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Abstract
Surface defect detection is an important way to improve the production quality of voltage-
dependent resistors (VDRs). To improve the accuracy and efficiency of VDR surface
quality detection, an end-to-end surface quality detection method based on deep
convolutional neural networks (CNNs) was proposed. The method includes four stages:
data preparation, convolution neural network design, CNN training, and testing. First,
images of VDRs were acquired from three perspectives, i.e., the front, back, and side, and
then training, validation and testing sets were obtained. Second, the proposed CNN
models for VDR surface defect detection were constructed. Third, during the training
stage, the images with class labels from the established training sets were input to the
proposed network for training and validation. Finally, in the testing stage, test images
from a total of 408 samples of two VDR models were used to test the trained network.
The sensitivity, specificity, accuracy, precision and F measure of the proposed algorithm
were compared with those of state-of-the-art methods, and the experimental results
showed that the proposed method has a high recognition speed and accuracy and meets
the requirements of online real-time detection.

Keywords Surfacedefectdetection.Convolutionalneuralnetworks.Voltage-dependent resistors
. Image recognition

1 Introduction

A voltage-dependent resistor (VDR) is an electronic device that has nonlinear volt-ampere
characteristics (Fig. 1) and is mainly used in voltage clamps in a circuit to absorb the excess
current in the case of overvoltage to protect sensitive devices. As the surface quality of VDRs
affects their performance, it is necessary to identify any surface defects. For surface detection,
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machine vision has the characteristics of fast detection, high precision, low noise, strong anti-
electromagnetic interference capability, convenience and flexibility, and it is gradually replac-
ing manual detection. However, the accurate detection of minor defects with machine vision
systems still faces certain difficulties, as various factors that interfere with the product image
acquisition cause the acquired image to not completely and truly reflect the original VDR. The
surface defects of VDRs are diverse, e.g., poorly wrapped or overwrapped pins, illegible
surface printed information, unacceptable overall dimensions, or various defects on the
package surface (such as irregularities, scratches, blemishes, and voids) (Fig. 1). The variable
defects make the detection task more challenging, and manual detection may not achieve the
desired outcome. Therefore, the computer-aided surface defect detection (SDD) of VDRs is
important because it can improve the accuracy and efficiency of the detection.

In recent years, machine vision technology has been widely used in the SDD of electronic
components [1, 8, 17]. SDD can be classified into unsupervised SDD and supervised SDD. In
unsupervised SDD, the target features are first designed manually, extracted and then classified
using classifiers. For example, Lin [14] used the single-level Haar wavelet transform to
decompose chip images and extract four wavelet features, based on which ripple defects were
identified using a multivariate statistical method. Xi et al. [22] proposed an SDD method of
steel billets based on computer vision in which the normal texture was filtered using an
isotropic differential filter, features such as the shape factor and ratio of the principal moments
were extracted, and then a simple linear regression classifier was applied. Yu et al. [23]
presented a coarse-to-fine model to identify defects on rails. Phase-only Fourier transform is
used to extract defect regions, and background subtraction is employed to refine the shape of
each defect. In these methods, the feature extraction mainly relied on manual design, and no
prior knowledge was learned. Due to the small number of manually extracted features, they
may only be applicable to specific small data sets and cannot solve more complex SDD
problems.

Supervised methods, such as machine learning using prior knowledge, have also been
employed to solve the defect detection problem. In this case, a classifier is trained based on

(a) (b) (c)

(d) (e) (f)

