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Abstract

Lung cancer is one of the main reasons for death in the world among both men and women,
with an impressive rate of about five million deadly cases per year. Computed Tomography
(CT) scan can provide valuable information in the diagnosis of lung diseases. The main
objective of this work is to detect the cancerous lung nodules from the given input lung image
and to classify the lung cancer and its severity. To detect the location of the cancerous lung
nodules, this work uses novel Deep learning methods. This work uses best feature extraction
techniques such as Histogram of oriented Gradients (HoG), wavelet transform-based features,
Local Binary Pattern (LBP), Scale Invariant Feature Transform (SIFT) and Zerike Moment.
After extracting texture, geometric, volumetric and intensity features, Fuzzy Particle Swarm
Optimization (FPSO) algorithm is applied for selecting the best feature. Finally, these features
are classified using Deep learning. A novel FPSOCNN reduces computational complexity of
CNN. An additional valuation is performed on another dataset coming from Arthi Scan
Hospital which is a real-time data set. From the experimental results, it is shown that novel
FPSOCNN performs better than other techniques.

Keywords Lung cancer- Deep learning - Classifiers - Real-time - CNN

1 Introduction

Lung cancer is one of the most important deadly diseases in the world [30, 37]. The recent
estimates provided by World Health Organization (WHO) says that around 7.6 million deaths
worldwide per year due to lung cancer [21, 22]. Moreover, humanity due to cancer are
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supposed to continue rising, to become around 17 million worldwide in 2030 [15]. Discov-
ering lung cancer in the early stage is the only method for its cure [12]. Different methods are
available for diagnosis lung cancer, namely, MRI, isotope, X-ray and CT. X-ray chest
radiography and Computer Tomography (CT) are the two familiar anatomic imaging modal-
ities that are regularly used in the recognition of different lung diseases [25, 29]. CT images are
used by physicians and radiologists to identify and recognize the presence of diseases, directly
visualize the morphologic extents of diseases, describe the patterns and severity of diseases,
and measure the clinical course of diseases and response to therapy. The volumetric CT
technique has introduced spiral scans which shorten the scan time and, when used in thoracic
imaging, reduce the artefacts caused by partial volume effects, cardiac motion, and unequal
respiratory cycles. As the progress of CT technology, the high-resolution CT test has happen to
the imaging modality of choice for the recognition and identification of lung diseases. Even
though High-Resolution Computed Tomography (HRCT) recommends images of the lung
with progressively more improved anatomic resolution, visual interpretation or evaluation of a
large number CT image slices remains as a difficult task.

In CT images, lung cancer disease cannot be identified easily as shown in Fig. 1. For lung
cancer screening, Nowadays Low-Dose helical Computed Tomography (LDCT) [18] is being
applied as a modality [31]. There are lots of works being done to develop computer assisted
diagnosis and detection systems to improve the diagnostic quality for lung cancer detection
classification [2]. The necessity for reliable and objective analysis has prompted the develop-
ment of computer-aided systems. The aim of this work is to extract features for
classification [4] and Severity finding.

In this work, first the input image is enhanced by using histogram equalization for image
contrast and denoised by using Adaptive Bilateral Filter (ABF). After pre-processing, the next
step is to find the lung region extraction. To extract the lung region, Artificial Bee Colony
(ABC) segmentation approach is applied. The holes in the lung region are filled by using
mathematical morphology technique in the ABC segmented image. After that the texture
features are extracted to find the cancerous lung nodules. After finding the location of the
cancerous lung nodules the next process is to classify the lung disease name and its severity
based on the feature extraction. A new CNN method based on FPSO for reducing the
computational complexity of CNN is proposed. FPSOCNN improves the efficiency of CNN.

The main contributions of this paper are summarised as follows:

(i) Deep learning is applied to classify benign and malignant pulmonary nodules.

v
@ ' (b)

Fig. 1 a Represents the clear lung image, b Represents the diseased lung image
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(ii) For extracting features, four features are used, namely, texture feature, geometric feature,
volumetric feature and intensity features,
(ii1) Best feature extraction techniques such as wavelet transform-based, Local Binary
Pattern (LBP), Scale Invariant Feature Transform (SIFT), and Zernike Moment are used.
(iv) The proposed method provides good results for LIDC data set and real-time data set.

The manuscript of this paper is organised as follows: in Section 2, some related state-of-the-art
literatures are reviewed. In Section 3, a detailed description of the proposed architecture is
shown. In Section 4, experimental results are shown. Discussion is presented in Section 5.
Finally, conclusions and future works are provided in Section 6.

2 Related work

During the most recent decades, prompt progress of pattern recognition and image processing
techniques [37], lung cancer detection classification attracts more and more research works.
Existing methods in the literature for differentiating a variety of obstructive lung diseases on
the basis of textural analysis of thin-section CT images are explained. Chabat et al. [9] have
created a 13-dimensional vector of local texture information, which contains statistical mo-
ments of CT attenuation distribution, acquisition-length parameters, and co-occurrence de-
scriptors. For feature segmentation, a supervised Bayesian classifier is applied. Here, the
dimensionality of the feature vector is reduced using five scalar measurements, namely,
maximum, entropy, energy, contrast, and homogeneity that were extracted from each co-
occurrence matrix obtained. Yanjie Zhu et al. [38] have presented texture features of Solitary
Pulmonary Nodules (SPNs) detected by CT and evaluated. Totally, 67 features were extracted
and around 25 features were finally selected after 300 genetic generations. For classification,
SVM based classifier is applied. Sang Cheol Park et al. [25] have applied genetic algorithm to
select optimal image features for Interstitial Lung Disease (ILD). Hiram et al. [23] have
classified lung nodule using Frequency domain and SVM with RBF. Hong et al. [28] have
proposed an algorithm for detecting solitary pulmonary nodules automatically. SVM classifier
is applied to recognize true nodules and label them on original images. Antonio et al. [13] have
classified lung nodules using the LIDC-IDRI image database. Taxonomic Diversity and
Taxonomic Distinctness Indexes from ecology are applied with SVM [18] for classification.
Results depict a mean accuracy of 98.11%.

