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Abstract
Hand gestures are a natural and intuitive form for human-environment interaction and can
be used as an input alternative in human-computer interaction (HCI) to enhance usability
and naturalness. Many existing approaches have employed vision -based systems to detect
and recognize hand gestures. However, vision-based systems usually require users to move
their hands within restricted space, where the optical device can capture the motion of hands.
Also, vision-based systems may suffer from self-occlusion issues due to sophisticated finger
movements. In this work, we use a sensor-based motion tracking system to capture 3D hand
and finger motions. To detect and recognize hand gestures, we propose a novel angular-
velocity method, which is directly applied to real-time 3D motion data streamed by the
sensor-based system. Our approach is capable of recognizing both static and dynamic ges-
tures in real-time. We assess the recognition accuracy and execution performance with two
interactive applications that require gesture input to interact with the virtual environment.
Our experimental results show high recognition accuracy, high execution performance, and
high-levels of usability.

Keywords Gesture-based interactive system · Motion tracking · Gesture recognition

1 Introduction

Hand gestures are considered to be an input modality for human-computer interaction (HCI)
but not widely used as a primary method of interaction in computer systems. Nowadays,
most HCI applications are driven by keyboard and mouse operations to manipulate digital
information because of their high degree of precision and ease of providing input by clicking
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buttons; however, the keyboard-mouse method does not allow users to directly interact with
information in the same way we interact with objects by hands.

Hutchins et al. [16] defined the gulf of execution as the gap between the user’s goal
and the machine instructions that the user needs to follow to accomplish the goal. The
gap must be filled with the user’s activities to interact with the machine. A smaller gulf
of execution will enable faster and more efficient activities to accomplish the goal with a
smaller chance of errors. Touch-based gestures produce a direct and intuitive way to interact
with digital information. With an appropriate touch user interface (TUI) design, interactions
with the touch screen can be faster and more intuitive than interactions with keyboard and
mouse. As mentioned by Kieras et al. [18], TUIs reduce the gulf of execution as it is a
more direct form of interaction between the user and information than the keypad interface.
However, TUIs still do not provide the same degree of freedom and flexibility as hand
gestures in a 3D environment. Hand gestures performed without touching the screen extend
the interactions beyond a 2D plane of glass (e.g., tapping, sliding, and dragging). Such in-air
gestures can be an input modality for touchless user interfaces, which allow users to operate
the interface like interacting with real-world objects. Touchless user interfaces with in-air
gesture controls could further reduce the gulf of execution between the user and digital
information. It can also reduce problems such as fat finger [36] or occlusion [39] caused by
restricted touch space.

In this work, we detect and recognize in-air hand gestures, which are natural and intuitive
to perform and can be used to interact with touchless user interfaces. Many existing gesture
recognition methods use machine learning and computer vision algorithms to achieve high
gesture recognition accuracy (e.g., [24, 27, 41]). However, they suffer slow execution and
cannot be used in real-time applications requiring high-frequency interactions such as video
games and interactive tools. The goal of this work is to design a gesture recognition system
that satisfies the requirement of high accuracy and fast execution performance for real-time
applications.

Contributions In this work, we present an adaptive hand model which is articulated using
the fingers that have a high degree of independence. We develop a method based on angular
velocities to recognize both static and dynamic hand gestures in real-time. We demonstrate
the use of this method in recognizing a vocabulary of eight natural hand gestures. Dif-
ferent from machine learning approach, our angular-velocity method do not require data
preprocessing like data collection, annotation, or training. The accuracy and execution per-
formance of our method are evaluated with the user study of two experimental applications
that require high-frequency interactions. The results show high recognition accuracy, fast
execution performance, and high levels of usability.

The rest of the paper is organized as follows. Section 2 reviews existing vision-based and
sensor-based methods for gesture recognition, which are related to the work presented in
this paper. We present the adaptive hand model in Section 3. The angular-velocity method
and the gesture vocabulary are presented in Section 4. Section 5 presents the experimental
design. The results of the experimental study are discussed in Section 6. Section 7 concludes
our work and proposes the future work.

2 Related work

Hand gesture-based interactions have received increasing attention in HCI and have the
potential of being an effective way to interact with computers [35]. To support complex
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interactions, the design of hand gestures need to be ergonomic [26, 42], intuitive [28],
bimanual (performed with both hands), and pantomimic (meaningful without speech) [1].
Nielsen et al. [28] considered human factors in HCI and presented a procedure to map a
gesture vocabulary towards functionality. Related to our work, this section reviews both
vision-based and sensor-based (non-optical) gesture recognition methods.

2.1 Vision-basedmethods

Vision-based methods usually use cameras to capture colors and depths [40]. An advan-
tage of using a vision-based motion capture device for gesture recognition is that there
is no need to wear any form of sensors, unlike wearable motion capture devices (such
as gloves). Rautaray and Agrawal [33] mentioned that vision-based methods have three
phases: detection, tracking, and recognition. Song et al. [37] detected gestures using a stereo
camera to reconstruct body postures in 3D and then built features that were fed into a
classifier, but the recognition accuracy was low. Wang et al. [41] used a Microsoft Kinect
and converted the captured hand shapes into super pixels. The gestures were recognized
using a distance metric to measure the dissimilarity between hand shapes. Liu et al. [22]
applied a rule-based approach on stereo images. Their approach recognized seven dynamic
hand gestures and six static (finger spelling numbers) hand gestures. Marin et al. [25]
used a Microsoft Kinect and a Leap Motion device to capture images and motion data.
Hand gestures were recognized by using support vector machines. Sharma and Verma [35]
extracted hand shapes and orientations from video streams, and recognized six static hand
gesture images. However, their approach required stable lighting and simple background
conditions.