Fig. 1 VDR examples. (a) Normal VDR (front); (b) Normal VDR (back); (c) Missing surface information; (d)
Surface damage; (e) Poorly wrapped pins; (f) Excessively wrapped pins
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labeled training samples before it is used in the classification. The supervised methods can be
further categorized into the manual feature extraction category and the automatic feature
extraction category according to the method used to extract the features. In the supervised
method with manual feature extraction, the features are manually extracted before the feature
learning and training are performed. Shen et al. [18] first divided a bearing image into different
regions of interest (ROIs) and further segmented them into candidate defect areas. Then, the
features, including the size, location and contrast of each area were extracted manually, and
finally, a support vector machine (SVM) classifier was used for training and classification. Kuo
et al. [11] used the K-means clustering method to distinguish different features of each part of
the chip; ultimately, they classified the features of each part using an effective two-step back-
propagation neural network. Liu et al. [16] proposed a classification method for fabric defect
images based on an extreme learning machine (ELM), in which geometric and texture features
were extracted before the ELM training. Wang et al. [21] presented a method for defect
recognition on steel surfaces that used a histogram of oriented gradients (HOG) feature set and
a gray-level cooccurrence matrix (GLCM) feature set to train a random forest for defect
classification. Since these methods still use manual feature extraction, the recognition results
are strongly dependent on the effectiveness of the extracted features.

In recent years, convolutional neural networks (CNNs) [5, 9, 13] have attracted a great deal
of attention due to their automatic feature learning and end-to-end high-performance classifi-
cation capabilities. CNNs were first applied to handwritten character recognition [12] and
subsequently extended to other applications, such as object recognition, face detection, image
classification and speech recognition. Unlike the traditional recognition methods, CNNs can
use large amounts of training data to automatically learn the implicit effective features and
achieve end-to-end classification in one network with parallel acceleration through a GPU.

CNNs have also been used in SDD. Cha et al. [3] developed a CNN-based detection
method of concrete cracks that was capable of automatically extracting features from a training
set of concrete images. Tao et al. [20] proposed a multitask convolutional neural network for
detecting the wire of spring-wire socket defects in which the VGG-16 [19] pretrained model is
used to initialize the convolutional layers. Chen et al. [4] designed a multispectral CNN
network model for solar cell surface defect inspection in which the three spectra in the original
image were separated and sent to different CNNs. Using CNNs, it is unnecessary to run an
individual feature extraction algorithm for each classification analysis of the data, and high
accuracy is achieved in the defect detection. Furthermore, when applying SDD to a specific
target, the design of a CNN network structure suitable for the SDD is the key.

To improve the accuracy of the SDD of the VDR, we propose a detection method based on
two improved CNN-based network models. One is an eight-layer CNN, which is designed
based on the VGG-16 [19] model, called VDR-8-LRN. The network structure of the proposed
VDR-8-LRN, containing 5 convolutional layers, 3 full connection layers and an LRN layer, is
simpler than that of the VGG-16 while maintaining a high detection accuracy. The other,
VDR-FCN, is further improved based on VDR-8-LRN to decrease the number of network
parameters required to obtain high efficiency. First, to comprehensively detect VDR surface
defects, images of VDRs from three perspectives—the front, back, and side, as shown in
Fig. 3—were acquired using an image acquisition device with a coaxial light source. Next, the
proposed CNNs were used for training and validation. Finally, the trained CNNs were used for
testing.

The remainder of this paper is organized as follows: In Section 2, the method of the VDR
image acquisition is described. In Section 3, the proposed method is described in detail. In
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Section 4, the experimental results and discussion are presented, and conclusions are provided
in the last section.

2 Image acquisition

To obtain high-quality VDR images, the 300,000-pixel MindVision industrial camera was
used, and images were acquired at a resolution of 640 × 480 using a continuous zoom.

lens with an optical magnification of 0.13–2. Because the smooth surface of the VDR
is prone to exhibit reflection under an ordinary light source, which affects the detection
outcome, a coaxial LED light source was used to eliminate the reflection, and overex-
posure and underexposure were avoided by adjusting the illumination intensity of the
light source to ensure the VDR image quality. The image acquisition device is shown in
Fig. 2.

