, we can see,

whether for the videos with dynamic or static background, the final saliency obtained by
our method well highlights action-relevant regions, and the binary saliency maps offer good
coverage over the action-relevant regions in most cases. In contrast, as shown in Fig. 4d
and f, the saliency contrast obtained by [45] and [21] is not as sharp as ours, and in the
binary saliency maps yielded by [45] and [21] shown in Fig. 4e and g, background regions
are frequently wrongly segmented as action-relevant regions, and conversely action-relevant
regions are also often mistaken for background. Obviously, our method is more suitable for
action-relevant region detection than common video saliency detection methods.

5.3.3 Evaluation of appearance information in saliency refinement

In the second stage of saliency detection, we introduce static appearance information
(color) and combine it with motion information to refine saliency, so that the patches in

Multimedia Tools and Applications (2020) 79:741 –743337424

Fig. 4 Comparison of the saliency detection results of different methods: a sample frame, b saliency of our
method, c binary saliency map of our method, d saliency of [45], e binary saliency map of [45], f saliency of
[21], and g binary saliency map of [21]

action-relevant regions have more chances to obtain high saliency. To evaluate the influ-
ence of appearance information on saliency detection, we try removing it from feature
matrix G and using only motion information for saliency refinement. The saliency detec-
tion results on some videos are visualized and compared with those obtained under the
default settings in Fig. 5. As we can observe, when both appearance and motion infor-
mation is employed, higher saliency is gained in the inner parts of action-relevant regions
and the binary saliency maps cover the action-relevant regions more completely, which
demonstrates that incorporating appearance information is beneficial to saliency refinement.

However, As shown in the first two rows in Fig. 5, there are still some regions in large
action-relevant areas cannot be recovered by incorporating appearance information. One

Multimedia Tools and Applications (2020) 79:741 –74333 7425

(a) (b) (d))e()c(

Fig. 5 Comparison of the saliency detection results with or without static appearance information: a sample
frame, b saliency of default settings, c binary saliency map of default settings, d saliency without appearance
information, and e binary saliency map without appearance information

possible reason is that these regions are wrongly classified into definite background in the
first stage due to very uniform motion in them, and thus cannot be highlighted in the second
stage. The other possible reason is that these regions happen to be similar to background in
both appearance and motion. Both cases cannot be handled by the proposed method.

5.3.4 Evaluation of computational complexity

In this section, the computational complexity for each stage of the saliency detection method
is evaluated on the 150 videos of BaseballPitch class in UCF101 dataset, whose average
size is 320× 240× 100. The experiment is conducted in MATLAB on a personal computer
with 4.2 GHz CPU/16G RAM. and the time consumption per frame for each stage is shown
in Table 1. Obviously, the first stage is most time consuming. Although it has been shown in
[16] that the IALM can be empirically more than five times faster than the other algorithms,
unfortunately, the computational costs are still non-negligible. In contrast, the second stage
is much more computationally efficient, because the dictionary for SR is directly formed by
stacking the feature vectors of the patches in the definite background set, which bypasses the
time-consuming dictionary learning. The updating operation in the third stage just involves a
weighted summation of the saliency values in 8-neighborhood, and can also be implemented
very efficiently. Overall, the total processing time for action-relevant region detection is
1122.11ms per frame, thus it still cannot work in a real-time manner on a typical personal
computer.

Table 1 Time consumption per frame for different stages of saliency detection

Stages The first stage The second stage The third stage Three stages

Time consumption (ms) 1113.5 4.55 4.06 1122.11

Multimedia Tools and Applications (2020) 79:741 –743337426

Fig. 6 Trajectory visualization and comparison: a sample frame, b binary saliency map, c trajectories
produced by saliency-based dense tracking, and d trajectories produced by traditional dense tracking

Multimedia Tools and Applications (2020) 79:741 –74333 7427

Table 2 Recognition performance of different stages of saliency detection

Methods Hollywood2 (%) YouTube (%) HMDB51 (%) UCF101 (%)

