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Abstract
Person re-identification (re-id) is the task of recognizing images of the same pedestrian cap-
tured by different cameras with non-overlapping views. Person re-id is a challenging task
due to the existence of large view variations, such as spatial misalignment, background clut-
ter and human poses change. In this paper, we handle these challenges from the following
two aspects: utilizing attention mechanism to alleviate misalignment problem and exploiting
the complementary effects of global-local features for more stable pedestrian descriptors.
Specifically, we first present a part-based attention model consisting of a channel attention
block and a spatial attention block to sequentially refine the convolutional descriptors of
person body parts. The channel and spatial attention blocks weight the channels and posi-
tions of body-part feature maps to spot the informative channels and regions, respectively.
Then global full-body and local body-part of the refined feature maps are pooled into global
and local representations, which are jointly trained using identity classification loss. We
conduct extensive experiments on four standard benchmark datasets including Market1501,
CUHK03, DukeMTMC-reID, and CUHK01, and the experimental results demonstrate the
effectiveness of the presented method.

Keywords Person re-identification · Part-based attention model ·
Global-local complementary effects

1 Introduction

Person re-identification (re-id) is the task of finding the images of the same individual cap-
tured by multiple cameras distributed at different locations. Person re-id has received much
attention because of its wide applications in surveillance networks and computer vision
community. It is a challenging task due to the large appearance variations in viewpoints,
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illumination, human poses, and occlusion. Figure 1 displays some image samples from four
public benchmark datasets. Previous mainstream methods tackle the re-id problem by first
extracting hand-crafted features to represent person images and then learning distance met-
rics for similarity calculation of the extracted features. However, the performances of these
methods are affected by the limited representation power of hand-crafted features, and the
separate optimization of feature representations and distance metrics. Recently, deep learn-
ing models especially Convolutional Neural Networks (CNN) have obtained outstanding
performance in various computer vision tasks [11, 46, 71], such as image recognition, object
detection, and face recognition. Many researchers have explored the applications of CNN
in person re-id task. Different from the hand-crafted features based systems, deep methods
integrate feature extraction and metric learning into one unified framework and thus achieve
large performance improvement.

Existing deep methods can be categorized into two groups, namely verification models
and identification models. In the first group, verification models usually contain a Siamese
CNN for feature extraction of image pairs and a distance layer outputting feature simi-
larities. A lot of training loss functions including pairwise contrastive loss [45, 49, 61],
triplet loss [29, 38, 73], quadruplet loss [3], and their variants [5] are utilized to learn
a feature space, where intra-class distances are minimized and inter-class distances are

(a) Market1501

(b) CUHK03

(c) DukeMTMC-reID

(d) CUHK01

Fig. 1 Samples from four datasets including Market1501, CUHK03, DukeMTMC-reID, and CUHK01. The
appearances of the same person captured by different camera views can be greatly changed with different
lighting and pose, background and occlusion
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maximized. These methods only utilize weak annotation information about whether two
images depicting the same person and thus they do not take full advantage of the pedestrian
identity labels. Moreover, verification models usually take pairwise or triplet image units
as input, whose number will grow exponentially with the scale growth of dataset. This will
cause convergence problem in training stage, thus easily leading to under-fitting on large-
scale datasets. In the second group, the identification models that require no complex data
sampling process has gained popularity among person re-id community. The identification
models employ person identities as the supervisory signal and the softmax loss function is
adopted for model training. But identification models need a rich amount of training sam-
ples per identity to combat over-fitting. Recently, several large-scale datasets [66, 70] are
collected whilst each pedestrian has sufficient training samples. For example, there are on
average 17.2 training images for each identity on Market1501 [66]. Some good training
tricks [42, 43, 58, 70] are also proposed to build an effective identification model. Many
studies [67, 69, 74] demonstrate that identification models yield outstanding performance
on large-scale datasets requiring no special data sampling scheme. Thus, our method is built
on identification model.

Person re-id is a fine-grained problem and some person identities can only be distin-
guished by subtle differences in body parts and small visual cues (e.g., backpacks and
shoes). To this end, instead of only extracting global features, many methods exploit local
information to enhance the representation ability of deep features. Typically, these methods
first decompose person images into several patches, parts or stripes and then conduct part-
level similarity matching for more robust feature representations. They implicitly assume
the availability of well-aligned person bounding box images. However, as shown in Fig. 1,
cross-view images usually undergo uncontrolled spatial misalignment due to severe human
pose changes and inaccurate pedestrian detection, thus degrading the performance of part-
based methods. Some other methods rely on external pose localization algorithms to remedy
this problem. They directly adopt the pre-trained pose estimation models (e.g., Convolu-
tional PoseMachines [51] and OpenPose toolkit [2]) as the part detector. But they essentially
perform a two-stage scheme [62, 65], where the estimated human pose parts are first man-
ually cropped and then they are passed through another network for part-level feature
extraction. Some studies [41, 59] integrate the process of pose estimation and part feature
learning into one end-to-end trainable framework. However, it remains challenging to obtain
ideal semantic partition of person bodies because there are large domain bias between pose
estimation datasets and person re-id datasets. An alternative solution is to fully utilize the
attention mechanism that can focus on discriminative local regions. But existing attention
based deep learning models for re-id usually design complicated attention algorithms (e.g.,
Harmonious Attention Network [26]) or depend on computationally expensive units (e.g.,
STN [16] in [21] and attention based LSTM [37] in [29]).

In this paper, we present a Part-based Attention Model (PAM) to alleviate misalignment
problem. PAM contains a channel attention block and a spatial attention block. The two
blocks aim to explore the informative features of the body-part feature maps along chan-
nel and spatial dimensions, respectively. Specifically, we uniformly slice the person body
into several parts and each part is forward into PAM for channel and spatial feature refine-
ment. PAM learns to find the informative features by assigning weights to different channels
and different positions. Then the global full-body and local body-part of the refined feature
maps are pooled into global and part-level feature representations, each of which is trained
using identity classification loss. Our model is inspired by Squeeze-and-Excitation Network
(SENet) [15] and Convolutional Block Attention Module (CBAM) [53]. SENet only con-
siders channel interdependency while ignores spatial attention. Although both channel and
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spatial attention are incorporated in CBAM, the local cues beneficial for person re-id are
not exploited. We thus combine part feature learning and attention mechanism for person
re-id. The contributions of this paper can be summarized as follows:

1) We present a part-based attention model for person body-part feature refinement,
and the visualisation results show it can somehow alleviate the spatial misalignment
problem.