The high accuracy of gesture was reported in those vision-based methods (e.g., over 90%
accuracy in [22, 25, 41]), but the accuracy with vision-based methods may be affected by
environmental factors [29, 40], such as the number of cameras, lighting conditions, or the
capturing range of the cameras.

2.2 Sensor-basedmethods

Non-optical motion sensors can be used to tracking motions by holding them in hands or
attaching them on bodies, such as Wii controller, CyberGlove [17], and inertial systems [4].
Different from optical motion sensors, they are not sensitive to environmental factors like
lighting conditions or cluttered backgrounds.

Xu [43] used a Cyber Glove to collect driving motion data, and then they used the
data to train a feed-forward neural network for gesture recognition. Neto et al. [27] used a
CyberGlove and artificial neural networks to recognize communicative gestures for human-
robot interactions. However, their approach could be time-consuming on dynamic gesture
recognition and may not support real-time interactions. Lu et al. [23] collected motion data
from a custom forearm wearable device, and they utilized a linear classifier and a dynamic
time-warping algorithm to recognize hand gestures. However, their approach needed 300
milliseconds to respond to each gesture. Luzhnica et al. [24] developed a custom motion
tracking glove and employed a window-sliding method. The execution efficiency of their
approach highly depended on the window size. For example, a 50-frame window size
resulted in a delay of 0.625 seconds on the system response. Alavi et al. [2] developed a
multi-sensor motion capturing system and detected arm and upper-body gestures by using
support vector machines and neural networks. Their approach worked well for the users
who participated in the process of data collection, but resulted in lower recognition accuracy
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for the users who did not participate in the process of data collection. Also, the execution
of their approach was not fast enough to support high-frequent interactions. Thus, Those
existing sensor-based methods reported a high recognition accuracy (above 90%), but they
suffer slow execution, so that they may not be suitable for real-time applications.

In our previous work, we designed and evaluated sensor-based hand gesture applications.
Based on the results of our previous studies, we are positive on the use of hand gestures
in HCI. In the work of Hansberger et al. [13], three hand gestures were adopted to evalu-
ate the levels of arm fatigue within in a gaming environment. The results showed that the
fatigue levels from using the supported hand gestures were similar to the use of keyboard.
Supported gestures and keyboard interactions produced less fatigue than mid-air type of
gestures. Peng et al. [31] presented the design diagram of a gesture-based image catego-
rization interface in a virtual environment. The work focused on the gesture design and the
design of functional operations. Peng et al. [30] studied user experience of using gesture
input modality in video games. The work discussed the mapping of hand gestures to com-
mands to control the movement of game characters. The video game and motion tracking
equipment used in the experiment of that work were the same as the game and equipment
used in this work. Hansberger et al. [12] proposed the concept of integrating hand ges-
tures in a multimodal interface in the virtual environment. However, these previous work
did not present details of the gesture recognition method and did not include evaluations
on recognition accuracy and execution performance. Diliberti et al. [9] developed custom
motion capturing gloves to capture hand and finger movements. They also presented a neu-
ral network method to train a gesture classification model and use it to recognize new
hand gestures. Although the work achieved a high recognition accuracy, a lot of laborious
work were involved in order to collect training data sets and tune neural network training
parameters.

In this work, we use an inertial measurement unit (IMU) based motion capture system.
An IMU is a motion tracking sensor which is usually composed of one or more accelerom-
eters, gyroscopes, and magnetometers. It can produce the 3D rotation value in itself, based
on a combination of measurements from the accelerometers, gyroscopes, and magnetome-
ters. An IMU is low cost and in a small size, and it usually requires low processing power.
IMUs do not require extensive space for the setup and do not cause self-occlusion issues
on hands, which otherwise may occur with optical devices when hands are in motion. In
addition, our approach does not require a training phase prior to the phase of recognition.

3 Handmodel articulation

The hand model used in this work is a replica of a human’s skeletal hand. The model adapts
to different hand proportions and supports a fast and accurate gesture recognition from com-
plex hand and finger motions. The hand gestures are directly used for giving authoritative
instructions and manipulating objects.

3.1 Degree of finger independence

The biomechanics and physiology of the hand lead to some limitations on the type of
motions capable with the hand and fingers. The degree of finger independence refers to the
amount of muscle-controlled movement versus the amount of passive movement coupled
with the movement of other fingers [19]. The fingers of a hand except the thumb are not
fully independent.
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Based on the previous studies in the field of hand biomechanics (e.g.,[11, 19]), the thumb
shows the highest degree of independence. The index finger is the second, and the middle
finger is the third. The thumb, index, and middle fingers are the primary fingers contribut-
ing to the creation of gestures. For example, the index finger is usually preferred to create
a pointing gesture. A thumbs-up is a natural gesture to show approval or satisfaction. In
contrast, the ring and pinky fingers are seldom used in a natural gesture.

3.2 Articulation

The articulation of our hand model represents the hand with nine finger joints and
one wrist joint. A joint is the junction between two bones. Each finger is represented with
three joints. Taken the degree of finger dependence into consideration, our approach uses
three fingers: thumb, index finger, and middle finger. The joints of the hand model are
denoted as J = {w, tj , ij ,mj }, where j is an integer index in the range of [1, 3]. As illus-
trated in Fig. 1a, w is the wrist joint, tj is a joint of the thumb, ij is a joint of the index
finger, mj is a joint of the middle finger. A vector is constructed between two neighbor-

ing joints to represent the bone. Let’s denote a vector constructed from the joint c to

d . Thus, the proximal phalanx of the index finger can be represented as the vector .
We assume joint positions are in the world (global) coordinate system, rather than based
on relative bone rotations within the skeletal hierarchy. We define a local coordinate sys-
tem, whose origin is at the chest joint of the avatar, as shown in Fig. 1b. The vector
is consistent to the world y axis. The vector corresponds to the direction that the user
faces to. To obtain , we first compute an assisting vector with left and right shoulder
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Fig. 1 The upper body and hand articulation
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joints, denoted as sl and sr , respectively. Equation (1) shows the metric to compute those
axes.

