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Abstract

Few-shot learning aims to learn a classifier that has good generalization performance in
new classes, where each class only a small number of labeled examples are available. The
existing few-shot classification methods use the single-scale image do not learn effective
feature representation. Moreover, most of previous methods still depend on standard
metrics to calculate visual similarities, such as Euclidean or cosine distance. Standard
metrics are independent of data and lack nonlinear internal structure that captures the
similarity between data. In this paper, we propose a new method for few-shot learning
problem, which learns a multi-scale feature space, and classification is performed by
computing similarities between the multi-scale representation of the image and the label
feature of each class (i.e. class representation). Our method, called the Multi-Scale
Feature Network (MSFN), is trained end-to-end from scratch. The proposed method
improves 1-shot accuracy from 50.44% to 54.48% and 5-shot accuracy from 68.2% to
69.06% on Minilmagenet dataset compared to competing approaches. Experimental
results on Omniglot, Minilmagenet, Cifar100, CUB200, and Caltech256 datasets dem-
onstrate the effectiveness of the proposed method.
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1 Introduction

Recently, deep learning models have achieved great success in various tasks of artificial
intelligence, such as object detection [8, 23], object recognition [10, 13, 17, 29], and machine
translation [14]. But these supervised models require a large number of labeled examples with
multiple iterations to train. In contrast, the human visual system has the ability to recognize
new objects after observing only one or few examples [30]. This significant gap between the
human visual system and deep learning models has aroused research interest in few-shot
learning. Few-shot learning aims to learn a good classifier when given only few examples are
available in each class, and more specifically is one-shot learning, in which each class has only
one example [S]. A naive approach such as fine-tuning the pre-trained models on target
problems would severely overfit.

A variety of methods recently proposed have made significant progress in few-shot
learning. Vinyals et.al [31] proposed the matching network which using the attention mech-
anism on the labeled examples (support set) to predict the classes for the unlabeled examples.
This model utilizes sampled mini-batches called episodes during training, where each episode
aims to simulate the few-shot task by subsampling classes as well as examples. The episodic
training strategy makes the training problem more faithful to the test environment and
improves the generalization ability of the model. Ravi and Larochelle [22] used the episodic
training strategy and further trained an LSTM meta-learner to learn how to initialize and
parameterize the classifier (learner) on new classification tasks. The episodic training strategy
is also used in this work.

A key problem in few-shot learning is how to efficiently learn class representations from a
few examples. Most existing approaches [11, 12, 24, 27, 28] make use of a variety of
techniques. Snell et.al [27] embed images into the metric space, which uses the average of
embedding in each class to represent the class. Sung et.al [28] uses their summation to
represent the class. Hilliard et.al [11] proposed the pairwise relational network that produces
pair-wise comparisons and uses their average to represent the class. Hilliard et.al [12] produced
class representations that using the method proposed in [11] and then conditioned them based
on the target image to obtain the conditional embedding. Ren et.al [24] considered semi-
supervised few-shot settings and proposed various extensions of Prototypical Networks that
provide a method for producing refined prototypes using unlabeled examples. These ap-
proaches used fixed method to calculate class representations, such as average and summation,
which are independent of data and do not learn high-quality class representations for each
class. This work proposes a label feature network that learns to learn the label features of each
class based on the idea of meta-learning.

After learned the label features of each class, it is also necessary to learn a classifier to
compare the similarities between features. Many currently proposed metric learning algorithms
[24, 27, 28, 31] which classify images by computing the relationships between examples in
embedding space. Most of these using predefined metrics such as Euclidean distance or cosine
distance. However, predefined metrics simply compute the spatial distance between examples
and do not learn the nonlinear relationship. We train a network to compute the matching
degrees between examples, jointly learning with the features can more capable to captures the
similarities between features.

All of the approaches in few-shot learning have made great progress, but they only learned
the single-scale features of the images. Compared with single-scale features of images, multi-
scale features also contain the details of features. By extracting features of multiple scale
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images and combining them to learn multi-scale features of images can learn the features with
more identifying information for classification.

In this paper, we propose the Multi-Scale Feature Network for few-shot learning, which
learns the multi-scale features of the images and learns to learn the label features of each class.
The proposed method is divided into three parts: the feature extraction module, the label
feature module and the no-metric module. The feature extraction module is a multi-scale
network, which generates the multi-scale features of the images by combining the features of
multiple scale images. The label feature module learns the label features of each class through
the label feature network that takes the concatenation features of each class as input and
outputs a new feature. The no-metric module adopts a no-metric method which training a
network to compare a small number of images with episodes, and determines if they are from
the same categories or not.