2) Two level of pedestrian descriptors are simultaneously learned to leverage the comple-
mentary advantages between global and local features.

3) Extensive experiments are conducted on several datasets to validate the effectiveness
of the presented method.

The remainder of this paper are organized as follows: We review the related studies in
Section 2. Our method is presented in Section 3 and the experimental results are shown in
Section 4. Finally, the conclusion is drawn in Section 5.

2 Related work

Person re-id plays an important role in surveillance systems and thus has drawn increasing
attention in recent years. Typical person re-id systems consist of two major components,
namely extracting feature representations to describe the person appearance and learning
distance metrics to measure the feature similarities. For feature representations, the com-
monly used features contain RGB, LAB, color names [60], local binary patterns (LBP) [17,
18, 22, 57], Gabor filter feature [22], color histogram and its variants [17, 18, 52] etc.
For example, Li et al. [22] combined LBP, HSV color histogram, Gabor and HoG to
represent person images. Liao et al. [27] constructed a feature descriptor by maximizing
the horizontal occurrence of local features. Gray et al. [10] proposed to utilize AdaBoost
algorithm to select the most discriminative features. Farenzena et al. [8] exploited the sym-
metry and asymmetry property of body structures to extract robust features for person
re-id. Kviatkovsky et al. [20] utilized the color intra-distribution signatures and proposed an
illumination-invariant color descriptor. For metric learning, many machine learning algo-
rithms are utilized to learn a mapping function from the feature space to distance space, in
which the intra-class distances are minimized while the inter-class distances are maximized.
For instance, Zheng et al. [68] proposed a relative distance comparison (RDC) learning
model from a probabilistic prospective. Davis et al. [6] proposed information-theoretic met-
ric learning (ITML) method based on Mahalanobis distance. Liao et al. [27] proposed
the Cross-view Quadratic Discriminant Analysis (XQDA), which simultaneously learned
a discriminant low-dimensional subspace and a distance metric. Other representative met-
ric learning methods contain Local Fisher Discriminant Analysis (LFDA) [32], large scale
metric learning from equivalence constraint (KISSME) [18], Large Margin Nearest Neigh-
bor (LMNN) [14] and etc. Further, Xiong et al. [57] extended many linear models (e.g.,
PCCA [30] and KISSME [18]) into their kernel versions. However, the performances of
these methods are limited because of the separate optimization between feature extraction
and metric learning.

Recently, the deep learning models that jointly learn feature representations and distance
metrics have dominated the person re-id community. Numerous network architectures and
training loss functions are proposed to learn more robust pedestrian descriptors. One impor-
tant type of CNN model is the verification model that takes image pairs or triplets as input.
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For example, Li et al. [24] proposed a patch matching layer in a filter pairing neural net-
work (FPNN) to learn the joint representations of paired images. Yi et al. [61] proposed a
Siamese convolutional neural network followed by a cosine layer to calculate pairwise simi-
larity. Ahmed et al. [1] proposed to compute the cross-input neighborhood differences in an
improved Siamese CNN model. Later, Wu et al. [54] improved the work in [1] by increas-
ing the depth of layers and using very small convolution filters. Ding et al. [7] utilized the
triplet loss to learn a view-invariant feature space. Chen et al. [3] improved triplet model and
designed a novel quadruplet deep network, which was trained using quadruplet loss. Her-
mans et al. [13] proposed a batch-hard triplet loss which selected the hardest positive and
hardest negative pairs in a training batch to form the triplet unit. Cheng et al. [5] learned both
global and local features in a triplet based Siamese CNN model. Varior et al. [45] proposed
to model the spatial contextual information between different parts using a long short-term
memory (LSTM) architecture. Meanwhile, Varior et al. [44] also proposed a gated CNN
to capture effective subtle patterns. Wang et al. [49] simultaneously learned single-image
and cross-image representations in a unified triplet and Siamese deep architecture. With the
scale growth of person re-id datasets, another type of CNN model, namely identification
model, has obtained outstanding performance. For instance, Xiao et al. [55] learned to pre-
dict the person identities from multiple datasets in a domain-guided deep network. Zheng
et al. [70] proposed to enrich the diversity of training samples using a Generative Adversar-
ial Network (GAN). Zhong et al. [77] proposed a novel camera style transfer model based
on CycleGAN [78]. Lin et al. [28] constructed an attribute-person recognition (APR) net-
work, which learned an identity embedding and simultaneously predicted the pedestrian
attributes. Sun et al. [42] proposed to decorrelate the learned weight vectors of identification
CNN using singular vector decomposition (SVD). Li et al. [25] proposed a multi-loss classi-
fication model to jointly learn global and local discriminative features. Many methods also
construct a hybrid model that leverage the complementary advantages of two losses. For
example, Wang et al. [47] trained a multi-task attentional network using both identification
and verification supervisory signals. Zheng et al. [69] combined verification and identifi-
cation models in a deep network. Our method is built based on identification/classification
model.