Two VDR models, i.e., R14 (body diameter: 14 mm) and R10 (body diameter: 10 mm),
were used in the experiment. To generate the data sets, 340 VDR samples were randomly
selected from each of the two models, of which 240 samples were normal (positive samples)
and 100 were defective (negative samples). A total of 680 VDR samples were used in this
study. To.

comprehensively detect the defects of the VDR, three pictures were taken on each VDR
sample from the perspectives of the front, back and side (as shown in Fig. 3), which generated
a total of 2040 experimental sample images.

The data in Fig. 3 show that the VDR images taken under natural lighting conditions
had local reflections as well as shadows in the background; however, under the coaxial
light source that was used by our image acquisition device, the lighting was uniform,
without local reflections, and the background was distinct and noiseless. Overall, the
VDR images obtained by our.

Lens

Camera

Coaxial light source

Fig. 2 Image acquisition device
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acquisition equipment were of good quality, and thus the subsequent experiments on these
images were performed without any preprocessing.

3 Method

The deep CNN-based VDR defect detection method proposed in this study includes the
following four key steps: data preparation, CNN model design, CNN training, and testing.
The specific process of the proposed method (Fig. 4) is described as follows:

1) Data preparation. After the VDR images are acquired, the images are manually labeled by
experienced professional quality inspectors. Then, the images are randomly divided into a
training set, a validation set and a testing set at a number ratio of 7:1:2.

2) Design of the CNN model for VDR defect detection. VGG-16 is designed for natural
image classification (2000 classes), such as in the ImageNet Challenge, and thus contains
many network layers. The target in this study is a VDR, which is simple in shape and does
not have complex features such as color or texture, making it a binary problem (normal or
defective). Therefore, in this step, we design an appropriate CNN network model specif-
ically for the SDD of VDRs. Given the high multiclassification accuracy of VGG-16, we

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3 Examples of VDR image acquisition. Under natural light, the (a) front, (b) back, and (c) side views of the
sample; under the coaxial light source, the (d) front, (e) back, and (f) side views of sample R14 and the (g) front,
(h) back, and (i) side views of sample R10
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simplify its network layer and determine what type of network structure is most suitable
for the SDD of VDRs under the premise of ensuring detection accuracy.

3) CNN training. Next, training is performed with the prepared training set and validation set
based on the proposed CNN model. The process of CNN training includes network
initialization, feature learning and classification, and adjustment of network parameters
based on stochastic gradient descent (SGD) [2] in an iterative manner until reaching the
maximum number of iterations.

4) Testing using trained CNNs. Finally, testing is performed on the trained CNNs, and the
test result is obtained.

3.1 VGG-based CNN model design

The VGG-16 [19] network model has achieved good results in the image detection of complex
targets, exhibiting top-5 classification error rates on the test and validation sets of the ILSVRC-
2012 data set at 7.4% and 7.5%, respectively. The model contains 13 convolutional layers, 5
maximum value pooling layers, and 3 full connection (FC) layers. Given that the shape.

“Conv” represents convolutional layer, and “Pool” represents maxpooling layer.

Training

Testing

Network initialization

Feature learning

Optimization complete?

Result

Defect detection

Y

N

Fine-tuning

Classification 

Training &

validation set

Testing set

Data preparation

CNN model design

Fig. 4 Overall flow chart of our method, which includes four key steps: data preparation, CNN model design,
CNN training, and testing
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of the VDR is relatively simple and does not have any complex color or texture features, the
direct application of a complex model such as VGG-16 for its detection is wasteful. Thus, based on
the VGG-16 network model, we kept the pretraining network parameters unchanged on the
ILSVRC-2012 data set, and we attempted to improve the detection efficiency by reducing the
number of feature extraction convolutional layers and thus the complexity of the network model
under the premise of maintaining a high recognition accuracy.