Initial-saliency-DT 63.2 90.3 56.8 84.9

Refined-saliency-DT 64.5 91.0 57.7 85.6

Saliency-DT 64.8 91.4 58.9 86.1

5.4 Results of saliency-based dense tracking

The trajectories extracted by saliency-based dense tracking for the sample videos from four
datasets are visualized in Fig. 6c. As can be seen, by fusing the binary saliency maps into
dense tracking, the trajectories in action-relevant regions are well extracted, which are dense
and continuous, and offer a good coverage. At the same time, the trajectories in background
are well suppressed. For comparison, we also extract the dense trajectories using traditional
dense tracking. As visualized in Fig. 6d, besides those in action-relevant regions, there are
also a large number of trajectories produced in background.

5.5 Action recognition performance

5.5.1 Overall recognition performance

The default overall recognition results obtained based on the trajectories extracted from
the action-relevant regions detected by the proposed method are shown in the last row of
Table 2 indicated by ‘Saliency-DT’, which are 64.8% on Hollywood2, 91.4% on YouTube,
58.9% on HMDB51 and 86.1% on UCF101. To give a quantitative evaluation of each stage
of saliency detection, we also compute the recognition results based on the action-relevant
regions obtained from the initial saliency produced by the first stage and the refined saliency
produced by the second stage, which are respectively indicated by ‘Initial-saliency-DT’
and ‘Refined-saliency-DT’ in Table 2. Comparing the results in three rows, we observe
that the performance of refined saliency is always superior to that of initial saliency, and
non-negligible improvement is also witnessed when the saliency is spatially updated.

The default recognition performance is computed based on the trajectories in detected
action-relevant regions with the motion descriptors obtained from rectified optical flow.
To validate the superiority of the proposed method, we also compute the results of the
counterpart with motion descriptors in original optical flow field, and the results of dense
trajectories extracted by conventional dense tracking, which are respectively indicated with
‘Saliency-DT-original’ and ‘DT’ in Table 3. By comparison, when original optical flow is
used in motion descriptors, the trajectories in detected action-relevant regions also show

Table 3 Comparison of recognition performance of dense trajectories (DT), trajectories in action-relevant
regions with motion descriptors in original optical flow field (Saliency-DT-original) and default settings
(Saliency-DT)

Methods Hollywood2 (%) YouTube (%) HMDB51 (%) UCF101 (%)

DT 60.4 86.8 52.4 81.2

Saliency-DT-original 62.6 89.7 56.1 84.6

Saliency-DT 64.8 91.4 58.9 86.1

Multimedia Tools and Applications (2020) 79:741 –743337428

obvious superiority over the dense trajectories. To be specific, the performance improve-
ments are respectively 2.2% on Hollywood2, 2.9% on YouTube, 3.7% on HMDB51 and
3.4% on UCF101. Comparing ‘Saliency-DT-original’ with ‘Saliency-DT’, we find the
recognition performance is further improved when rectified optical flow is used in motion
descriptors.

5.5.2 Influence of saliency thresholds on recognition performance

Two saliency thresholds are involved in the action-relevant region detection method, i.e.,
the initial saliency threshold Ts and the final saliency threshold T ′

s . We evaluate the impact
of these two thresholds on recognition performance on Hollywood2 and YouTube datasets.
When evaluating one threshold, we compute the recognition results by varying it with a
given step and fixing the other to the default. As shown in Fig. 7a, the recognition perfor-
mance fluctuates occasionally with Ts , and reaches the highest at Ts = 12 on Hollywood2
and Ts = 10 on YouTube. As shown in Fig. 7b, the recognition performance improves with
T ′

s at the beginning but deteriorates when T ′
s exceeds a value on both datasets. The highest

performance is reached at T ′
s = 100 on Hollywood2 and T ′

s = 110 on YouTube.
From Fig. 7a, we observe that the initial saliency threshold Ts should be small, but too

small value is also not preferable. This is because a reasonable Ts , one on hand, should be
small enough to guarantee all true action-relevant patches are enclosed in candidate fore-
ground set, but on other hand, should not be too small to ensure the definite background set
contains enough patches to form a dictionary. From Fig. 7b, it can also be seen that the final
saliency threshold T ′

s should be set appropriately, because too big T ′
s tends to cause action-

relevant regions to be wrongly classified as background ones, and conversely too small T ′
s

will increases the risk of wrongly classifying background regions as action-relevant ones.