One major challenge in person re-id task is the misalignment problem as shown in Fig. 1.
Many methods solve this challenge by exploiting local visual similarities on predefined
rigid body parts [1, 5, 24, 45, 54]. However, rigid partition of person images still can not
fully capture the body structure because of pose variations and thus the performances of
their methods are limited. Other methods employ external pose estimation models for accu-
rate body part localization. For example, Zhao et al. [62] utilized the Convolutional Pose
Machines (CPM) [51] to localize head-shoulder region, upper body region and lower body
region. Su et al. [41] utilized Spatial Transformer Networks (STN) [16] to localize the body
parts. Sarfraz et al. [35] included the confidence maps of human poses in the model training
process and proposed a new unsupervised re-ranking framework. Xu et al. [59] integrated
pose estimation into the feature learning stage. These methods either rely on pre-trained
pose estimation models or need manual operation, which have disadvantage in time effi-
ciency. Moreover, there exists domain bias between re-id and pose datasets, which may
bring inaccurate pose localizations. Some other methods propose attention models to focus
on the discriminative regions of person images. For instance, Liu et al. [29] combined atten-
tion mechanism with LSTM for informative parts localization. Li et al. [26] proposed to
combine hard regional attention [16], residual attention model [48], and channel attention
in an integrated deep framework. Zhao et al. [63] proposed a fully convolutional attention
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model to eliminate the misalignment problem. Our work departs from those above attention
models in a simple channel-spatial attention model to refine body-part features and a multi-
loss function to jointly learn global and local features. Our method is mostly similar to PCB
model [43]. PCB model [43] first uniformly slices the feature maps and then uses an offline
block termed Refined Part Pooling (RPP) [43] to deal with spatial misalignment problem.
Compared to the work in [43], our model instead integrates an attention model for feature
refinement.

3 Proposedmodel architecture

In this work, we design an end-to-end deep model which formulates person re-id as an
identity classification problem. In this section, we will present our person re-id method.
First, we will describe the deep neural network utilized in our method, then we will show
the details of the part-based attention model for feature refinement. Finally, we will present
the multi-loss function for global and local features learning. Figure 2 illustrates the whole
framework of our method.

3.1 Convolutional representations

The deep learning models especially Convolutional Neural networks (CNN) have demon-
strated significant performance improvement in a series of pattern recognition applications
including person re-id task. Inspired by this, we employ CNN to extract the compact
appearance features for person images. The backbone network utilized in our method is
ResNet50 [12]. ResNet50 is constructed by five sequential downsampling blocks. The first
block is one convolutional layer and the rest are four residual blocks encapsulated with
several convolutional layers with batch normalization, ReLU, and optionally pooling oper-
ations. Each block downsamples the spatial size of feature maps into its half scale. The
original design of ResNet50 is shown in Fig. 3a. Given an input image with size of 384×128,
the final spatial size of ResNet50 is 12 × 4, which may be too small to retain the spatial
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Fig. 2 Illustration of the proposed person re-identification system. We first employ a deep network to extract
the base feature maps for the input image. Then, the person body is vertically sliced into several parts and each
of them is passed through the presented Part-based Attention Model (PAM) for feature refinement. Two level
of feature representations including global features and local features are obtained from the refined feature
maps to predict person identities. GAP and FC denote global averaging pooling and fully connected layer,
respectively. Here, FC layer acts as classifier. Moreover, ID is the abbreviation of identity. Take ResNet50 as
example, the network output size is 2048×24×8, and thus the dimensions of each pooled feature are 2048.
The number of predicted IDs K is identical to the training identities on different datasets (e.g., K=750 on
Market1501)
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(b) ResNet50 used in our model
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Fig. 3 Architecture of the ResNet-50 model. We use the high-level feature maps from Res4 block as the base
features

regional information. We thus remove the downsampling layer in the last residual block to
augment the resolution of feature maps. As illustrated in Fig. 3b, the final size of feature
maps in our model is 24 × 8.

3.2 Part-based attentionmodel

Person re-id system has benefited a lot from manipulation of spatial information. Specially,
many methods learn local feature representations from predefined rigid body parts. Albeit
simple, rigid partition of person images can roughly preserve the human body structure on
vertical direction, that is, head is usually at the top part, torso and leg are at the middle and
bottom part. However, the person images automatically detected by offline person detectors
usually contain spatial misalignment and noisy occlusion. The features extracted from rigid
body parts thus can not well describe person appearances.

In this paper, we present a part-based attention model to simultaneously take advantage
of body distributions and overcome the weakness of rigid spatial decomposition. Our atten-
tion model is motivated by Squeeze-and-Excitation Network (SENet) [15] that models the
interdependency between different convolutional channels, and CBAM [53] that recalibrates
global feature responses. Different from those methods, our attention model aims to refine
body-part feature maps for more robust pedestrian representations. As shown in Fig. 2, the
output features from the deep network are denoted by X ∈ RC×H×W , where C, H , and
W represent the channel, height, and width of feature maps. We first uniformly partition
the convolutional output into L vertical parts. Then, each body-part feature cube is refined
by PAM. As illustrated in Fig. 4, given the input part P ∈ RC×h×W where h = H

L
, PAM

sequentially generates a 1D channel attention map Mc ∈ RC×1×1 and a 2D spatial atten-
tion map Ms ∈ R1×h×W to weight the channels and positions, respectively. Afterwards, the
weighted feature cube is summed with the input part using element-wise operation to obtain
the final refined part. The overall attention process can be denoted as:

Pc = Mc ⊗ P,

Ps = Ms ⊗ Pc,

P ′ = P ⊕ Ps, (1)

where ⊗ and ⊕ represents element-wise multiplication and summation, respectively. Pc and
Ps denote the part feature cubes weighted by channel attention map Mc and spatial attention
map Ms , respectively. P ′ is the final refined body-part feature. Below we will describe the
computation process of each attention map.
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Fig. 4 Overview of the Part-based Attention Model (PAM). PAM contains a Channel Attention Block (CAB)
and a Spatial Attention Block (SAB) to weight the input body-part feature cube along channel axis and spatial
axis, respectively. The weighted feature cube is then element-wisely summed with the input to generate the
final refined features

Channel attention block The purpose of Channel Attention Block (CAB) is to explic-
itly model the interdependencies between the channels of convolutional features [15]. The
structure of CAB is illustrated in Fig. 5a. CAB first uses a Global Average Pooling (GAP)
operation to integrate the spatial information of feature maps into a feature vector. Then
the vector is forward into a multi-layer perceptron (MLP) to generate the attention map
Mc ∈ RC×1×1. Specifically, we construct MLP using two fully-connected (FC) layers,
whose activation outputs are in size of RC/r×1×1 and RC×1×1, respectively. Here, r is the
reduction factor for the purpose of parameter reduction. In short, the channel attention can
be expressed as:

Mc = Wσ
1 (WReLU

0 (GAPs(P ))), (2)

where GAPs means GAP operation along spatial dimension. W0 ∈ R
C
r
×C and W1 ∈

RC× C
r are two FC layers of MLP. Their corresponding activation functions are σ and ReLU

functions, in which σ represents sigmoid function. It is worth noting that sigmoid function
is used to assure that the values of attention map are in an interval of [0,1].