In the process of reducing the convolutional layers, we refer to theVGGnetwork structure design
method, in which several networks with 8, 10, 13 or 16 convolutional layers were tested [19]. In the
task of VDRdefect detection, VGG-16 (with 13 convolutional layers) and similar networks with 12,
10, 8, 6, or 5 convolutional layers (as shown in Table 1, named VGG-15, 13, 11, 9, 8, respectively)
were tested. First, the same training samples were used to train these networks, and then some of the
test samples were used for testing. Table 2 shows the accuracies of the tested networks and the
average time each network took to iterate 100 times. As the number of convolutional layers was
reduced from 13 to 6, the accuracy remained constant at 1, while the average computation time
decreased continuously; when the number of convolutional layers was reduced further to 5 (i.e.,
VGG-8), the accuracy was slightly reduced, but the reduction in the computation time was not
significant. As the number of.

To further improve the generalization ability of theVGG-8model, a local response normalization
(LRN) layer [10] was added to the network. LRN is a normalization technique for improving the
accuracy in deep learning training that is performed after the activation and pooling layers to

Table 1 CNN models with different numbers of convolutional layers

Network
type

Number of convolutional
layers

Convolutional and pooling layers

VGG-16 13 2Conv + Pool +2Conv + Pool +3Conv + Pool +3Conv + Pool
+3Conv + Pool

VGG-15 12 2Conv + Pool +2Conv + Pool +2Conv + Pool +3Conv + Pool
+3Conv + Pool

VGG-13 10 2Conv + Pool +2Conv + Pool +2Conv + Pool +2Conv + Pool
+2Conv + Pool

VGG-11 8 1Conv + Pool +1Conv + Pool +2Conv + Pool +2Conv + Pool
+2Conv + Pool

VGG-9 6 1Conv + Pool +1Conv + Pool +1Conv + Pool +1Conv + Pool
+2Conv + Pool

VGG-8 5 1Conv + Pool +1Conv + Pool +1Conv + Pool +1Conv + Pool
+1Conv + Pool

VDR-8-LRN 5 1Conv + Pool + LRN + 1Conv + Pool +1Conv + Pool +1Conv + Pool
+1Conv + Pool

Table 2 Test results of the accuracies and computation times of the CNN models with different numbers of
convolutional layers convolutional layers was further reduced, the detection performance also decreased.

Network type Number of convolutional layers Accuracy (%) Time (s)

VGG-16 13 100 36
VGG-15 12 100 16.5
VGG-13 10 100 11
VGG-11 8 100 11
VGG-9 6 100 9
VGG-8 5 99.51 8.5
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enhance the generalization ability of the network. Under the premise of not changing the original
network parameters, the LRN layer was added after the pooling layer of the first layer to generate the
improved networkmodel, namedVDR-8-LRN (as shown in Table 1). Based on the above analyses,
we ultimately chose the VDR-8-LRN model as the defect detection model for the VDRs.

The VDR-8-LRN network model and its parameter settings are described in detail in Fig. 5. The
network structure of VDR-8-LRN contains convolutional layers, pooling layers, an LRN layer, and
FC layers. The input layer contains images with a size of 224 × 224 pixels, followed by alternating
convolutional layers and maximum pooling layers, with the addition of the LRN layer after the first
pooling layer. The size of the feature map after the convolutional layer is identical to that of the
previous layer, while that after the pooling layer becomes one-half of its original size. After the fifth
pooling layer comes the FC layers, whose output is sent to a 2-way softmax classifier for
classification, from which the final result is output. Note that the.

AlexNet network [10], which is similar to the network that we proposed in this study, also
has an 8-layer network structure, but the differences are that in the AlexNet network, LRN
layers are added after the first and second activation layers and the numbers of pooling layers
are decreased for the third and fourth convolutional layers.