The main contribution of this work is threefold. First, we propose a multi-scale network to
learn the multi-scale features of the images in the feature extraction module. Second, we learn
the label feature to represent the class by the label feature network. Third, we propose a no-
metric method that classifies images by training a network to compute sthe matching degrees
between examples.

1.1 Related work

We consider the task of few-shot classification. In this task, we have two datasets: a training set
and a testing set, the training set has own label space that is disjoint with the testing set. Our
goal is to train classifiers for a testing set, for which only a few labeled examples are available.

In each episode, randomly samples N classes from the training set to construct a support set

KxN

and a query set. The support set S = {(x;, ;) },_;" contains K examples from each of N classes,

while the query set Q = {(x Y j> } . include the remainder of those N classes’ examples,
j=

where y;, y;= {1, ..., N}.

The research of few-shot learning has been of interest for some time. Earlier work on few-
shot learning mainly include generative models with complex inference mechanisms. With the
success of deep learning approaches in the large-scale data tasks, there has been aroused the
research interest in generalizing such deep learning approaches to few-shot learning tasks. A
traditional approach make use of deep learning models to address few-shot problem is training
a network on a source domain with sufficient examples, and then fine-tune the network on
target domain with sparse examples, would severely overfitting. Many of the existing ap-
proaches use a meta-learning or learning-to-learn strategy [35] that they extract transferable
knowledge from a set of related tasks, which helps them to generalize well on the target
problem without suffering from the overfitting. In terms of few-shot learning, there are three
categories of approaches:

Data Augmentation Approaches: The data augmentation approaches mainly to solve the
problem of insufficient training data by performing various processing on the existing data to
augment the dataset. The simple augmentation techniques can be directly applied in the image
domain, such as flipping, rotating and randomly cropping images. Recently, more augmenta-
tion techniques have been studied to train classifiers, which can be categorized into six classes:
(1) Borrowing examples from the source domain that similar to the low-level feature of the
target domain [7]. (2) Using Generative Adversarial Networks to generate new examples [19].
(3) Learning a generator that hallucinates additional training examples [9, 33]. (4) Attribute-
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guided augmentation to synthesize examples at desired attribute values [3]. (5) Learning few-
shot models by making use of a large number of unlabeled examples [1, 24]. (6) Synthesize
features by utilizing semantic information of each class [2, 32]. These approaches require
borrowing examples from additional datasets or generate examples to augment the training set,
which increases the calculation time of the experiment. In contrast, our approach can achieve
good results without data augmentation.

Meta-Learning Approaches: Another category of approaches follows the idea of meta-
learning. Most of the meta-learning approaches mainly include training a meta-learner that
learns transferable knowledge across tasks rather than across data points. The well-known
MAML [6] approach aims to learn good initialization parameters. When applied to the target
few-shot problem, only a small number of gradient updates will produce large improvement.
The few-shot optimization approach not only learns a good initial condition but an LSTM-
based optimizer that is trained to learning gradient descent strategy. Meta-SGD [18] extends
MAML, which learns to learn not just the learner weight initialization, but also the learner
learning rate and update direction. The recent work in [20] proposed meta-learner architectures
called SNAIL that use a combination of temporal convolutions and soft attention, it can
aggregate information from past experience and pinpoint specific pieces of information. Other
categories of meta-learning approaches include training a memory augmented neural network
on existing tasks by linking with the feed-forward neural network or LSTM controller [21, 25].
Our approach also includes the meta-learner network component, the label feature network.