Spatial attention block We employ Spatial Attention Block (SAB) to automatically dis-
cover the salient regions of body-part, which is complementary to the channel attention. The
structure of SAB is illustrated in Fig. 5b. SAB first aggregates the channel information into
one feature map through applying GAP operation across channel axis. Then the aggregated
feature map is sequentially passed through one convolutional layer to generate the spatial

GAPs

GAPc

MLPInput P Input Pc

(a) Channel  attention block (b) Spatial attention block

Conv

Fig. 5 Structure of Channel Attention Block (CAB) and Spatial Attention Block (SAB). GAPs and GAPc

mean GAP operation along spatial axis and channel axis, respectively. MLP represents multi-layer perceptron
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attention map Ms ∈ R1×h×W . The filter size and stride of convolution are 1 × 1 and 1,
respectively. In short, the spatial attention can be denoted as:

Ms = Conv
σ

(GAPc(Pc)), (3)

where GAPc means GAP operation along channel dimension.

3.3 Multi-loss training

As shown in Fig. 2, given an input image, its corresponding output from backbone net-
work is first decomposed into L parts and then each body-part is refined by PAM along the
channel and spatial dimensions. After feature refinement, the global full-body is mapped
into a set of refined parts

{
P ′
1, P

′
2, . . . , P

′
L

}
. To better utilize the global-local complemen-

tary cues, we extract two level of pedestrian descriptors including global features and local
features. Specifically, the global features are obtained by first concatenating all the parts
along vertical axis and then passing the concatenated feature maps into GAP operation. The
local features are generated by pooling each refined part. The global feature and each of the
part-level features are then forward into FC layer to make identity predictions.

During training phase, softmax loss is utilized to minimize the identity classification
errors. In a training batch, supposing that the number of images is N and each belongs to
one of K identities, the softmax loss can be written as:

L = − 1

N

N∑

i=1

K∑

k=1

yi log p̂i
k, (4)

where p̂i
k is the probability of i − th image belonging to k − th identity and yi is the ground

truth identity.
The total loss function to train global and local features thus can be expressed as:

Ltotal = Lg +
L∑

i=1

Ll
i (5)

where the superscripts g and l are the abbreviations of global features and local features,
respectively.

4 Experiment results

4.1 Experimental settings

Datasets The experiments are conducted on four challenging datasets, including Mar-
ket1501 [66], CUHK03 [24], DukeMTMC-reID [70], and CUHK01 [23]. Market1501
contains 32,668 auto-detected bounding boxes of 1,501 identities. It is one of the largest re-
id benchmarks in the existing literatures. Images of each identity are captured by at most
six cameras in front of a campus supermarket with complex environment. The Deformable
Part Model (DPM) [9] detector is employed as pedestrian detector and thus human parts are
not well aligned in the bounding boxes. The CUKH03 dataset includes more than 13,000
images of 1360 identities collected in a university campus. Each identity is captured from
two adjoint cameras and has 4.8 images on average for each view. Two versions are pro-
vided on this dataset, namely the manually labeled version and the automatically detected
version by the DPM detector. We evaluate our model on the bounding boxes detected by
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DPM, which is closer to the realistic setting. DukeMTMC-reID dataset is a subset of the
multi-target, multi-camera pedestrian tracking dataset [33]. We use the re-id version pro-
vided by [70], which contains 34,183 images of 1,401 person identities. The pedestrian
bounding boxes are manually cropped. Each person is captured by at most eight different
high-resolution cameras. CUHK01 dataset contains 971 persons, which are captured by two
non-overlapping camera views. This dataset includes 3,884 images and each person identity
has four images.

Evaluation protocol We conduct the comparison experiments using single-query settings.
Two widely used evaluation metrics are adopted for performance comparison, namely
cumulative matching characteristic (CMC) [31] and mean average precision (mAP) [66].
Each dataset is split into two subsets, namely training and testing subset with non-
overlapping person identities. For Market1501, we follow the standard training/testing
protocol defined by [66], which uses fixed 750 identities as training subset and the rest fixed
751 identities as testing subset. For CUHK03, we adopt the new training/testing protocol
proposed in [75], which fixes 767 person identities for training and the rest 700 identities
for testing. For DukeMTMC-reID, following the evaluation protocol in [70], 1,401 identi-
ties are divided into a training subset with 702 identities and a testing subset with the rest
702 identities. For CUHK01, we randomly divide the 971 persons into the training subset
with 485 persons and the testing subset with 486 persons.

Implementation details We implement our method based on the open source PyTorch1

library and we train our model on a compute note with Intel Xeon CPU (64G memory)
and four Titan GPUs (48G memory in total). The backbone network is pre-trained on Ima-
geNet [34]. In all experiments, the images are first re-scaled into 420 × 140 and then they
are cropped into 384×128. Common data augmentation techniques are applied to the input
images, including mirror flip, minor rotation, and random erasing [76]. Besides, the pixels
of all images are normalized to [0,1], subtracted by mean pixel values of RGB channels and
then divided by standard deviation of each channel. The GAP outputs are sequentially fol-
lowed by batch normalization and dropout operation, which play a critical role in avoiding
over-fitting. The dropout ratio is 50%. In the training process, each batch contains 16 per-
son identities, and for each identity we randomly select 5 images, and thus the batch-size
is 80. Adam optimizer is applied for model training and we set the initial learning rate as
3 × 10−4. The learning rate decreases every 50 epoches by a factor of 0.1 and our model
convergences stably after 180 epoches.