5.5.3 Comparison with the state of the art

The best recognition results of our method are compared with those of the state-of-the-art
trajectory-based methods in Table 4. On Hollywood2, although [11] yields the best result
using trajectory cluster as global point to alleviate camera motion, our method outperforms
all other methods, among which, [44] is the traditional dense tracking method, and [6, 10,
39–41] improve the dense tracking by suppressing background trajectory features using

6 8 10 12 14 16
0.55

0.575

0.6

0.625

0.65

0.675

0.7

R
ec

og
ni

tio
n

ac
cu

ra
cy

: H
ol

ly
w

oo
d2

Initial saliency threshold
6 8 10 12 14 16

0.8

0.825

0.85

0.875

0.9

0.925

R
ec

og
ni

tio
n

ac
cu

ra
cy

: Y
ou

T
ub

e

(a)

80 90 100 110 120 130
0.55

0.575

0.6

0.625

0.65

0.675

0.7

R
ec

og
ni

tio
n

ac
cu

ra
cy

: H
ol

ly
w

oo
d2

Final saliency threshold
80 90 100 110 120 130

0.8

0.825

0.85

0.875

0.9

0.925

0.95

R
ec

og
ni

tio
n

ac
cu

ra
cy

: Y
ou

T
ub

e

(b)

Fig. 7 Influence of saliency thresholds on recognition performance: a initial saliency threshold, b final
saliency threshold

Multimedia Tools and Applications (2020) 79:741 –74333 7429

Ta
bl
e
4

C
om

pa
ri
so
n
w
ith

th
e
st
at
e-
of
-t
he
-a
rt
tr
aj
ec
to
ry
-b
as
ed

m
et
ho
ds

H
ol
ly
w
oo
d2

Y
ou
T
ub
e

H
M
D
B
51

U
C
F1

01

M
et
ho
ds

R
es
ul
ts
(%

)
M
et
ho
ds

R
es
ul
ts
(%

)
M
et
ho
ds

R
es
ul
ts
(%

)
M
et
ho
ds

R
es
ul
ts
(%

)

W
an
g
et
al
.[
44
]

59
.9

W
an
g
et
al
.[
44
]

85
.4

W
an
g
et
al
.[
44
]

48
.3

W
an
g
et
al
.[
46
]

85
.9

W
an
g
et
al
.[
41
]

64
.3

Pe
ng

et
al
.[
30
]

87
.6

W
an
g
et
al
.[
41
]

57
.2

M
ur
th
y
et
al
.[
28
]

85
.8

W
an
g
et
al
.[
40
]

63
.6
8

W
an
g
et
al
.[
40
]

90
.5
5

M
ur
th
y
et
al
.[
28
]

58
.8

W
an
g
et
al
.[
40
]

85
.6
9

V
ig

et
al
.[
39
]

61
.9

C
ho

et
al
.[
6]

86
.1

W
u
et
al
.[
50
]

56
.3
6

W
u
et
al
.[
50
]

84
.1
6

Ja
in

et
al
.[
10
]

62
.5

W
u
et
al
.[
50
]

90
.8
2

Ji
an
g
et
al
.[
11
]

57
.3

Ji
an
g
et
al
.[
11
]

87
.2

C
ho

et
al
.[
6]

60
.5

Y
ao

et
al
.[
54
]

85
.9

C
ai
et
al
.[
2]

55
.9

C
ai
et
al
.[
2]

83
.5

Ji
an
g
et
al
.[
11
]

65
.4

W
en
g
et
al
.[
47
]

89
.6

W
en
g
et
al
.[
47
]

58
.2

Y
ie
ta
l.
[5
3]

88
.4
5

L
ie
ta
l.
[1
5]