Metric Learning Approaches: Another category of approaches aims to learn a metric space,
in which classify images by simple nearest neighbor or linear classifiers so that the examples of
the same class are closer than the examples of the different class. Siamese network [16] has
two branches that shared parameters. It takes a pair of examples as input and calculates the
similarity between pairs of examples. For a test example, it needs to be compared with all
examples of support set. Triplet ranking network [34] based on the triplet ranking loss that
takes two positive examples and one negative example as input, makes the distance between
the two positive examples to be smaller than that between a positive and a negative. Although
two approaches are simple, they are only suitable for one-shot learning. For few-shot learning,
a test example is compared with all examples of support set, which will increase the calculation
time. Matching network learns a non-linear mapping of the input into an embedding space
using a neural network and uses an attention mechanism over a learned embedding of the
labeled set of examples (the support set) to predict classes for the unlabeled examples (the
query set). Matching networks can be interpreted as a weighted nearest-neighbor classifier
applied within an embedding space. Prototypical network learns a non-linear mapping of the
input into an embedding space using a neural network and takes a class’s prototype to be the
mean of its support set in the embedding space. Then classify images by finding the nearest
class prototype of the embedded query. A novel extension of prototypical network that
considers semi-supervised few-shot learning and provides a method for producing refined
prototypes using unlabeled examples. Rather than using fixed metrics such as Euclidean
distance or cosine distance, Relation network learns an embedding and a deep distance metric
to compare a small number of examples within episodes, training the network end-to-end with
episodic training tunes the embedding and distance metric for effective few-shot learning.
SRPN uses the skip residual connections and takes a pair of images as input and output a
single similarity embedding vector. These approaches use the single-scale features of the
images in the metric space and use their average or their summation to represent the class.
Then compute the distance between the query example and class prototype. Single-scale
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features can’t make full use of the information of the image, do not learn effective feature
expression. Due to the differences in examples within the class, each example should
contribute differently when learning class representation, the mean class prototypes do not
learn high-quality class representations. To address the above problems, this work uses the
multi-scale features of the images and proposes a label feature network that learns to learn the
label features. Compared with a predefined metric, our approach can also learn the nonlinear
relationship between the query example and the label features, it is more able to capture
similarities between features.

2 Method

In this section, we describe the proposed Multi-Scale Feature Network (MSFN) in detail. The
method is composed of three distinct components: the feature extraction stage, the label feature
stage and the no-metric stage.

1) In order to extract feature details with more authentication information, this paper
proposes a multi-scale network f,, to extract features of different scale images and fusion
them to obtain the multi-scale features of the images in the feature extraction stage;

2) In order to learn a high-quality class representation, this paper proposes a label feature
network gy that learns to learn the label features of each class in the label feature stage;

3) We use a no-metric method which adopts a metric network m,, to compute the matching
scores between the feature of query example and the label features of each class in the no-
metric stage.

The full model architecture is shown in Fig. 1. Samples x; in the query set Q and samples x;, x,
..., xg of class ¢ in the support set S are fed through the multi-scale network f;,, which produces
multi-scale feature maps f,(x;), f,(x2), ..., f(xx) and f,(x;). The feature maps f(x), f,(x2), ...,
J(xx) are connected in depth. The combine feature map c(f,(x1), £,(x2), ..., f(xg)) of class c is
fed into the label feature network gy, which eventually produces a new feature map p,. to

Feature
Extraction

—— matching
—  score

Yo ] Mg

Label Feature =~ No-Metric
Stage Stage

Fig. T Multi-Scale Feature Network architecture for few-shot learning problem. The Full architecture includes
three stage:Feature Extraction Stage, Label Feature Stage, No-Metric Stage
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represent the class, which is called the label feature of class c. Then, the feature map f,(x;) and
the label feature p. are fed into the metric network m,, which produces a scalar in range of 0 to
1 representing the matching degree between the query image x; and the class ¢, called matching
score. Thus, in the N-way K-shot setting, we generate N matching scores for the matching
between one query x; and training classes.

The proposed method uses the mean square error loss plus the L2 regularization term as the
objective function, regressing the matching score to the ground truth: the matched pairs have
matching score 1 and the mismatched pairs have matching score 0. Pseudocode to compute the
loss for a training episode is provided in Algorithm 1.

Algorithm 1 Training episode loss computation for MSFN. N, is the number of examples in the training set,
N¢ is the number of classes in the training set, N is the number of classes per episode(N < N¢), K is the
number of support examples per class, m is the number of query examples per class. Random Sample(S, N)

denotes a set of S elements chosen randomly from set N

Input: Training set 7= {(xy,¥1), . (Xn, Yn,)}> Where y;€{1,...,N¢c }. T, denotes the subset of T containing
all elements (x;, y;) such that y; = c.