4.2 Comparison with state-of-the-art methods

In this section, we compare the performance of our method with recent state-of-the-
art approaches, including both hand-crafted features based methods and deep learning
based methods. The hand-crafted features based methods include SDALF [8], eSDC [64],
BoW [66], KISSME [18] and LOMO [27]. The deep methods include PersonNet [54],
End-to-end CAN [29], Siamese LSTM [45], ID-discriminative Embedding (IDE) [67,
75], Gated CNN [44], Spindle Network (SpindleNet) [62], GAN [70], Pose Invariant
Embedding (PIE) [65], Deeply Learned Part-aligned Representation (DLPR) [63], CNN-
Embedding [69], Pose-driven Deep Convolutional model (PDC) [41], TriNet [13], Joint

1https://pytorch.org/
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Learning Multi-Loss (JLML) [25], Pose-Sensitive Embedding (PSE) [35], Cam-GAN [77],
TGP [58], Harmonious Attention CNN (HA-CNN) [26], Dual Attention Matching net-
work (DuATM) [39], Part-based Convolutional Baseline (PCB) [43], SVDNet [42], Online
Instance Matching (OIM) [56], Attribute-Complementary Re-id Network (ACRN) [36],
Attention-Aware Compositional Network (AACN) [59], Deep Anytime Re-ID (DaRe) [50],
and Mancs [47]. Note that, some methods including DaRe [50], TriNet [13], and PSE [35]
obtain better results using additional re-ranking technique [75]. For fair comparison, we
only compare their results without re-ranking scheme as our method.

Performance on Market1501 The comparison results are shown in Table 1. It can be
seen that deep methods, especially recent state-of-the-art models including PDC [41],
JLML [25], DuATM [39], and PCB [43], perform significantly better the hand-crafted

Table 1 Performance comparison on Market1501 dataset. “*” denotes unpublished paper. “-” means no
available reported results

Methods Top1 mAP

SDALF [8] (ICCV10) 20.5 8.2

eSDC [64] (CVPR13) 33.5 13.5

BoW [66] (ICCV16) 34.4 14.1

PersonNet∗ [54] (ArXiv16) 37.2 18.6

End-to-end CAN [29] (TIP17) 48.2 24.4

Siamese LSTM [45] (ECCV16) 61.6 35.3

IDE [67, 75] (CVPR17) 73.9 47.8

Gated CNN [44] (ECCV16) 76.0 48.5

SpindleNet [62] (CVPR17) 76.9 -

GAN [70] (ICCV17) 78.1 56.2

PIE* [65] (ArXiv17) 78.7 53.9

DLPR [63] (ICCV17) 81.0 63.4

CNN-Embedding [69] 84.0 66.1

PDC [41] (ICCV17) 84.4 63.4

TriNet* [13] (ArXiv17) 84.9 69.1

JLML [25] (IJCAI17) 85.1 65.5

AACN [59] (CVPR18) 85.9 66.9

PSE [35] (CVPR18) 87.7 69.0

Cam-GAN [77] (CVPR18) 88.1 68.7

DaRe [50] (CVPR18) 88.5 74.2

HA-CNN [26] (CVPR18) 91.2 75.7

TGP* [58] (ArXiv18) 91.7 78.8

DuATM [39] (CVPR18) 91.4 76.6

PCB [43] (ECCV18) 92.3 77.4

PCB + RE [76] 92.8 78.7

Mancs [47] (ECCV18) 93.1 82.3

PCB + RPP [43] 93.8 81.6

PCB + RE [76] + RPP [43] 94.0 82.2

Our method 93.6 81.7
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features based methods (e.g., BoW [66] and eSDC [64]), illustrating the powerful fea-
ture learning capability of deep networks. Our method achieves 93.6% Top1 accuracy and
81.7% mAP on this dataset. Our model obtains significantly better performance than Per-
sonNet [54], Siamese LSTM [45], Gated CNN [44], and GAN [70]. The Top1 accuracy
of our method is 16.7%, 14.9%, 9.2%, 7.7%, and 5.9% better than the pose-driven models
SpindleNet [62], PIE [65], PDC [41], AACN [59], and PSE [35], respectively. Compared
to previous attention based models End-to-end CAN [29], DLPR [63], HA-CNN [26], and
DuATM [39], our method improves the Top1 accuracy by 45.4%, 12.6%, 2.4%, and 2.2%,
respectively, and the mAP by 57.3%, 18.3%, 6.0%, and 5.1%, respectively. Our work is
close to CNN-Embedding [69], JLML [25], Mancs [47], and PCB, which are trained using
multiple losses. CNN-Embedding [69] and Mancs [47] both combine verification loss and
identification loss, while our method only relies on softmax loss. JLML [25] and our method
learn global-local features. Compared to JLML [25], our method needs no feature sparsity
constraints. Our model shares similar structure with PCB [43], which is based on uni-
form body-part partition. Compared to the combination of PCB [43] and Random Erasing
(RE) [76], our method obtains better re-id accuracies, with 0.8% Top1 accuracy improve-
ment (ours 93.6% versus PCB 92.8%) and 3.0% mAP improvement (ours 81.7% versus
PCB 78.7%). PCB [43] deals with the part inconsistency issue caused by rigid part parti-
tion using an offline RPP module, which is not efficient. In contrast, we use end-to-end
trainable part attentions for feature refinement. Besides, the performances of our model are
comparable to that of combining PCB, RE [76], and RPP.