(1)

The local coordinate system is dynamically established based on the body posture and
the facing direction. With the local coordinate system, users are free to adjust their body
positions while performing a hand gesture, such as bending their body forward or turning
and laying their back on the couch.

4 Gesture recognition

Hand gestures can be classified into two categories: static gestures and dynamic ges-
tures [15, 29]. Static gestures are postures where the hand and fingers do not move
temporally. For example, pointing with the index finger is a static gesture. Theoretically,
any posture can be a static gesture, but a high similarity in postures may increase the error
rate of interpreting the gesture meaning. Dynamic gestures involve physical movements of
the hand and fingers in two or three dimensions. A dynamic gesture is usually composed
of three stages: start, update, and end [32]. The start stage detects an initial posture that
satisfies the gesture’s eligibility criteria. The end stage detects an exclusive posture that
indicates the completion of the gesture. The update stage detects in-between changes within
the sequence of satisfactory postures. For example, waving hands at somebody is a dynamic
gesture.

Our proposed angular-velocity method is capable of recognizing both static and dynamic
gestures. In this section, we first present the details of the angular-velocity method, and then
we describe the design of the gesture vocabulary, which contains both static and dynamic
gestures and can be recognized by the angular-velocity method.

4.1 Angular-velocity method

We use vectors and angles to determine the gesture a user performs. In our method,

and are used to define the plane of the palm. We define the palm vector, denoted as ,
which is outward-pointing normal vector from the palm plane. It is equal to the normalized

cross product of and . For the left hand, . For

the right hand, . We also define the vector pointing to
the side of the palm, denoted as , which is equal to the normalized cross product of
and . We also define the parameters of palm directional angle and hand postural angle.
The palm directional angle indicates the facing direction of the palm. The hand postural
angle indicates the relative posture to the user’s body. The acceptance of the initial palm
directional angle and hand postural angle is evaluated in the local coordinate system defined
by (1).

We define the parameter of performing time, which is the time duration that continuously
satisfies the gesture parameter requirements. For static gestures, the value of performing
time begins accumulating when the first matched posture is found. The value stops accu-
mulating when the posture does not meet the requirements. For dynamic gestures, the value
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begins accumulating after the start stage, and it stops when reaching the end stage. A static
gesture can be detected at the moment when a mismatched posture occurs. A dynamic ges-
ture can be detected in the end stage. In such a moment or stage, if the performance time is
in the range of the performing time thresholds, the gesture is detected; otherwise, no gesture
returns. Before proceeding to detect another gesture, the value of performing time is set to
zero.

For dynamic gestures, the parameter of angular velocity checks if the motion of the hand
and fingers meet the gesture requirements. While performing a dynamic gesture, the hand
movement speed may not always be constant. It is possible that the speed falls out of the
threshold range for just a few milliseconds and quickly resumes back into the range. People
do not perceive this as two separate dynamic gestures, but the method does. To avoid this
anomaly, we define the parameter of break time for dynamic gesture recognition. It ensures
that a minimum amount of time has to pass before recognizing another dynamic gesture.
The value of the break time begins accumulating from zero if the end stage has detected a
dynamic gesture. The process to recognize another gesture can start after the break time has
reached the threshold range.

4.2 Gesture vocabulary

We designed a vocabulary of gestures with the goal of reducing the burden on users to learn,
remember or recall gestures, and make those gestures closely related to the users’ natural
hand motions. The gestures in our vocabulary are conscious gestures [6] that have meanings
without speech as opposed to spontaneous gestures having meanings only within the context
of speech. The gestures in the vocabulary are swipe, stop, come, go, pinch, drop-in, trash-
out, and pointing. Figure 2 illustrates the gestures and their vector representations.

In a real hand kinematic model, a hand can be effectively controlled by 27 degrees of
freedom (DOF), which include 6 DOFs for the position and orientation of the wrist, 5 DOFs
on the thumb, and 4 DOFs on other fingers [20]. Because of movement constraints on the
joints, certain hand postures are impossible to perform [20]. For example, fingers can be
moved backwards only up to an extent [21]. The wrist can move backwards or forward, but
the wrist movement cannot make the palm or dorsal side of the hand touch the forearm. We
consider such constraints and angle limits on the joints in our angular-velocity method, and
we empirically determine the threshold values of the parameters for each of the gestures, as
shown in Table 1, 2, 3, 4, 5 and 6. The following subsections describe the characteristics of
each gesture in the vocabulary.
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Fig. 2 The gestures (top) and their vector representations (bottom). From left to right, the gestures are swipe,
stop, come, go, pinch, drop-in, trash-out, and pointing

Multimedia Tools and Applications (2020) 79:17707 17730– 17713



Table 1 The thresholds of the parameters used in the swipe gesture

Table 2 Parameters and
threshold ranges used in the stop
gesture

Parameters Threshold ranges

Stop palm directional angle [0◦, 25◦]

Stop hand postural angle [0◦, 25◦]

Stop performing time [0.016 secs, +∞]

Table 3 Parameters and threshold ranges used in the come and go gesture

Parameters Threshold ranges

Come Go

Come/Go palm directional angle [0◦, 30◦] [145◦, 180◦]

Come/Go hand postural angle [0◦, 30◦] [0◦, 45◦]