Output: The loss for a training episode

C={1,..,N} « Random Sample(N,{1,...,N¢c }) select N classes for a training episode
Forcin {1,..,N} do
S. < Random Sample(K ,T,) select K support examples for per class
Q. < Random Sample(m,T, =S, ) select m query examples for per class
pe = go(c(fo(x1),, o, fo (Xk)) Compute label feature from S, for each class
End for
] <0 Initialize loss

Forcin {1,..,N} do
For (x;,y;) in Q. do
Forcin {1,..,N} do

1ic = mg(f (%), c) computer matching score between query example and each class
End for
End for
J ]+ IR TN (e — 1y == ©))? compute loss
End for
J <] +ylels+ 615 + o113 update loss

0,0,0 « argmin ¥ X1 (rjc — 1(v; == ))* + y(loll + 116115 + 112113) (1)
?,0,0

where ¢, 0, & are parameters of the multi-scale network, the label feature network, and the
metric network, respectively. 7;  is the matching score between the class ¢ and the query image

xj. 7(||<p||§ + 11615 + ||®||§) is the L2-regularization term and +y is the regularization penalty

coefficient.
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2.1 Feature extraction

The existing few-shot learning approaches use the single-scale features of the images in the feature
extraction stage, which makes the learned feature representation ability very poor and do not
effectively highlight the difference between classes. For the same image, the feature information
obtained at different scales is different. The global features of the image can be extracted under large
scale conditions, and the feature details of the image can be extracted under small scale conditions.
Therefore, we use multiple scales to extract features and combine features of different scales to
obtain more detailed features, which have more identification information to improve classification
accuracy. The specific process of extracting multi-scale features of images is as follows: first, the
image is gradually downsampled to obtain multiple scales image. Then, the multi-scale feature of the
image is obtained by cross-scale gradually fusion features of different scale images. There are
complex nonlinear relationships between the features of multiple scale images. Compared with
using their summation to represent the image, gradually cross-scale combine them can fully learn the
relationship between different scale features to obtain multi-scale features with more information.
In order to extract more detailed features, this work proposes a multi-scale network that
includes multiple branches to extract features of different scale images and cross-scale
combine them to represent the images. Multi-scale network architecture is shown in Fig. 2.
It consists of three network branches, each branch has four convolution blocks and each block
consist of a 64 filter 3*3 convolution layer, a batch norm layer and a relu layer. In addition, it
also contains two components: the skip connection and the stride connection. The skip
connection is proposed to implement the reuse of low-level features when extracting features
at the same scale. The low-level features have the image structure information, so the reuse of

depth

Y
;?ﬂ-» b
S 3
X layerl layer4
J— “
convolution skip connection stride connection

Fig. 2 Feature Extraction stage. x!, x2, x3 three scale images mean different sizes of the image x. Given an image
x, the image is downsampled to obtain multiple scales images x!, x2, x3 and then features of different scale images
are extracted through different branches of the multi-scale network, the multi-scale feature of the image is
obtained by fusion them. The red arrow indicates the convolution series operation, the black dotted arrow
indicates the skip connection, and the blue arrow indicates the stride connection
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Fig. 3 An improve the multi-scale network, which utilizes the random connection between features with a
probability of 0.5

them which makes the extracted high-level features have both structure information and
semantic information. The stride connection is proposed to down-sample the features of the
upper-level scale as the input of the next-level scale, the multi-scale feature of the image is
obtained by gradual fusion the different scale features using stride connection. Figure 2 shows
the connections of the multi-scale network that are established between all features. There may
be partial redundant connections that cause the repeating learning of the shallow feature and
the large-scale feature. Therefore, we further improve the network as shown in Fig. 3. The
dotted line connections indicate the reuse of the shallow feature and the large-scale feature. We
randomly cut off some of the dotted line connections with a probability of 0.5 so that reduces
the redundant learning of features during feature extraction.