Performance on CUHK03 We conduct experiments on the detected version of CUHK03
dataset, which is a more realistic setting considering spatial displacement, partial occlu-
sion, and pose changes. The comparison results are shown in Table 2. It can be seen that

Table 2 Performance comparison on CUHK03 detected dataset

Methods Top1 mAP

BoW [66] + KISSME [18] 6.4 -

LOMO [27] (CVPR15) 12.8 11.5

IDE(C) [67, 75] (CVPR17) 12.8 -

IDE(C) [67, 75] + XQDA [27] 21.1 -

IDE(R) [67, 75] (CVPR17) 21.3 -

IDE(R) [67, 75] + XQDA [27] 31.1 -

SVDNet [42] (ICCV17) 41.5 37.3

HA-CNN [26] (CVPR18) 41.7 38.6

TGP* [58] (ArXiv18) 56.5 52.2

PCB [43] (ECCV18) 61.3 54.2

DaRe [50] (CVPR18) 61.6 58.1

PCB + RE [76] 61.8 56.4

PCB + RPP [43] 63.7 57.5

PCB + RE [76] + RPP [43] 64.0 58.2

Mancs [47] (ECCV18) 65.5 60.5

AACN [59] (CVPR18) 79.1 78.4

Our method 64.1 60.8

22536 Multimedia Tools and Applications (2020) 79:22525–22549



our method consistently outperforms all the hand-crafted features based methods by a large
margin, including BoW [66] and LOMO [27]. Our model obtains 64.1% Top1 accuracy
and 60.8% mAP, which performs better than most of the compared deep models. Specifi-
cally, our method outperforms SVDNet [42], HA-CNN [26], TGP [58], and DaRe [50] by
22.6%, 22.4%, 7.6%, 2.5% respectively at Top1, and 23.5%, 22.2%, 8.6%, and 2.7% respec-
tively in mAP. The part-based models including PCB [43] and our method achieve good
performance on this dataset, illustrating the effectiveness of local cues in learning robust
pedestrian descriptors. Compared to the combination of PCB [43] and RE [76], our method
improves the Top1 accuracy and mAP by 2.3% and 4.4%, respectively. The Top1 accu-
racy and mAP of combining PCB, RE [76], and RPP [43] can be improved to 64.0% and
58.2%, respectively. But our model still performs slightly better. On this dataset, although
Mancs [47] and AACN [59] obtain high Top1 accuracy and mAP, our method that depends
on no multi-task learning scheme [47] or complicated pose estimation algorithm [59] has
advantage in model complexity.

Performance onDukeMTMC-reID The experimental results are shown in Table 3. It can be
observed that our method performs better than most of the deep models. For instance, our
method outperforms GAN [70], SVDNet [42], AACN [59], and DaRe [50] by 17.0%, 8.0%,
7.9%, and 5.6% respectively at Top1, and 22.3%, 12.6%, 10.1%, and 6.4% respectively in
mAP. On this dataset, our method obtains 84.7% Top1 accuracy and 69.4% mAP, which
are better than ACRN [36] that requires person attributes and Cam-GAN [77] that depends
on camera information. Compared to PSE [35] that utilizes auxiliary human pose cues, our
method improves the Top1 accuracy by 4.9%, and mAP by 7.4%. Our model performs better
than PCB [43] and its combination with RE [76], as well as RPP. Besides, the performances

Table 3 Performance comparison on DukeMTMC-reID dataset

Methods Top1 mAP

BoW[66] + KISSME [18] 25.1 12.2

LOMO [27] (CVPR15) 30.8 17.0

GAN [70] (ICCV17) 67.7 47.1

OIM [56] (CVPR17) 68.1 -

ACRN [36] (CVPRW17) 72.6 52.0

Cam-GAN [77] (CVPR18) 75.3 53.5

SVDNet [42] (ICCV17) 76.7 56.8

AACN [59] (CVPR18) 76.8 59.3

DaRe [50] (CVPR18) 79.1 63.0

DPFL [4] (ICCVW17) 79.2 60.6

PSE [35] (CVPR18) 79.8 62.0

PCB [43] (ECCV18) 81.8 66.1

PCB + RE [76] 82.9 68.3

PCB + RPP [43] 83.3 69.2

TGP* [58] (ArXiv18) 83.4 68.8

PCB + RE [76] + RPP [43] 83.8 70.5

Mancs [47] (ECCV18) 84.9 71.8

Our method 84.7 69.4
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of our method are comparable to the best-performing method Mancs [47] on this dataset,
which depends on complex hard examples mining scheme.

Performance on CUHK01 The experimental results are displayed in Table 4. It can be
seen that our method performs much better than the hand-crafted features based models,
including KISSME [18], eSDC [64], and KLFDA [57]. On this dataset, our method obtains
86.4% Top1 accuracy and 85.3% mAP, which outperforms many deep learning models. For
example, our method improves the Top1 accuracy by 19.8%, 23.8%, 9.7%, and 6.5%, over
DGDNet [55], Quadruplet [3], JLML [25], and SpindleNet [62], respectively. Compared to
PCB [43] and its combination with RE [76], our method improves the Top1 accuracy by
3.3% and 2.6%, respectively, and the mAP by 3.5% and 2.6%, respectively. Compared to
the combination of PCB [43], RE [76], and RPP [43], our model achieves slightly better
performances on this dataset. Besidse, it is worth noting that our method needs no offline
operation, which exhibits high efficiency in training stage.

4.3 Analysis of proposedmodel

We further make a comprehensive performance analysis to evaluate the effectiveness of
each component of our presented method.

Effectiveness of attention model As shown in Fig. 3, the output spatial size of the last
residual block is 24× 8. We evaluate how the attention model contribute to the person re-id
performance under different part partitions. We divide the feature map into 1, 2, 4, 6, 8, and
12 parts, whose spatial sizes are 24× 8, 12× 8, 6× 8, 4× 8, 3× 8, and 2× 8, respectively.
Figure 6 displays the experimental results on Market1501. It can be observed that, under the
same part partition, global or local features with PAM performs generally better than that
without PAM, which validates the effectiveness of our attention model in boosting the re-id