Come/Go angular velocity [100◦/sec, +∞) [200◦/sec, +∞)

Come/Go performing time [0.016 secs, +∞)

Come/Go break time [0.1 secs, +∞)

Table 4 Parameters and
threshold ranges used in the
pinch gesture

Parameters Threshold ranges

Pinch palm directional angle [60◦, 120◦]

Pinch hand postural angle [50◦, 130◦]

Pinch distance( ‖i3 − t3‖) [0, 1cm]

Table 5 Parameters and
threshold ranges used in the
drop-in and trash-out gestures

Parameters Threshold ranges Gesture types

Drop palm directional angle [0◦, 55◦) Trash-out

(125◦, 180◦] Drop-in
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Table 6 Parameters and
threshold ranges used in the
pointing gesture

Parameters Threshold ranges

Pointing finger Bend Angle [40◦, 90◦]

Pointing Finger Bend Angle (extended fingers) [150◦, 200◦]

Pointing finger orientation angle [-30◦, 30◦]

4.2.1 Swipe

A swipe gesture is characterized by a hand motion of the wrist rotating while the palm
is facing sideways and moving towards the direction it is facing. The start stage recog-
nizes the palm fairly straight and facing sideways towards the other hand. The threshold
values are specified in Table 1. A perfect palm directional angle is 90 degrees while the
ideal hand position would be at 180 degrees. The hand postural angle checks if the hand
is straight. In particular for swipe gesture, during the update stage, our method checks
the swipe angular velocity, which is produced by the wrist rotation. It is defined as an
angle value from two vectors, and , where is the at the frame
j , and is the at the next consecutive frame. In our method, the left hand
only performs a swipe to the right and vice versa. To ensure this, we define a swipe
direction parameter. If any parameters fall out of the threshold range, the end stage is
triggered.

4.2.2 Stop

A stop gesture is characterized by an open palm facing outwards from the front of the body
with four fingers straight up and together. We assume that represents the hand pointing
direction. Table 2 lists the parameter threshold ranges for the stop gesture.

4.2.3 Come and Go

A come gesture starts with a posture where the palm faces upwards and the fingers are
together and straight; then, the four finger tips, primarily the middle fingertip, move towards
the hollow of the palm. A go gesture provides the inverse command of a come gesture. It
is characterized by the palm of the hand facing downwards and the fingers bent towards
the palm as the starting posture of the gesture. Then, the four fingers move away from the
palm (stretched out) so as to make the palm fairly straight.

The required palm facing direction in the start stage is evaluated by the palm directional
angle. Come and go gestures also require the hand to be positioned in front of the body,
which is determined by the hand postural angle. The palm directional angle and the hand
postural angle have threshold ranges because people may not be able to comfortably pose
the palm at the ideal angle due to individual differences. Table 3 lists the parameters used
in the come and go gestures and their threshold ranges.

In the update stage, we check the angular rotation velocity at the first and second joints of
the middle finger. As indicated in Table 3, the angular velocity is defined as the difference
between the angle formed by and and the angle formed by and

. The angular velocity is a positive value for a come gesture in which the middle
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finger moves towards the palm; and it is a negative value for a go gesture. The recognition
process moves to the end stage if an angle parameter or the velocity parameter is out of the
threshold ranges.

4.2.4 Pinch

Pinch is a gesture performed using the thumb and the index finger and pinching them
together to hold an object. It can be used in conjunction with other gestures. For example,
a person can pick an object, and move it with arm/hand movements or throw it away with a
wrist rotation.

A pinch gesture requires the palm facing sideways to the other hand and needs the tip of
the thumb to touch the tip of the index finger. The wrist is free to rotate about the axis.
Table 4 lists the parameters and their threshold ranges. We do not use the performing time
to determine if a pinch gesture is detected or not; instead, we check the distance between
the tip of the thumb and the tip of the index finger, which is denoted as the parameter of
pinch distance.

4.2.5 Drop-in and trash-out

Drop-in and trash-out are a pair of gestures used to give commands like “put it in” and
“throw it away”. They are also used to indicate the direction in which a person intends to
move an object. Both gestures usually combine with a pinch gesture. For example, while
performing a pinch gesture, a drop-in gesture changes the palm orientation from facing
sideway to facing down, and a trash-out gesture changes it from facing sideway to facing
up.

Both drop-in and trash-out gestures are dynamic gestures. The start stage involves detect-
ing a pinch gesture. The end stage involves evaluating the palm directional angle to check
if it meets the requirements of either drop-in or trash-out gestures. In the update stage, the
pinch gesture should remain active, and the value of palm directional angle is updated. In
the end stage, if the value corresponds to the status of the palm facing down, a drop-in ges-
ture is detected; or if it corresponds to the status of the palm facing up, a trash-out gesture
is detected. Table 5 shows the threshold ranges of the palm directional angle. The pinch
gesture deactivates after a drop-in or trash-out gesture is detected.

4.2.6 Pointing

Pointing forward gesture as the name suggests is used to point at something that is in front
of a person. Generally, in real life, we use pointing forward gesture to point at something.
Similarly, in virtual environments, pointing gesture can be used to point at an object like we
use a mouse pointer.

Pointing forward is a static gesture. The pointing forward gesture is characterized by
hand forming a fist but index finger extended and pointing forward. We use the Finger Bend
Angle as the angle between the vectors and , where a can be any finger in the
set {t, m, r, p}. The fingers would be involved in an ideal fist if the Finger Bend Angle is
60 degrees. We check the Finger Bend Angle for all the bent fingers to be in the threshold
range as shown in the Table 6. We also check the Finger Bend Angle (for the extended
fingers) of the index finger. This ideally should be 180 degrees. The threshold ranges for
these parameters is as shown in Table 6. In addition to this, we check the orientation of the

index finger for pointing forward by checking the angle between and the z-axis which is
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called the Pointing Orientation Angle. Ideally, this angle should be 0 degrees. The threshold
range for this is also shown in Table 6.