3.2 Design of a more efficient CNN model

With five or more convolution layers, the improved CNNmodel based on VGG-16 performed well
in identifying VDR appearance defects. However, it uses three fully connected layers as the
classifier, resulting in a high number of network parameters. Table 3 shows a comparison of the
number of parameters of VGG-16 and that of the improved VDR-8-LRN. VDR-8-LRN has a
similar network structure, but fewer convolutional layers, than VGG-16, and thus uses approxi-
mately 27% of the parameters of the convolutional layer of VGG-16. Because both use three FC
layers as the classifier and have a large number of parameters in the FC layer, the total number of
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Fig. 5 VDR-8-LRN network model. The network contains 8 layers: 5 convolutional layers and 3 full connection
(FC) layers. Each convolutional layer is followed by a maximum pooling layer, and the LRN layer is added after
the first pooling layer. The size of the convolution kernel of each convolution layer is 3 × 3, with a padding of 1
and a stride of 1, whereas that of the maximum pooling layer is 2 × 2, with a stride of 2. The numbers of neurons
in the FC layers are 4096, 4096, and 2, in that order

Table 3 Comparison of the numbers of parameters in the network models

CNN model Total number Number of convolutional layers Number of classifiers

VGG-16 1.38e8 1.47e7 1.19e8
VDR-8-LRN 1.23e8 3.91e6 1.19e8
VDR-FCN 2.97e6 2.97e6 1026
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parameters of VDR-8-LRN is not reduced significantly (it is approximately 89% of that of VGG-
16).

To further reduce the number of parameters of the CNN model needed to improve recognition
efficiency, we adopted the global average pooling (GAP) method [15] to replace the FC layer
classifier in VDR-8-LRN. Furthermore, we improved the model to enable the continued use of
large-sized feature maps as inputs to the GAP classifier. Since the improved network is mainly
composed of convolutional layers, we named it the full convolutional neural networks based SDDof
VDR (VDR-FCN). Its network structure is shown in Fig. 6.

First, VDR-FCN retains the fourth and fifth convolutional layers and the pooling layer of VDR-
8-LRN and removes the pooling layers after the first and second convolutional layers. Second, the
pooling layer after the third convolutional layer is retained, and a squeeze and expand (SE) layer [6]
was added after it to further optimize the feature maps outputted by the preceding convolutional
layers. Lastly, the original FC layer was removed and replaced by the GAP layer. The size of the
input classifier’s feature map of VDR-FCN is four times that of VDR-8-LRN. The parameter
settings of VDR-FCN are described in detail in Table 4. As shown in Tables 3 and 4, the number of
parameters of VDR-FCN is only 2.4% that of VDR-8-LRN.

3.3 Training and testing

After designing the CNN models, the next step is the CNN training. The proposed
models were trained based on the VGG-16 pretraining model and the ILSVRC-2012
data set. Before the training, to be consistent with the pretraining network, the spatial
resolutions of all of the training sample images were adjusted to 224 × 224 pixels. During
the training process, the grayscale mean of the training set sample was subtracted from
the input 224 × 224 RGB images, and then they were sent to the convolutional layer for
processing.

The R14 and R10 training sets were each used to train the proposed models. In the training
process, since the number of training samples was not very large, the batch size was set to 8, the
learning rate to 10−4, the dropout to 0.5 at all dropout layers, the initial momentum to 0.9 with a
weight decay of 0.0005, and the maximum number of iterations to 10,000. The stochastic gradient
descent method was used in the weight adjustment.

In the testing stage, the two trained VDR-8-LRN and VDR-FCN models were used to test the
test sets of their corresponding VDR models, and the final defect detection results were obtained.

224

Input image

3

Convolution

Convolution

GAP

Output

224

3
3

Squeeze & expand

Convolution

222

222

110

110

54
27

27

14

3 3

3

3
3

14
Convolution

3

3

Convolution

1

1

54

1
1

54

54

54

54

3

3

Fig. 6 VDR-FCN network model. The network contains 7 layers: 5 convolutional layers, a squeeze and expand
(SE) layer and a GAP layer. The third, fourth and fifth convolutional layers are followed by a maximum pooling
layer. The SE layer is added after the first pooling layer and the GAP layer is added after the last pooling layer
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4 Experiments and discussion