Table 4 Performance comparison on CUHK01 dataset

Methods Top1 mAP

SDALF [8] (ICCV10) 9.9 -

KISSME [18] (CVPR12) 13.5 -

eSDC [64] (CVPR13) 19.7 -

KLFDA [57] (ECCV14) 26.6 -

IDLA [1] (CVPR15) 47.5 -

MCP-CNN [5] (CVPR16) 53.7 -

DGDNet [55] (CVPR16) 66.6 -

Quadruplet [3] (CVPR17) 62.6 -

JLML [25] (IJCAI17) 76.7 -

SpindleNet [62] (CVPR17) 79.9 -

PCB [43] (ECCV18) 83.1 81.8

PCB + RE [76] 83.8 82.7

PCB + RPP [43] 84.7 84.5

PCB + RE [76] + RPP [43] 85.6 85.1

Our method 86.4 85.3

22538 Multimedia Tools and Applications (2020) 79:22525–22549



(a) Top1 accuracy (b) mAP

Fig. 6 Performance of different features under different part partitions. “w” and “w/o” represent “with” and
“without”, respectively

performance. Particularly, the performance of local features are largely improved with the
increase of part number. When the part number L = 1, PAM degenerates to CBAM [53].
When the part number L = 6, the Top1 accuracy and mAP of local features with PAM
reach their best, which are 93.2% and 80.4%, respectively. Therefore, we use this setting to
conduct all the experiments. When the part number continually increases, the performance
of local features with and without PAM drops with different rates. Specifically, the accuracy
of local features with PAM slightly decreases while large accuracy drops can be observed
when extracting local features without PAM. This implies that the performances of local
features with PAM are not very sensitive to the part partitions. The local features with PAM
can still obtain a relatively high Top1 accuracy even when the image is partitioned into two
parts. Therefore, our method can better handle accuracy-efficiency trade-offs if applied to
realistic re-id scenarios.

Performance of different attention methods In Table 5, we explore how to effectively
compute the spatial attention and arrange the order of two attention modules. Note that the
channel attention model is same as the SENet [15] module. It can be seen that incorporat-
ing either channel attention or spatial attention can boost the re-id performance compared to
the ResNet50 baseline. The accuracies are further improved after combining two attention
modules. Besides, similar performances can be observed when using different convolution
kernel sizes (5×5, 3×3 or 1×1) to compute the spatial attention module. We thereby use
1×1 convolution operation in spatial attention considering the computation cost. Regard-
ing the order of two attention modules, we evaluate three arrangements, namely sequential
channel-spatial, sequential spatial-channel, and parallel use of two modules. We can observe
that two sequential orders outperform parallel arrangement, possibly because channel and
spatial attention models generate two different semantic embedding spaces, and simply fus-
ing them achieves less gains. Finally, the sequential channel-spatial design is chosen in our
model for its sightly better performance than the sequential spatial-channel arrangement.

Effectiveness of multi-loss training Our model is trained using multiple softmax loss. To
reveal each of their ingredients contributing to the performance improvement, we report
the results of baseline networks, different losses, and their combinations. The experimen-
tal results on four datasets are shown in Table 6, where the subscripts g and l represent
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Table 5 Experimental results of different attention methods on Market1501 dataset

Architecture Global feature Local feature

Top1 mAP Top1 mAP

ResNet50 90.2 73.3 92.5 79.4

ResNet50 + channel (SENet [15]) 90.5 73.8 92.8 79.7

ResNet50 + spatial (5×5 conv) 90.5 73.6 92.6 79.6

ResNet50 + spatial (3×3 conv) 90.4 73.4 92.6 79.5

ResNet50 + spatial (1×1 conv) 90.4 73.5 92.7 79.5

ResNet50 + channel + spatial (5×5 conv) 90.7 74.5 93.1 80.3

ResNet50 + channel + spatial (3×3 conv) 90.7 74.3 93.3 80.3

ResNet50 + channel + spatial (1×1 conv) 90.8 74.5 93.2 80.4

ResNet50 + spatial & channel in parallel 90.7 74.0 92.9 79.8

ResNet50 + spatial + channel 90.6 74.2 93.0 80.3

ResNet50 + channel + spatial 90.8 74.5 93.2 80.4

global loss and local loss, respectively. Several important observations could be made from
the results. 1) Performance improvement can be observed when augmenting the spatial size
of feature maps, probably because more spatial information can be retained by using larger
feature resolutions. On four datasets including Market1501, CUHK03, DukeMTMC-reID,
and CUHK01, the respective accuracy improvements are 0.6%, 2.1%, 0.8%, and 1.7% at
Top1, and the respective mAP improvements are 0.5%, 2.2%, 1.2%, and 0.9%. 2) It can
be seen that the attention model consistently achieves better performance than baseline net-
work. For instance, compared to ResNet50g whose spatial size is 24×8, PAMg improves
the Top1 accuracy on four datasets by 0.6%, 2.4%, 0.9%, and 2.2%, respectively, and the
mAP by 1.2%, 2.3%, 1.1%, and 2.4%, respectively. 3) In general, feature embedding with
local loss outperforms global loss. On four datasets, the Top1 accuracy improvements are
2.4%, 10.3%, 1.4%, and 12.1%, respectively, and the mAP improvements are 5.9%, 8.8%,
4.7%, and 13.1%, respectively. This demonstrates the benefit of incorporating local cues. 4)
Combining global information and local information improves the performance over using

Table 6 Performance comparison of different losses on several datasets. The CMC Top1 accuracy (%) and
mAP (%) are presented. 12×4 and 24×8 represent the spatial size of feature maps. The two subscripts g and
l denote global loss and local loss, respectively

Different Losses Market1501 CUHK03 DukeMTMC CUHK01

Top1 mAP Top1 mAP Top1 mAP Top1 mAP

ResNet50g (12×4) 89.6 72.8 47.7 45.1 80.5 61.2 68.8 68.3

ResNet50g (24×8) 90.2 73.3 49.8 47.3 81.3 62.4 70.5 69.2

ResNet50+PAMg 90.8 74.5 52.2 49.6 82.2 63.5 72.7 71.6

ResNet50+PAMl 93.2 80.4 62.5 58.4 83.6 68.2 84.8 84.7

ResNet50+PAMg+l 93.6 81.7 64.1 60.8 84.7 69.4 86.4 85.3
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Table 7 Top1 accuracy and mAP of different CNN architectures on Market1501 dataset (partition by “/”)