5 Experimental design

We examined the usability and reliability of our gestures with two experimental applica-
tions: one is a gesture-based video game (Section 5.1), and the other one is a gesture-based
3D interface for image categorization in a virtual environment (Section 5.2).

5.1 “Happy Ball” video game

Video games present emerging phenomena, which motivate users to perform predefined
gestures to interact with gaming content. Integrating hand gestures with the gameplay
mechanics provides meaningful repetition of same gestures and promotes user’s vigilance
and interest.

For our experiment, we developed a video game called “Happy Ball” including three mini
games. The player character is a ball, and the gameplay goal is to keep the ball happy. The
happiness level (life status) of the ball is represented with nine facial expressions textured
on the surface of the ball. The happiness levels in decreasing order are elated, joyful, happy,
satisfied, neutral, unhappy, sad, depressed, and crying. The three mini games depict the
seasons of Winter, Summer and Fall. In accordance with the gameplay mechanics in each
mini game, the user performs only a subset of gestures from the gesture vocabulary to
control the ball’s movement. The mappings between gestures and ball controls are listed as
follows:

(1) In the winter game, a user can perform a swipe gesture to move the ball left and right.
(2) In the winter game, a user can perform a stop gesture so that the ball stops bouncing.
(3) In the summer game, a user can perform a stop gesture so that the ball stops moving.
(4) In the summer game, a user can perform a come gesture to make the ball move forward.
(5) In the summer game, a user can perform a go gesture to make the ball move backward.
(6) In the fall game, a user can perform a drop-in gesture to drop objects on the ball.
(7) In the fall game, a user can perform a trash-out gesture to throw away objects.

Figure 3 shows the screen shots of the mini games. The game restarts if the happiness
level goes down to crying. The game does not provide a way to increase the happiness level.
We created a configuration file for each mini game to determine the objects and where to
put them in the gaming scene. We did not use a random strategy to propagate game objects
because we want to ensure the same difficulty level for all user-study participants. In the fol-
lowing subsections, we present the design concepts and the gestures used in each mini game.

Fig. 3 The screen shots of the three “Happy Ball” mini games. From the left to right, they are winter game,
summer game, and fall game
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5.1.1 Winter game

The ball bounces and self-propels on a three-lane path. The gameplay goal is to command
the ball to move left and right using the swipe gestures to collect gifts (rewards) and avoid
obstacles on the path (walls) and perform a stop gesture to avoid the obstacles above the
path (floating ice blocks). Being hit by a wall or an ice block will decrease the happiness
level by one, and collecting a gift will increase the level by one.

5.1.2 Summer game

This is similar to the “Red Light - Green Light” children’s game. A rewarding object (water-
melon) is placed in front of a flippable board (like a traffic light). The gameplay goal is to
move the ball forward using the go gesture to get the watermelon and bring it back to the
starting line using the come gesture. The board spins and then stops at the red. When the
board is spinning, the ball can be in motion; otherwise, at the red, the player should stop
the ball using the stop gesture to avoid the decrease of the happiness level. Every water-
melon brought back increases the score by one. Every time the player fails to stop the ball
on red-light results in loss of a happiness level.

5.1.3 Fall game

This mini game has a path with three lanes. The ball stays on the middle lane and moves
forward at a constant speed. It cannot be moved to either of the side lanes. Leaves (rewards)
and stones (punishments) appear on the left and right lanes. While the ball is moving, the
player has to command the ball to pick up leaves using the pinch gesture and drop them on
itself using the drop-in gesture, and pick up stones using the pinch gesture and throw them
away using the trash-out gesture. Every dropped-in leaf increases the score by one. Every
missed or dropped-in stone decreases the happiness level by one.

5.2 Image categorization interface

Modern technologies with cameras, phones, scanners, satellites, and surveillance systems
can produce a massive amount of digital images. Categorizing those images can be a chal-
lenging task due to extreme complexity of the contents in unsorted image collections. In a
situation where a large collection of images must be manually sorted or categorized, tra-
ditional user interfaces have limitations: (1) limited display space for browsing or retrieval
tasks, (2) deep and complex menus for sorting and navigating through the collection and (3)
lack of technical support to take inputs from natural human manipulation actions. Perform-
ing hand gestures for digital image manipulation was suggested decades ago by Hauptmann
et al. [14] in order to improve the naturalness and engagement in interaction.

For our experiment, we developed a 3D interface for users to categorize images with his
or her hands in virtual reality. The interface is displayed with a VR device, which provides
extra levels of immersion. Images are organized in a curved virtual display wall. The wall
can be extended infinitely and rotated with respect to the eye position. We call this visual-
ization an “Image Wall”. Our design focuses on a set of interaction functions between hand
gestures and the interface. The user can use one gesture at a time to control the interface or
manipulate images as they progress. Those interaction functions are listed as follows:

(1) A user can perform a swipe gesture to flip through images.
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(2) A user can point on the interface to highlight individual images.
(3) A user can perform a pinch gesture to select the highlighted image.
(4) A user can perform a come gesture to move the image towards the user (zoom-in).
(5) A user can perform a go gesture to move the image back into the interface (zoom-out).
(6) When an image is selected, a user can perform a swipe gesture to put the image into a

category on the left or on the right of the interface.