56
.7

O
ur
s

64
.8

O
ur
s

91
.4

O
ur
s

58
.9

O
ur
s

86
.1

Multimedia Tools and Applications (2020) 79:741 –743337430

saliency detection or other techniques. On YouTube, our method performs the best among
all the methods compared, which include the dense tracking method [44], its improved ver-
sions [6, 30, 40, 47, 53], and the methods employing improved VLAD [50] or Multi-view
SC [54] to encode dense trajectory features. On HMDB51, our method performs compet-
itively with the ordered trajectories [28], and is also superior to all other trajectory-based
methods. On UCF101, our method gains the highest performance among all methods except
[11].

6 Conclusion

To improve the conventional dense tracking techniques that do not discriminate between
action-relevant regions and background when extracting features for action recognition, this
paper proposes a three-stage saliency detection technique to recover action-relevant regions
so that only action-related features are extracted to describe actions. Initial saliency is com-
puted in the first stage based on LRMR to determine candidate foreground and definite
background. Saliency is refined using SR in the second stage so that the true action-relevant
regions are highlighted with sharper contrast against background. Saliency is spatially
updated in the third stage to rectify some wrong saliency values through the enhancement of
spatial saliency coherence. Then, binary saliency map is created to indicate action-relevant
regions and incorporated into dense tracking to extract action-relevant trajectory features
to describe actions. Experimental results show that the proposed method can detect action-
relevant regions more accurately than common video saliency detection methods, and the
recognition performance is superior to that of conventional dense tracking and competitive
with that of existing improved versions.

Acknowledgements This work is supported in part by the National Natural Science Foundation of China
(Grant No. 61572395) and the Project of Shandong Province Higher Educational Science and Technology
Program (Grant No. J18KA345).

References

1. Bregonzio M, Li J, Gong S, Xiang T (2010) Discriminative topics modelling for action feature selection
and recognition. In: Proceedings of British machine vision conference, pp 1–11

2. Cai Z, Wang L, Peng X, Qiao Y (2014) Multi-view super vector for action recognition. In: 2014 IEEE
Conference on computer vision and pattern recognition (CVPR), pp 596–603

3. Candés EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted l1 minimization. J Fourier
Anal Appl 14(5–6):877–905

4. Carreira J, Zisserman A (2017) Quo vadis, action recognition? A new model and the kinetics dataset.
volume 2017-January, pp 4724–4733

5. Caruccio L, Polese G, Tortora G, Iannone D (2019) EDCAR: a knowledge representation framework to
enhance automatic video surveillance. Expert Syst Appl 131:190–207

6. Cho J, Lee M, Chang HJ, So H (2014) Robust action recognition using local motion and group sparsity.
Pattern Recogn 47(5):1813–1825

7. Dollar P, Rabaud V, Cottrell G, Belongie S (2005) Behavior recognition via sparse spatio-temporal
features. In: IEEE International workshop on visual surveillance and performance evaluation of tracking
and surveillance, pp 65–72

8. Gao Z, Cheong LF, Wang YX (2014) Block-sparse rpca for salient motion detection. IEEE Trans Pattern
Anal Mach Intell 36(10):1975–1987

9. Jain H, Harit G (2018) Unsupervised temporal segmentation of human action using community
detection. In: 25th IEEE International conference on image processing (ICIP), pp 1892–1896

Multimedia Tools and Applications (2020) 79:741 –74333 7431

10. Jain M, Jegou H, Bouthemy P (2013) Better exploiting motion for better action recognition. In:
Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), pp 2555–2562

11. Jiang YG, Dai Q, Liu W, Xue X, Ngo CW (2015) Human action recognition in unconstrained videos by
explicit motion modeling. IEEE Trans Image Process 24(11):3781–3795

12. Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T (2011) HMDB: a large video database for human
motion recognition. In: Proceedings of IEEE international conference on computer vision (ICCV),
pp 2556–2563

13. Laptev I (2005) On space-time interest points. Int J Comput Vis 64(2):107–123
14. Li X, Lu H, Zhang L, Ruan X, Yang MH (2013) Saliency detection via dense and sparse reconstruction.