Architecture AlexNet VGGNet ResNet

VGG11 VGG16 VGG19 ResNet18 ResNet50 ResNet101

Layers 5 11 16 19 18 50 101

Parameters 2.45M 9.21M 14.73M 20.04M 11.17M 23.53M 42.52M

PAMg 73.3/48.1 82.2/58.6 84.5/64.3 85.2/65.2 89.2/71.4 90.8/74.5 91.0/74.9

PAMl 80.9/58.3 86.5/67.1 87.9/71.4 87.6/71.7 90.9/75.6 93.2/80.4 92.2/79.4

PAMg+l 81.2/58.9 86.7/69.1 88.2/72.2 88.1/72.0 91.7/76.4 93.6/81.7 93.1/81.0

them individually. For instance, on Market1501, PAMg+l outperforms PAMg and PAMl by
2.8% and 0.4%, respectively at Top1, and 7.2% and 1.3%, respectively in mAP. This shows
that global and local information are complementary in nature.

Experimental results on different CNN architectures In Table 7, we conduct experiments
on deep models with different parameters and layers, including two extra model architec-
tures, namely AlexNet [19] and VGGNet [40]. Similar to ResNet50, all the FC layers and
the last downsampling operation are removed. The sizes of input image are all same, which
are 384× 128. All the networks generate feature maps with the same resolutions, which are

Fig. 7 Visualization of attention maps. The first three rows respectively exhibit some examples with different
view variations, namely spatial misalignment, occlusion, and human pose change. The fourth row shows
some examples that are well aligned
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24 × 8. The part numbers of other models are same to that of ResNet50, which is L = 6.
Besides, the training settings of VGGNet are same to ResNet50, while for AlexNet a slightly
higher learning rate is used, which is 10−3. From Table 7, we can observe that incorporating
local cues and combining different losses both significantly boost the re-id performances
of all CNN models, which further validates the effectiveness of the presented method in
learning more robust features. Additionally, with the increases of model parameters or lay-
ers, performance improvements can be observed (for example, AlexNet versus VGG11, or
VGG11 versus VGG16). But the performance improvements are not linearly correlated to
model parameters or layers. The better network design also contributes to the performance
improvement. For instance, compared to VGG19, ResNet18 with half parameters and nearly
same layers obtains better performances. Besides, for the same model architecture, if the
model parameters further increase (for example, VGG16 versus VGG19, or ResNet50 ver-
sus ResNet101), the re-id accuracies remain nearly same, possibly because of the limited
dataset scale.

Qualitative results In Fig. 7, we show some attention maps produced by PAM. We can see
that the model learns to assign different weights to different regions. On the attention maps,
it is apparent that the human body regions are more salient than background noises, such as

(a) Testing samples with Top1 correctly matched

(b) Testing samples with Top1 wrongly matched

Fig. 8 Samples of the retrieval results on Market1501. The images in the first column are the query images.
The top 10 retrieved images are sorted according to the similarity scores from left to right. Red rectangles
represent the correct matches
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Table 8 Comparison of average feature extraction time and average retrieval time on Market1501 (millisec-
ond per image)

Methods Feature dimension Feature extraction Retrieval Total

IDE(R) [75] 2048 5.8 6.33 12.13

CNN-Embedding [69] 2048 5.9 6.42 12.32

PCB [43] 12288 5.9 6.71 12.61

IDLA [1] 500 410.6 6.87 417.47

RCN [72] 4800 93.5 6.71 100.21

Our method 14336 5.9 6.93 12.83

cars and trees. The top and bottom regions are less salient than the middle body parts, prob-
ably because the faces with low resolutions and the small legs contain less discriminative
information than body torsos, which include most of the clothing cues. It can be seen that
the person appendixes, such as backpacks and luggage, are partially attended, which means
they can assist matching persons. Our model can still focus on the body parts even under
large view variations including spatial misalignment, occlusion, and human pose change.
For instance, in the second row, although the target persons are occluded by other persons
or objects such as bicycles, PAM pays more attention on the human body regions of target
persons.

In Fig. 8, we show top 10 retrieval results from Market1501. It can be observed that
our model exhibits strong robustness to pose changes, scale variations, and spatial displace-
ment. We can see that the false matchings are mainly caused by similar looking in visual
appearances. These failure cases are also very challenging from human perspective, espe-
cially the person images with extremely similar clothes and human poses in the first two
rows of Fig. 8b.

Running time analysis In Table 8, we compare the average feature extraction time per
image and the average retrieval time per image of our method with five other methods,
including IDE(R) [75], CNN-Embedding [69], PCB [43], RCN [72], IDLA [1]. For fair
comparison, we re-implement their feature extraction codes using PyTorch. The experi-
ments are conducted on a machine with Intel Xeon CPU (64G memory) and four Titan
GPUs (48G memory in total). During test phase, a batch is composed of 2,000 images. It
can be seen that the identification models including IDE(R) [75], CNN-Embedding [69],
PCB [43], and our method exhibit high computation efficiency compared to the verification
models IDLA [1] and RCN [72]. The identification models use feature vectors that can be
saved in buffer for distance calculation, and they only need to forward all the images once.
But for verification models, they have to forward the same image for several times to obtain
the joint feature of image pair, which is a time-consuming process.

5 Conclusion

In this paper, we present a part-based attention network with multi-loss training for the task
of person re-id. Specially, the part-based attention model contains a channel attention block
and a spatial attention block to refine the feature maps of person body parts along channel
and spatial dimensions. The attention model is capable of alleviating the spatial misalign-
ment problem. Besides, to fully exploit the complementary benefits of global-local cues,
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two level of pedestrian descriptors including global full-body and local body-part features
are extracted from the refined feature maps, each of which is trained using identification
loss. We conduct extensive experiments on four public person re-id benchmarks includ-
ing Market-1501, CUHK03, DukeMTMC-reID, and CUHK01. The experimental results
demonstrate that our method yields higher re-id accuracy than most of state-of-the-art
approaches.
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