6 Evaluation

We conducted a user study to assess the execution efficiency, accuracy, and reliability
of the hand gestures described in Section 4. The user study also assessed the usability
and acceptance of the hand gestures. The evaluation of participants’ experience was con-
ducted with a usability questionnaire based on the System Usability Scale (SUS) [5] and
an acceptance questionnaire based on Technology Acceptance Model (TAM) [8]. The
usability and acceptance questionnaires were administered to each participant after each
of these sessions of the user study. The study was video recorded only for the purpose of
evaluation.

6.1 Apparatus

We used a Perception Neuron motion capture suit. It is wireless and with the capability for
a customizable configuration. For our study, only the gloves and torso straps were used to
track the movements of upper body, arm and hand joints, in accordance with the illustra-
tion in Fig. 1. There are a total of 23 motion sensors, including 9 for each hand, 1 for each
arm, and 3 for the torso. Each sensor is able to transmit motion data wirelessly to the AXIS
Neuron PRO software system. Note that our approach is independent from Perception Neu-
ron products. The input of our approach only requires an articulated 3D hand model with
joint rotations relative to the skeletal hierarchy. We used a Perception Neuron suit for this
study, because the suit was available for us, and it has been integrated with the game engine
in our lab. Our approach can work seamlessly with camera-based systems such as Leap
Motion [10], or sensor-based systems such as CyberGlove [17], or any other types of motion
tracking devices that can produce such joint rotations. We used the Unity game engine to
implement the “Happy Ball” games, the image categorization tool, and the angular-velocity
method of gesture recognition. Motion data was streamed from the AXIS Neuron PRO soft-
ware to the Unity in real-time. An Oculus Rift was used to present the image categorization
tool in the immersive virtual environment.

6.2 Procedure

Prior to the start of the study, each participant was asked to complete a demographic ques-
tionnaire about his or her previous gaming experience. They were then instructed to wear
the motion-tracking gloves on both hands and the torso straps. Participants were given a
brief verbal instruction on how to perform the gestures. They were also informed that a
video recording would be collected during the user study.

The user study is divided into three sessions. The first session is to evaluate the accuracy
of our gesture recognition approach. The accuracy is defined as the percentage of correctly
recognized gestures over the total requested gestures. Participants were not familiar with
the angular-velocity techniques or parameter thresholds. We created an interface tool that

Multimedia Tools and Applications (2020) 79:17707 17730– 17719



contains the implementation of the gesture recognition approach. The tool displays one
gesture name at a time, and then a progress bar runs from one end to the other end of the
screen horizontally in a span of three seconds. During this time span, the participant needs
to finish performing the gesture. Then, the tool displays a color bar in either green, red,
or yellow. The green color indicates the correct recognition of the performed gesture; the
red color indicates the performed gesture is recognized as a different gesture in the gesture
vocabulary; and the yellow color indicates either no gesture is performed or it is unknown in
the vocabulary. To evaluate the accuracy, we requested participants to perform each gesture
20 times, so we obtained a total of 240 samples for each gesture. Thus, the accuracy is
calculated by dividing the number of gestures performed correctly (by all participants) by
the total 240 samples.

In the second session, participants played three “Happy Ball” mini games, as shown in
Fig. 4. At the beginning of each mini game, each participant was given a verbal instruction
on how to play the game. Then, the participant played the mini game for two minutes to prac-
tice and then played five minutes for our experiment. After the participant finished playing
all three mini games, he or she answered the usability and acceptance questionnaires.

In the third session, participants completed a simple image categorization using with the
VR interface, as shown in Fig. 5. At the beginning of this session, each participant was
given a verbal instruction on how to use the VR interface. Then, the participant practiced
the use of the interface for two minutes. After that, the participant was given five minutes
to classify the images presented in the interface, followed by answering the usability and
acceptance questionnaires. When all three sessions were completed, a short interview was
given to obtain feedback about the study.

6.3 Participants

Participation in this study was voluntary. It took about two hours for a participant to com-
plete this study. A total of twelve participants participated this study (all adults, mean age is
23.83 years). Among all participants, eight of them had never played a gesture-based video
game, two participants had experience using a Microsoft Kinect, and two participants had
experience using Wii controllers. Ten out of all participants stated that they are no skills on
playing gesture-based games. All participants were motivated to participate this study, and
all of them expressed that they want to play gesture-based games.

Fig. 4 A user study image showing that the user performs the stop gesture in the winter game to make the
ball slide under the ice block
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Fig. 5 A user study image showing that the user uses gestures to categorize images in the immersive VR
environment

6.4 Results

6.4.1 Execution efficiency

We ran the experimental applications on a gaming laptop installed with the Windows operat-
ing system and a NVIDIA graphics card. The frame refresh rates of the applications reached
60 frames per second. This means the runtime settings in each application are updated in
16.67 milliseconds, which is the sum of the times spent on the gesture recognition, software
logic updates, and graphics rendering. This indicates the execution of our angular-velocity
method for gesture recognition is efficient, and it does not slow down the overall perfor-
mance of the applications. At the execution time to update a frame, our method recognizes
the input gesture by checking if the corresponding thresholding criteria are satisfied. The
operations to recognize a gesture are 3D vector dot products, trigonometric functions, and
additions for timing variables, which are simple algebraic operations and return numeri-
cal results instantly. The high execution efficiency suggests a very low latency of gesture
recognition and make the gestures suitable to be incorporated in interactive systems.