2.2 Label feature

A key problem in few-shot learning is how to learn a high-quality class representation from a
small set of images in each class. Based on the idea of meta-learning, this work proposes a

fw(xl) [—————— - f—————— -

f(/; (xz) | 3x3conv I 3x3 conv |
. _>| BatchNorm | BatchNorm > P
. | Relu I Relu I
______ T ——
1o (%) - g,

Fig. 4 Label Feature stage. The label feature network gy contains two convolutional blocks, each convolutional
blocks contains a 64 filter 3x3 convolution layer, a batch normalization layer and a ReLU nonlinearity layer
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label feature network that learns to learn a label feature end-to-end. The label feature network
structure is shown in Fig. 4. The examples are projected into the feature space through the
multi-scale network. In feature space, the features of examples in each class are connected in
depth. The label feature network takes the combine feature map of each class as input and
outputs a label feature to represent the class. For the N-way K-shot setting, it will generate N
label features for classification. Using the network to learn the label features of each class can
be regarded as assigning weights to examples within classes, and weights are a set of
parameters learned through the network.

pe =80 (ol f2)s s f o (0) ) )

where 0 is a set of parameters for the label feature network g. x1, x,, ..., xx are few examples
of the class c.f(x1), f,(x2), ..., f,(xg) are multi-scale features of xy, Xy, ..., xg. The label feature
network gy takes the combine feature map c(f(x1), £,(x2), ..., f(xx)) of class ¢ as input and
produces a label feature p,. to represent the class c.

2.3 No-metric

Few-shot learning requires not only learning feature extractors, and but a classifier. Most
related previous few-shot learning approaches performed classification using a pre-defined
distance metric, such as Euclidean or cosine distance. They only learn the embedding of each
example, and then classified with fixed metrics for a given learned embedding, which depends
on the learned feature embedding and often limited when the information of learned embed-
ding not sufficiently. Relation network proposed a deep distance metric method to compare a
small number of examples within episodes. End-to-end jointly learning metrics and feature
embedding can capture the similarities between features. Motivated by this, this work uses the
metric network to compute the matching degrees between features, which learn the similarities
by using a flexible function approximator and learn a good metric in a data-driven way without
manually select the appropriate metric (Euclidean, cosine). As shown in Fig. 5, given a query
image x;, the metric network m takes the feature f{x;) and the label feature p. as input and
gradually merges two features using the skip connection, which produces a score 7; . in range
of 0 to 1, indicate the degree of matching between the query image x; and the class c.

rje =my(f (x)),pe) (3)

o)Ll |l ol oo b
i i

P,

m,

Fig. 5 No-Metric stage. The metric network m,, contains six convolutional blocks, two FC layers and a sigmoid
layer. Each convolutional block contains a 64 filter 3x3 convolution layer, a batch normalization layer and a
ReLU nonlinearity layer. The last two convolution blocks contain a 2x2 max-pooling layer while the first four do
not
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where x; is a query image, f(x;) is a multi-scale feature of the image x;, p.. is the label feature of
class c, r; . is the matching score between the query image x; and the class c.

2.4 Experiment

This work performs few-shot experiments on Omniglot, Minilmagenet, Cifar100, CUB200,
Catlech256 datasets. All the experiments are implemented based on PyTorch. And few-shot
learning in all experiments uses Adam [15] with initial learning rate 1073, annealed by half for
every 10,000 episodes.

2.5 Omniglot few-shot classification

Omniglot is a dataset contains 1623 handwritten characters from 50 different alphabets. Each
character contains 20 examples, where each example is drawn by different people. Following
[27, 28, 31], the grayscale images are resized to 28x28. In experiments, randomly selected
1200 original characters for training and the remaining 423 characters for testing. We compare
against various baselines for few-shot classification, including the Neural Statistician [4],
Meta-Learner LSTM [22], MAML [6], Relation Network [28], Meta nets [21], Siamese
Network [16], Prototypical Network [27], Matching Networks with and without fine-tuning
[31]. Like prior works, this work computed the accuracy of few-shot classification on
Omniglot by averaging the accuracies of 1000 randomly generated episodes from the testing
set. The results are shown in Table 1, the proposed method outperforms state-of-the-art
methods under all experiments, except the 5-way 5-shot setting. This is because that many
alternatives fine-tuning on target problems [6, 31], or have more complex structures [4, 21,
26], while we do not.