The experimental environment was as follows: The Ubuntu16.04 operating system,
NVIDIA GPU 1070Ti, and DDR2 6 GB memory. The proposed algorithm and the ones
evaluated in this study for comparison were run according to Caffe 1.0 [7]. To verify the
effectiveness of the proposed models (VDR-8-LRN and VDR-FCN) in VDR defect
detection, the detection accuracy of the proposed models were compared using SVM
with HOG (HOG+SVM) [21], VGG-16, VGG-8, and AlexNet. The evaluation indicators
of the sensitivity, specificity, accuracy, precision and F measure were used to compare
the detection accuracy between the algorithms. In addition, the “training error-number of
iterations” curves of VGG-8 and AlexNet were compared with that of the proposed
models to evaluate the training error convergence of each model.

4.1 Dataset

The two VDR models, i.e., R14 and R10, were tested in separate experiments, in which a
total of 340 samples were tested for each VDR model; from each sample, images from
the perspectives of the front, back and side of the VDR were acquired, generating a total
of 1020 images for each VDR model. The ground truths of the VDRs are obtained by
experienced professional quality inspectors. The acquired samples were randomly divid-
ed into a training set, a validation set, and a test set according to the ratio of 7:1:2, which
generated 714 training samples, 102 validation samples, and 204 test samples for each of
the two VDR models, in which both defective samples (positive samples) and non-
defective samples (negative samples) were included, as shown in Table 5.

4.2 Evaluation indicators

To compare the accuracy of the proposed method with that of the other models, five evaluation
indicators, i.e., the sensitivity (SE), specificity (SP), accuracy (ACC), precision (PR), and F
measure (F), were used, which are defined as follows:

Table 4 Parameter settings for the VDR-FCN network model

Layer name/type Output size Filter size/stride Number of params

input image 224*224*3
conv1 222*222*16 3*3/1 448
conv2 110*110*24 3*3/2 3480
conv3 108*108*32 3*3/1 6944
maxpool1 54*54*32 3*3/2
SE squeeze 54*54*16 1*1/1 528

expand1 54*54*64 1*1/1 1088
expand2 54*54*64 3*3/1 9280
concat 54*54*128

conv4 54*54*512 3*3/1 590,336
maxpool2 27*27*512 2*2/2
conv5 27*27*512 3*3/1 2,359,808
maxpool3 14*14*512 2*2/2
GAP conv 16*16*2 1*1/1 1026

avepool 1*1*2
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SE ¼ TP= TP þ FNð Þ; ð1Þ

SP ¼ TN= FPþ TNð Þ; ð2Þ

ACC ¼ TP þ TNð Þ= TP þ FPþ TN þ FNð Þ; ð3Þ

PR ¼ TP= TP þ FPð Þ; ð4Þ

F ¼ 2 PR⋅SEð Þ= PRþ SEð Þ; ð5Þ
where TP represents the true positives, TN represents the true negatives, FP represents the false
positives, and FN represents the false negatives.

4.3 Experimental results

During the experiment, the proposed methods were compared with VGG-16, VGG-8 and
AlexNet. HOG+SVM is a commonly used supervised method based on manual feature
extraction, which first extracts the HOG feature set and then uses SVM for training and
testing. The training of VGG-16, VGG-8 and AlexNet uses the traditional method of putting
together two types of training samples for training. Table 6 shows the defect detection results

Table 6 VDR defect detection results

Network model VDR model SE (%) SP (%) ACC (%) PR (%) F (%)