In: Proceedings of IEEE international conference on computer vision (ICCV), pp 2976–2983
15. Li Q, Cheng H, Zhou Y, Huo G (2016) Human action recognition using improved salient dense

trajectories. Comput Intell Neurosci 2016(5):1–11
16. Lin Z, Chen M, Ma Y (2009) The augmented lagrange multiplier method for exact recovery of corrupted

low-rank matrices. Eprint Arxiv, 9
17. Liu J, Luo J, Shah M (2009) Recognizing realistic actions from videos in the wild. In: Proceedings of

IEEE conference on computer vision and pattern recognition (CVPR), pp 1996–2003
18. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2Activity: recognizing complex activities

from sensor data. In: Proceedings of the 24th international conference on artificial intelligence, pp 1617–
1623

19. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic
interval-based model. In: Proceedings of 30th AAAI conference on artificial intelligence, pp 1266–1272

20. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition.
Neurocomputing 181:108–115

21. Liu Z, Li J, Ye L, Sun G, Shen L (2017) Saliency detection for unconstrained videos using superpixel-
level graph and spatiotemporal propagation. IEEE Trans Circ Syst Vid Technol 27(12):2527–2542

22. Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2017) Towards unsupervised physical activity recognition
using smartphone accelerometers. Multimed Tools Appl 76(8):10701–10719

23. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision
(darpa). Nutr Cycl Agroecosyst 83(1):13–26

24. Mairal J, Mairal J (2012) SPAMS: a sparse modeling software, v2.3. http://spams-devel.gforge.inria.fr
25. Marszalek M, Laptev I, Schmid C (2009) Actions in context. In: Proceedings of IEEE conference on

computer vision and pattern recognition (CVPR), pp 2929–2936
26. Matikainen P, Hebert M, Sukthankar R (2009) Trajectons: action recognition through the motion analysis

of tracked features. In: Proceedings of IEEE international conference on computer vision workshops,
pp 514–521

27. Messing R, Pal C, Kautz H (2009) Activity recognition using the velocity histories of tracked keypoints.
In: Proceedings of IEEE International conference on computer vision (ICCV), pp 104–111

28. Murthy OVR, Goecke R (2015) Ordered trajectories for human action recognition with large number of
classes. Image Vis Comput, 22–34

29. Nigam S, Khare A (2016) Integration of moment invariants and uniform local binary patterns for human
activity recognition in video sequences. Multimed Tools Appl 75(24):17303–17332

30. Peng X, Qiao Y, Peng Q (2014) Motion boundary based sampling and 3d co-occurrence descriptors for
action recognition. Image Vis Comput 32(9):616–628

31. Perronnin F, Sánchez J, Mensink T (2010) Improving the fisher kernel for large-scale image classifica-
tion. In: Proceedings of European conference on computer vision (ECCV), pp 143–156

32. Sánchez J, Perronnin F, Mensink T, Verbeek J (2013) Image classification with the fisher vector: theory
and practice. Int J Comput Vis 105(3):222–245

33. Somasundaram G, Cherian A, Morellas V, Papanikolopoulos N (2014) Action recognition using global
spatio-temporal features derived from sparse representations. Comput Vis Image Underst 123(0):1–13

34. Soomro K, Zamir AR, Shah M (2012) UCF101: a dataset of 101 human actions classes from videos in
the wild CRCV-TR-12-01

35. Souly N, Shah M (2016) Visual saliency detection using group lasso regularization in videos of natural
scenes. Int J Comput Vis 117(1):93–110

36. Sun J, Wu X, Yan S, Cheong LF (2009) Hierarchical spatio-temporal context modeling for action recog-
nition. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition
(CVPR), pp 2004–2011

37. Sun J, Mu Y, Yan S, Cheong LF (2010) Activity recognition using dense long-duration trajectories. In:
Proceedings of IEEE international conference on multimedia and expo (ICME), pp 322–327