2.6 Minilmagenet few-shot classification

The Minilmagenet dataset, originally proposed by [31], is a subset of the larger ILSVRC-12
dataset. It consists of 60,000 color images belonging to 100 classes, each class having 600

Table 1 Omniglot few-shot classification. ‘-’: not reported

Model S-way acc 20-way acc

1-shot S-shot 1-shot S-shot
MANN [25] 82.8% 94.9% - -
Convolutional siamese nets [16] 96.7% 98.4% 88.0% 96.5%
Convoluyional siamese nets [16] 97.3% 98.4% 88.1% 97.0%
Matching nets [31] 98.1% 98.9% 93.8% 98.5%
Matching nets [31] 97.9% 98.7% 93.5% 98.7%
Siamese nets with memory [14] 98.4% 99.6% 95.0% 98.6%
Neural statistician [4] 98.1% 99.5% 93.2% 98.1%
Meta nets [21] 99.0% - 97.0% -
Prototypical nets [27] 98.8% 99.7% 96.0% 98.9%
MAML [6] 98.7+0.4% 99.9+0.1% 95.8+0.3% 98.9+0.2%
Relation net [28] 99.6+0.2% 99.8+0.1% 97.6+0.2% 99.1+0.1%
GNN [26] 99.2% 99.7% 97.4% 99.0%
MSFN (OURS) 99.7% 99.8% 98.1% 99.2%
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examples. In experiments, this work used the spilt introduced by [22], with 64 classes for
training, 16 classes for validation, 20 classes for testing. All input images are resized to 84x84.
We compare against various baselines for few-shot classification, including Meta-Learner
LSTM [22], MAML [6], Relation Network [28], Meta nets [21], Prototypical Network [27],
Matching Networks with and without fine-tuning [31]. Like prior works, this work computed
the accuracy of few-shot classification on Minilmagenet by averaging the accuracies of 600
randomly generated episodes from the testing set. As can be seen in Table 2, the proposed
method performs superiorly against several state-of-the-art methods on few-shot classification.
Moreover, 5-shot results reported by prototypical networks [27] required to be trained on 20-
way 15 queries per training episode. When trained with 5-way 15 queries per training episode,
only got 65.77+£0.70% for 5-shot evaluation, clearly weaker than ours. In contrast, all the
proposed models are trained on 5-way, 5 queries for 5-shot per training episode, with much
less training classes and queries than prototypical networks.

2.7 Cifar100 few-shot classification

Cifar100 is a fine-grained classification dataset. It consists of 60,000 color images belonging to
100 fine-grained classes, each class having 600 examples. 100 fine-grained classes belonging
to 20 coarse-level classes. In experiments, this paper 64 classes for training, 16 classes for
validation, and 20 classes for testing. Each image is resized to 84x84 pixels. We compare
against various baselines for few-shot classification, including Matching Networks [31],
MAML [6], Relation Network [28], Meta-SGD [18]. Following most existing few-shot works,
this paper conducted 5 way 1-shot and 5-shot classification on cifarl00 and computed the
accuracy of few-shot classification on cifarl00 by averaging the accuracies of 600 randomly
generated episodes from the testing set. As shown in Table 3, the proposed method can achieve
the best performance and it can be seen significant improvements over all the other baselines
on the cifar100 dataset. This validates the effectiveness of the proposed method in solving the
few-shot learning problem.

Table 2 Minilmagenet few-shot classification. ‘-’: not reported

Model Fine Tune S-way Acc
1-shot S-shot

Matching nets [31] N 43.56+0.84% 53.11+0.73%
Meta nets [21] N 49.21+0.96% -

Meta-learn LSTM [22] N 43.44+0.77% 60.60+0.71%
MAML [6] Y 48.70+1.84% 63.11+0.92%
Prototypical nets [27] N 49.42+0.78% 68.20+0.66%
Meta-SGD [18] N 50.47+1.87% 64.03+0.94%
Relation nets [28] N 50.4440.82% 65.32+0.70%
GNN [26] N 50.33+0.36% 66.4140.63%
MACO [12] N 41.09+0.32% 58.32+0.21%
MSFN (No-Regularization) N 53.84+1.20% 68.56+0.69%
MSFN (L2-Regularization) N 54.48+1.23% 69.06+0.69%
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Table 3 Cifar100 few-shot classification.