6.4.2 Recognition accuracy

The recognition accuracy was measured using the gesture data obtained from the first ses-
sion of the user study, as described in Section 6.2. The accuracy results are shown in Fig. 6.
The overall mean accuracy is 97.3%, which takes both static and dynamic gestures into
account. Two data points were excluded from the accuracy analysis. A participant performed
a gesture but it was not the requested gesture. We observed this case from the video replays
and determined that the participant misread the instructional words on the screen. Thus, we
excluded the data associating to this case from the accuracy measurement. The other case
was when another participant performed a go gesture, the hardware malfunctioned. Some
joint angles returned by the motion capture suit were not correct, so the captured motion
data could not imitate the movement performed by the participant’s hand. We excluded the
go gesture of that participant from the accuracy evaluation.
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Fig. 6 Accuracy scores of six gestures in the gesture vocabulary

The drop-in gesture accuracy is slightly lower than other gestures. By observing the
video replays, we found that some participants initiated their hand postures for a drop-in
gesture with the palm facing upward. Such an instance of incorrect initializations occurred
unintentionally by the participants when they wanted to perform the drop-in gesture fol-
lowed after finishing a trash-out gesture. This is a typical cocking situation that also appears
in daily gestural actions, e.g., throwing by moving the arm forward requires the arm to be
first brought backwards. Threshold values of the parameters help reduce the occurrence
of cocking situations, so that we achieved a reliable recognition result with 95%-100%
accuracy.

The accuracy evaluation described in this subsection was conducted in a controlled envi-
ronment, which means participants had to perform the gestures in the order that the system
required. Real tasks within the applications were excluded from this evaluation, because
in real tasks, the accuracy of gesture recognition can be mainly affected by the rate of the
user’s reaction to an event of the application rather than the recognition method itself. For
example, in our previous study [30], the recognition accuracy in the “Happy Ball” game
was 82.6%. This was due to wrong decisions on the gameplay, and consequently the par-
ticipants performed wrong types of gesture or completely missed (doing nothing) when a
gesture was required by the game. Thus, in this work, we did not evaluate the accuracy of
the gesture recognition method in real tasks.

6.4.3 Usability and acceptance

We developed the usability questionnaire based on SUS [5] to measure the perceived usabil-
ity of the systems. The usability questionnaire consists of ten questions seeking a five-point
Likert scale response (5: strongly agree and 1: strongly disagree). The questions of the
usability questionnaire are listed in Table 7. The SUS scores from the participants are listed
in Table 8. The scores have been converted to an equivalent number out of 100 using the
formula:

SUSscore = (
10∑

i=1
Qi) × 2.5, where Qi =

{
Ri − 1, if i is odd
5 − Ri, if i is even

(2)

Since the questionnaire includes negative statement, in (2), for all odd-numbered ques-
tion we have Qi = Ri − 1, and for all even-numbered question we have Qi = 5 − Ri ,
where 1 ≤ i ≤ 10. Here, Qi is the SUS score for the rating Ri obtained for the ith

question. This score directly accounts for the usability of the system. The mean SUS
score of an evaluation can be mapped to adjectives, which are “Worst Imaginable” (12.5),
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Table 7 The usability
questionnaire developed based
on SUS

Questions

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be

able to use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system

very quickly.

8 I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with

this system.

“Awful” (20.3), “Poor” (35.7), “OK” (50.9), “Good” (71.4), “Excellent” (85.5) and “Best
Imaginable” (90.9) [3]. The mean SUS score of 12 participants, for the gameplay was
90.83; and that for the image categorization interface was 91.04. Henceforth, high degrees
of usability are exhibited in both experimental applications.

We developed the acceptance questionnaire to investigate the factors that influence the
adoption of the gesture-based interaction technology. The development of the acceptance
questionnaire was based on the TAM theory that is often used to understand how well users
would accept and use new technologies. There are two major factors that impact the accep-
tance of technology: Perceived Ease Of Use (PEOU) and Perceived Usefulness (PU). PEOU
refers to how easy the user thinks to use the system. PU refers to how useful the technol-
ogy is [8]. Other factors such as Physical Engagement (PE) and Social Influence (SI) used
in [34, 38] were not considered, because they do not apply to the goal of our study. Table 9

Table 8 Mean ratings in the
usability questionnaire Participant no. Gameplay Image categorization

interface

P1 100 100

P2 95 100

P3 100 85

P4 90 87.5

P5 90 90

P6 95 77.5

P7 72.5 85

P8 90 100

P9 82.5 95

P10 87.5 85

P11 95 95

P12 92.5 92.5

Overall 90.83 91.04
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Table 9 The acceptance
questionnaire developed based
on TAM

Factors Questions

Perceived 1. I quickly understood how to perform the gestures.

Ease of Use 2. I found the gestures natural to perform.

(PEOU) 3. I found the gestures simple to perform.

4. It requires no physical effort to perform the gestures

or play the game/perform tasks in the system.

5. It does not require a lot of cognitive effort to learn

to perform the gestures or play the game/use the

system.

6. I could play the game/perform the tasks in the

system with little or no effort.

Perceived 7. It was fun to use hand gestures to play the game/

Usefulness perform tasks in the system.

(PU) 8. It was immersive to use hand gestures to play the

game/perform tasks in the system.

9. I found the gameplay/image categorization task to

be natural.

10. I could easily play the game/perform the tasks in

the system.

11. I found the gameplay/actions in the system to be

instantaneous.

12. There was no delay in the desired action being

performed on the screen after the gesture was

performed.

13. I would use hand gestures to play the game/interact

with the system over keyboard-mouse and touch

input.

shows the list of questions in the acceptance questionnaire. Each question requests a five-
point Likert scale response from the participant (5: strongly agree and 1: strongly disagree).
Table 10 shows the descriptive statistics of the two factors in the gameplay and image cate-
gorization tasks. The means of TAM scores for the gameplay and image categorization task
are above 4.33 and above 4.25, respectively. This suggests that gestures in the experimental
applications were found to be easy-to-use and useful for interactive tasks.