38. Tong N, Lu H, Zhang Y, Ruan X (2015) Salient object detection via global and local cues. Pattern
Recogn 48(10):3258–3267

Multimedia Tools and Applications (2020) 79:741 –743337432

http://spams-devel.gforge.inria.fr

39. Vig E, Dorr M, Cox D (2012) Space-variant descriptor sampling for action recognition based on saliency
and eye movements. In: Proceedings of European conference on computer vision (ECCV), vol 7578,
pp 84–97

40. Wang X, Qi C (2016) Saliency-based dense trajectories for action recognition using low-rank matrix
decomposition. J Vis Commun Image Represent, 41

41. Wang H, Schmid C (2013) Action recognition with improved trajectories. In: Proceedings of IEEE
international conference on computer vision (ICCV), pp 3551–3558

42. Wang H, Ullah MM, Kläser A, Laptev I, Schmid C (2009) Evaluation of local spatio-temporal features
for action recognition. In: Proceedings of British machine vision conference (BMVC)

43. Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image
classification. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR),
pp 3360–3367

44. Wang H, Kläser A, Schmid C, Liu C-L (2013) Dense trajectories and motion boundary descriptors for
action recognition. Int J Comput Vis 103(1):60–79

45. Wang W, Shen J, Yang R, Porikli F (2018) Saliency-aware video object segmentation. IEEE Trans
Pattern Anal Mach Intell 40(1):20–33

46. Wang H, Schmid C LEAR-INRIA submission for the thumos workshop. In: http://crcv.ucf.edu/
ICCV13-Action-Workshop/

47. Weng Z, Guan Y (2018) Action recognition using length-variable edge trajectory and spatio-temporal
motion skeleton descriptor. EURASIP J Image Video Process 2018(1):8

48. Wright J, Ganesh A, Rao S, Ma Y (2009) Robust principal component analysis: exact recovery of
corrupted low-rank matrices via convex optimization

49. Wu S, Oreifej O, ShahM (2011) Action recognition in videos acquired by a moving camera using motion
decomposition of lagrangian particle trajectories. In: Proceedings of IEEE conference on computer
vision and pattern recognition (CVPR), pp 1419–1426

50. Wu J, Zhang Y, Lin W (2014) Towards good practices for action video encoding. In: 2014 IEEE
Conference on computer vision and pattern recognition (CVPR), pp 2577–2584

51. Wu Y, Yin J, Wang L, Liu H, Dang Q, Li Z, Yin Y (2018) Temporal action detection based on action
temporal semantic continuity. IEEE Access 6:31677–31684

52. Yan J, Zhu M, Liu H, Liu Y (2010) Visual saliency detection via sparsity pursuit. IEEE Signal Process
Lett 17(8):739–742

53. Yang Y, Pan H, Xiaokang D (2018) Human action recognition with salient trajectories and multiple
kernel learning. Multimed Tools Appl 77(14):17709–17730

54. Yao T, Wang Z, Xie Z, Gao J, Feng DD (2017) Learning universal multiview dictionary for human action
recognition. Pattern Recogn 64(C):236–244

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Multimedia Tools and Applications (2020) 79:741 –74333 7433

http://crcv.ucf.edu/ICCV13-Action-Workshop/
http://crcv.ucf.edu/ICCV13-Action-Workshop/

	Detecting action-relevant regions for action recognition using a three-stage saliency detection technique
	Abstract
	Introduction
	Related works
	Action recognition
	Saliency dection

	Action-relevant region detection
	Initial saliency detection
	Saliency refinement
	Saliency updating

	Saliency-based dense tracking and action recognition
	Experiments
	Experimental settings
	Action datesets
	Hollywood2
	YouTube
	HMDB51
	UCF101

	Saliency and action-relevant region detection results
	Saliency detection results of different stages
	Final saliency visualization and comparison
	Evaluation of appearance information in saliency refinement
	Evaluation of computational complexity

	Results of saliency-based dense tracking
	Action recognition performance
	Overall recognition performance
	Influence of saliency thresholds on recognition performance
	Comparison with the state of the art

	Conclusion
	References