Model S-way Accuracy

1-shot S-shot
Matching nets [31] 50.53+0.87% 60.30+0.82%
MAML [6] 49.28+0.90% 58.30+0.80%
META-SGD [18] 53.83+0.89% 70.40+0.74%
Relation nets [28] 53.21+0.80% 68.96+0.76%
MSFN(OURS) 56.42+0.82% 75.08+0.69%

2.8 CUB-200 few-shot classification

Caltech-UCSD Birds 200 (CUB-200) is a fine-grained bird dataset consisting of 11,788 images
belonging to 200 fine-grained classes of birds. In experiments, this paper used the spilt
introduced by [12], with 100 classes for training, 50 classes for validation, 50 classes for
testing. Each image is resized to 84x84 pixels. We compare against various baselines for few-
shot classification, including Matching Networks [31], Meta-Learner LSTM [22], MAML [6],
Prototypical Network [27], Meta-SGD [18]. Following most existing few-shot works, this
paper computed the accuracy of few-shot classification on CUB-200 by averaging the accura-
cies of 600 randomly generated episodes from the testing set. As can be seen in Table 4, the
method performs superiorly against several state-of-the-art methods on few-shot classification.

2.9 Caltech-256 few-shot classification

The Caltech-256 dataset is a successor to the well-known dataset Caltech-101. It consists of
30,607 color images belonging to 256 classes. This paper use 150, 56, and 50 classes for
training, validation, and testing, respectively. We compare against various baselines for few-
shot classification, including Matching Networks [31], MAML [6], Relation Network [28],
Meta-SGD [18]. Following most existing few-shot works, this paper conducted 5-way clas-
sification on Caltech-256 and computed the accuracy of few-shot classification on Caltech-256
by averaging the accuracies of 600 randomly generated episodes from the testing set. As can
be seen in Table 5, the method performs superiorly against several state-of-the-art methods on
few-shot classification.

Table 4 CUB-200 few-shot classification

Model S-way Accuracy
1-shot S-shot

Matching nets [31] 49.34% 59.31%
Meta-learn LSTM [22] 40.43% 49.65%
MAML [6] 38.43% 59.15%
Prototypical nets [27] 45.27% 34.35%
META-SGD [18] 53.34% 67.59%
Relation nets [28] 53.70% 68.96%
MACO [12] 60.76% 74.96%
MSFN(OURS) 62.40% 79.14%
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Table 5 Caltech-256 few-shot classification

Model S-way Accuracy

1-shot S-shot
Matching nets [31] 48.09+0.83% 53.11+£0.73%
MAML [6] 45.594+0.77% 54.61+0.73%
Relation nets [28] 49.11+0.81% 71.24+0.72%
META-SGD [18] 48.65+0.82% 64.74+0.75%
MSFN (OURS) 53.84+0.80% 76.74+0.65%

2.10 Further analysis
2.10.1 Label feature

This section evaluated the meta-learning method that learns to learn the label features of each
class. We conducted 5-way 5-shot classification on Minilmagenet. For the 5-way S5-shot
experiment, sample 5 classes from training classes and sample 5 examples from each class.
Then 25 examples are projected into the feature space, and the features of each example in one
class are combined in depths. Then the combined features are fed into the label feature network
to learn the label features of each class. This work uses the summation and average of the
features of examples in each class to represent the class as baselines for comparison, baselines
and the proposed method use the same network structures in the feature extraction and no-
metric stage, only the class representation is different. The experiment results are shown in
Table 6. It can be seen that the results of the label feature are better than baselines. The
proposed method can learn the most relevant part of the class and high-quality class represen-
tations. In addition, this work further evaluated the label features in relation network, which
increasing nearly 1%.

2.11 Multi-scale feature

This section evaluated the feature extraction method that uses multi-scale features to
represent the images and the feature fusion method that combines features of multiple
scale images. This work conducted 5-way classification on Minilmagenet. The single
scale only can extract the global features of the images, while multiple scales not only
extract the global features of the images and but also the feature details. Therefore,

Table 6 Comparison showing the effect of label feature on 5-shot classification for both Relation Networks and
Multi-Scale Feature Networks on Minilmagenet

Model class representation 5-way 5-shot Accuracy
MSFN (OURS) summation 68.25+0.70%
MSFN (OURS) average 68.34+0.72%
MSFN (OURS) label-feature 69.06+0.69%
Relation nets summation 65.3240.70%
Relation nets average 65.44+0.70%
Relation nets label-feature 66.22+0.68%
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multi-scale features have more identification information which can improve the
classification accuracy. In experiments, each branch of the multi-scale network also
uses four convolutional blocks for fair comparison, which only increase the number of
branches to evaluate multi-scale feature method. In this paper, we use single-scale
features, two-scale features and multi-scale features as baselines for comparison to
evaluate the effect of the feature extraction method and compare the full connection
and random connection with direct summation to analyze the effect of feature fusion
methods. The comparison results as shown in Table 7 and Fig. 6. In order to validate
the effects of multi-scale features, this work further evaluated multi-scale features in
relation networks, which increasing nearly 2% on 1-shot and 1% on 5-shot.