The first six questions in the acceptance questionnaire correspond to the usability of the
system, and they received high ratings for the gameplay and image categorization tasks.
This suggests that our method is capable of being used in different types of interactions. For
example, the swipe gesture used to move the ball in the games has also been used to spin
the virtual image wall in the image categorization interface. As a broader impact, the swipe
gesture could be extended to be used for switching tabs or videos in a web browser. The
largest difference between the mean values was found for the eighth question, where the
difference is 0.50. This suggests that using gestures to perform image categorization tasks
was more favorable to the participants than using the gestures to play the games.

We also found that the use of the VR display increased the rating score for immersion-
related evaluation. For example, the image categorization interface received the full score
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Table 10 Responses of the
participants in the acceptance
questionnaire

Question no. “Happy Ball” game Image categorization

Mean Std. Dev. Mean Std. Dev.

Q1 4.92 0.29 4.92 0.29

Q2 4.92 0.29 4.83 0.39

Q3 4.83 0.39 4.92 0.29

Q4 4.75 0.45 4.83 0.58

Q5 4.75 0.45 4.58 1.16

Q6 4.58 0.67 4.83 0.39

Q7 4.92 0.29 5.00 0.00

Q8 4.50 0.67 5.00 0.00

Q9 4.58 0.67 4.92 0.29

Q10 4.50 0.67 4.83 0.39

Q11 4.58 0.67 4.83 0.39

Q12 4.33 0.98 4.67 0.49

Q13 4.41 0.67 4.25 0.75

for the eighth question in the acceptance questionnaire. Participants expressed that they felt
they were being situated in the virtual environment when wearing the VR display device.

A one-way within-subjects ANOVA analysis [7] (p > 0.05) was conducted to exam-
ine any potential TAM differences between the gameplay task and the image categorization
task. According to the result (F(1, 22) = 1.60, p = 0.22) there was no significant
difference between tasks.

Participants also answered the post-study interview questions about the naturalness of
using the gesture-based applications. All of the participants agreed that the come, stop,
drop-in, trash-out, pointing and swipe gestures were natural gestures. 83.3% of the partic-
ipants agreed that the go gesture was natural to use. Participants were asked to rate the
reliability of gestures on a scale of 1 (unreliable) to 10 (reliable). Performing gestures for
the gameplay task received an average rating of 9.17. Performing gestures for the image cat-
egorization task received an average rating of 9.33. Participants were also asked to rate the
engaging effectiveness of the gestures on a scale of 1 (least engaging) to 10 (Most engag-
ing). The mean ratings were 9.29 and 9.33 for the gameplay and image categorization tasks,
respectively.

6.5 Limitations

The meanings of the hand gestures used in this work are easy to interpret, neutral, and
straightforward in the United States. However, we did not consider the impact of world-
wide cultures when designing the gesture vocabulary. It is possible that a gesture presenting
a neutral or positive meaning in one country is an offensive or insulting sign in another
country. For example, the come gesture used in this work is commonly used in the United
States to ask somebody to step forward, but it could be an undesirable gesture in some asian
countries. People coming from different geographical regions or growing up with different
cultural or religion backgrounds may move their hands very differently for the same ges-
ture, which could affect the recognition accuracy of our approach. Although considering the
impact of culture is not related to the contributions of this work, it would be worth to add
cultural considerations in the design of gesture-based interfaces and interactive applications.
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In our user study, all participants agreed to wear the Perception Neuron motion capture
suit, but there could be considerations on intrusiveness of the apparatus. Each participant
had to wear the gloves and torso straps during the two-hour user study. Although the suit
is safe and lightweight, some participants hesitated due to the consideration on comfort.
They wanted to know more about the suit’s characteristics before wearing it. We felt that
the perception neuron suit may not be the most comfortable equipment to use in this study.
It took a significant amount of time to put on, calibrate, and test. The wires connecting the
sensors to the hub device could get tangled onto the participant’s body and arms.

The gesture vocabulary designed in this work contains in-air gestures, which are primar-
ily suitable for touchless interactions. Those gestures can be used in the applications that
prefer interactions at a distance without a physical touch on a tangible device; however, the
gesture vocabulary may not be very suitable in the applications that require touch-based
gestures, in which contact points, finger moving directions, and touch strokes should be
detected and recognized in real-time.

7 Conclusion and future work

In this paper, we proposed a novel angular-velocity method to recognize both static and
dynamic hand gestures in real- time. We developed an adaptive hand model composed of the
articulated finger joints that possess high degrees of independence. By using the adaptive
hand model, we developed a vocabulary of hand gestures. Our gesture recognition method
was found to have an average accuracy of 97.3%. In the user study, the gestures were used
as the input modality in three mini games and a 3D image categorization interface. The
result shows that the speed of gesture recognition is fast enough to support the use of highly
interactive applications. We also found that the participants were satisfied with the experi-
ence of using hand gestures. They felt the gesture-based interactions were natural, useful,
and easy-to-use.

In the future, we would like to invite people across a wide range of ages to participate
the study and evaluate the accuracy based on the input from them all. The parameter thresh-
old values were obtained empirically in this work. In the future, we plan to incorporate an
automatic way to determine the threshold values of parameters and allow users to customize
their personal preferences. We also plan to develop a hybrid approach that integrates our
angular-velocity method with artificial neural networks for a broader gesture-based appli-
cations. The responses for perceived usefulness in the acceptance questionnaire could also
be attributed to the design of user interfaces and the cognitive styles of users, which are the
user-centered topic that we would like to study in the future. Also, we would like to evalu-
ate the efficiency of our approach in recognizing gestures in sign languages as well as the
possibility of using our approach to assist deaf people. Our approach may help deaf people
by translating essential and sensitive words automatically.
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