VGG-16 R10 88.33 100 96.57 100 93.80
R14 71.67 100 91.67 100 83.50

VGG-8 R10 90.00 100 97.06 100 94.74
R14 100 90.97 93.63 82.19 90.22

AlexNet R10 100 97.92 98.53 95.24 97.56
R14 68.33 93.06 85.78 80.39 73.87

HOG+SVM R10 100 95.14 96.57 89.55 94.49
R14 96.67 100 99.02 100 98.31

VDR-8-LRN R10 100 100 100 100 100
R14 100 100 100 100 100

VDR-FCN R10 100 99.31 99.51 98.36 99.17
R14 100 100 100 100 100

Table 5 Acquired samples and their divisions

VDR model Number of training sets Number of validation sets Number of test sets

N P N P N P

R14 504 210 72 30 144 60
R10 504 210 72 30 144 60

P: positive sample; N: negative sample.
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on the two VDRmodels. In the testing stage, 204 test samples were used for each VDRmodel.
When detecting on the R10 model, AlexNet ranked third in the ACC (98.53%) and F
(97.56%), with only false positives a factor, and the SE, SP and PR were 100%, 97.92%
and 95.24%, respectively. The ACC of VGG-8 was very close to that of AlexNet, 97.06%,
with only false negative detection a factor. HOG+SVM and VGG-16 performed the worst,
both with an ACC of 96.57%.

When detecting with the R14 model, HOG+SVM ranked third in the ACC indicator
(99.02%), but manual feature extraction was required. VGG-8 ranked fourth in the ACC
indicator (93.63%). Though VGG-16 had a more complex model structure than VGG-8, the
ACC of VGG-16 was slightly lower than that of VGG-8, which shows that the more complex
the network, the VDR classification is not necessarily more accurate. The AlexNet network
showed more false positives and false negatives in the R14 model detection and it performed
the worst in the ACC (85.78%) and F (73.87%).

In comparison, all defects were accurately detected by the proposed VDR-8-LRN on both
the R10 and R14 models. It took an average of approximately 83 ms for the VDR-8-LRN
model to analyze each sample image. VDR-FCN produced only one FP sample, and its ACC
indicator was similar to that of VDR-8-LRN. It was faster than VDR-8-LRN, taking an
average time of 5 ms to inspect one sample. They both meet the needs of real-time detection.
To summarize, the VDR-8-LRN and VDR-FCN proposed in this study had the best perfor-
mance in detecting the defective VDR samples.

Furthermore, from a training perspective, we compared AlexNet, VGG-8, VDR-8-
LRN and VDR-FCN. Given that the relationship between the model training loss and the
number of.

iterations largely reflects the robustness of the model, we examined the relationship in
each of the four models (as shown in Fig. 7). The results show that the training loss

Fig. 7 Relationship between the training loss value and the number of iterations in the four models
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values of the four models were small in the very beginning. The training loss value of the
VDR-8-LRN model rose sharply at the beginning, peaked at approximately 1.2, then
dropped quickly in a short time, with only a small fluctuation, and rapidly reached a
stable value, which was very small, ultimately reaching nearly zero. VDR-FCN also
quickly converged to a small value (at approximately 0.04). In contrast, the training loss
values of both AlexNet and VGG-8 first declined and then rose, with a maximum value
less than 0.9 and a rather large fluctuation. However, AlexNet and VGG-8 were also able
to reach stable values quickly and had final loss values close to 0.4 and 0.1, respectively.
These results indicate that the proposed VDR-8-LRN and VDR-FCN are more stable.

5 Conclusion

In this study, a CNN model was designed for the SDD of VDRs and achieved high accuracy
and efficiency. Using the CNN’s advantage of automatic feature learning and the VDR’s
unique characteristics, we further optimize the network structure of the model on the basis of
VGG-16 and constructed a CNN model, i.e., VDR-8-LRN, more suitable for the SDD of
VDRs through experimental analyses on networks of different depths. To further improve
recognition efficiency, we designed the VDR-FCN, which needs only 2.4% of the number of
parameters needed by VDR-8-LRN and took an average time of 5 ms to inspect one sample at
a recognition accuracy similar to that of VDR-8-LRN. In the experiment, we compared four
different models and assessed the performances of the algorithms from the perspectives of the
detection accuracy and training error convergence. These results indicate that VDR-8-LRN
and VDR-FCN are effective and stable. In future work, we will attempt to further streamline
the model structure while increasing the size of the data set in order to achieve even faster and
more accurate defect detection.
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