2.12 No-metric method

This section evaluated the effect of no-metric method that compute matching degrees
between features using the network. We conducted 5-way 1-shot and 5-shot classifi-
cation on Minilmagenet. In this work, the classification is performed by computing
the matching score between two features using the metric network. Euclidean distance,
cosine distance and deep distance metric are used as comparisons. The results are
shown in Fig. 7. It can be seen that the metric network can learn more contrastive
information and fully learns the relationship between two features. Training the
network end-to-end with episodic training tunes the feature and similarity for effective
few-shot learning.

2.13 Imbalance few-shot task

In the above experiments, 5-way 1-shot and 5-shot classification are balanced tasks of
few-shot learning, each class has the same number examples. This paper adds an
experimental analysis of imbalanced conditions in this section. The imbalance task of
few-shot learning which has a different number of examples in each class, this work
conducted 5-way imbalance classification task on Minilmagenet, Cifarl00, CUB200,
Caltech256 datasets. There are many possibilities for the number of examples in the
five classes. We perform a set of imbalance experiments with any one of them. Set
the number of examples in the five classes to 2, 2, 2, 3, and 3 respectively. The result
as shown in Table 8.

Table 7 Comparison showing the effect of multi-scale feature on the 5-way classification for both Relation
Networks and Multi-Scale Feature Networks on Minilmagenet

Model Feature S-way Accuracy
1-shot S-shot

MSFN (OURS) single-scale 52.92+1.22% 67.87+0.68%
MSFN (OURS) two-scale 53.68+1.19% 68.43+0.69%
MSFN (OURS) multi-scale 54.48+1.23% 69.06+0.69%
Relation nets single-scale 50.44+0.82% 65.32+0.70%
Relation nets two-scale 51.13£1.19% 65.89+0.60%
Relation nets multi-scale 52.47+1.19% 66.26+0.68%
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5-way 1-shot classification

54.60%
54.50%
54.40%
54.30%
5 54.20%
54.10%
§ 54.00%
53.90%
53.80%
53.70%
53.60%

54.48%

summation full connection random connection

5-way 5-shot classification
69.20%

69.06%
69.00%

68.52%

68.40%
68.20%

68.00%
summation full connection random connection

Fig. 6 Comparison showing the effect of feature fusion on 5-way classification for Multi-Scale Feature Networks
on Minilmagenet
2.14 Condlusions

This work proposes a new method called the multi-scale feature network for few-shot
learning. First, the proposed multi-scale feature network can efficiently learn a multi-
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5-way 1-shot classification
55.00%
54.00%
53.00%
52.00%
51.00%
50.00%
49.00%
48.00%
47.00%
46.00%

54.48%

ACCURACY

Cosine Euclidean deep distance no-metric
metric

5-way 5-shot classification

70.00%
69.06%
68.00%
66.00%
64.00%

62.00%

ACCURACY

60.00%
58.00%

56.00%
Cosine Euclidean deep distance no-metric
metric

Fig. 7 Comparison showing the effect of no-metric method on 5-way classification for Multi-Scale Feature
Networks on Minilmagenets

scale feature to represent the image through combine features of multiple scale images
and learn a label feature to represent the class through the network take the combine
feature of each class as inputs and output a new feature. In addition, we utilize a no-
metric method to compute the similarities between features, which jointly learning with
features can better to capture the similarities between features. With the above multi-
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Table 8 Imbalance few-shot clas-
sification on Minilmagenet, Dataset Imbalance task
Cifar100, CUB200, Caltech256

Minilmagenet 58.60%
Cifar100 63.80%
CUB200 70.16%
Caltech256 66.37%

scale feature and no-metric method, significant improvement is achieved in few-shot
classification task. This work evaluates the effectiveness of the proposed method on
Omniglot, Miniimagenet, Cifar100, CUB200, and Caltech256 datasets. The proposed
method improves 1-shot accuracy from 50.44% to 54.48% and 5-shot accuracy from
68.2% to 69.06% on Minilmagenet dataset compared to existing approaches. From the
results, the proposed approach has achieved competitive performance compared to the
existing approaches and state-of-the-art methods.
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