In CT examination, only pixels selected by the mesh-grid region growth method were
analyzed and classified using ANN to improve computational efficiency. All unselected pixels
were classified as negative for ILD. Zhi-Hua et al. [37] have proposed Neural Ensemble-based
Detection (NED) which utilised artificial neural network ensemble to identify lung cancer
cells. This method provides high accuracy in identification of cancer cells. Hui Chen et al. [10]
have provided a computerized scheme for formatting a lung nodule’s classification on a thin-
section CT scan using a Neural Network Ensemble (NNE). Aggarwal, Furquan and Kalra [1]
have proposed a model that classifies normal lung anatomy structure. Optimal thresholding is
applied for segmentation. Features are extracted using geometrical, statistical and gray level
characteristics. LDA is applied for classification. The results show 84% accuracy, 97.14%
sensitivity and 53.33% specificity. Roy, Sirohi, and Patle [26] have developed a system to
detect lung cancer nodule using fuzzy inference system for classification. This method uses
gray transformation for image contrast enhancement. The resulted image is segmented using
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active contour model. Features like area, mean, entropy, correlation, major axis length, minor
axis length are extracted to train the classifier. Overall, accuracy of the system is 94.12%. The
limitation of this method is, it does not classify the cancer as benign or malignant which is
future scope of this proposed model. Hiram et al. [24] have classified lung nodules using
wavelet feature descriptor and SVM. Here, wavelet transforms are computed with one and two
levels of decomposition. From each wavelet sub-band 19 features are computed. SVM is
applied to differentiate CT images with cancerous nodules and not containing nodules.

Bhuvaneswari and Brintha [7] have applied Gabor filter for extracting features. The
results of Gabor filter are given to K-NN classifier which is optimized by GA (Genetic
Algorithm). The limitation of K-NN classifier is overcome by G-KNN classifier.
Sangamithraa, and Govindaraju [27] have segmented the lung using region of interest
and analysed the area for nodule detection in order to examine the disease. For extracting
features, statistic method called Gray Level Co-occurrence Matrix (GLCM) is applied.
For classification, supervised neural network called the Back Propagation Network
(BPN) is applied. For removing unwanted artefacts in CT images, Sangamithra et al.
[27] have pre-processed using median and wiener filters. Fuzzy K-Means clustering
method is applied for segmentation. After that, entropy, contrast, correlation, homoge-
neity and area are applied for extracting features from the Fuzzy K- Means segmented
Image. For feature extraction, statistic method called GLCM is applied. Finally, classi-
fication is done by using the supervised neural network called the Back Propagation
Network (BPN). Results shows whether the CT Image is a normal Image or cancerous
with accuracy of about 90.7%. Suren Makaju et al. [20] have segmented the input image
using watershed segmentation. The segmented results show the image with cancer
nodules marked. After that features are extracted using area, perimeter, eccentricity,
centroid, diameter and pixel mean intensity for the segmented cancer nodules. Finally,
classification of cancer nodule has been performed using Support Vector Machine
(SVM). Jin, Zhang and Jin [17] have used Convolution Neural Network (CNN) as
classifier to detect the lung cancer. The results reported an accuracy of 84.6%, sensitivity
of 82.5%, and specificity of 86.7%. Wafaa Alakwaa et al. [3] have applied thresholding
for segmentation approach. 3D CNN was used to classify the CT scan as positive or
negative for lung cancer. This result in an accuracy of 86.6%. Ignatious and Joseph [16]
have applied Gabor filter to enhance the image quality. For segmentation, watershed
segmentation is used. The results show an accuracy of 90.1% which is higher than neural
fuzzy model and region growing method. Wenqing et al. [30] have used three deep
learning algorithms such as CNN, Deep Belief Networks (DBNs) and Stacked Denoising
Autoencoder (SDAE) for lung cancer classification. Qing Zeng et al. [29] have applied
Deep Learning for Classification of Lung Nodules on CT Images.

2.1 Observation

Even though existing methods provide good classification accuracy, the existing system
accuracy is still less. Mostly LIDC public data set alone has been used. Mostly machine
learning algorithms are applied for classification. Still, more comparison has to be
performed with a real-time data set to choose suitable Deep learning techniques for
classification. In this work, accuracy is improved by choosing well-known feature
extraction methods and applying deep learning. There is not much work for severity
finding.
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3 System methodology

The overall architecture for the lung disease classification has been shown in Fig. 2. In
offline process, lung tissue images are trained. In online process, the input lung tissue
image is denoised by using the adaptive bilateral filter and the image contrast is
enhanced by using the histogram equalization. After pre-processed the input image the
next step is to lung region extraction. To extract the lung region the artificial bee colony
segmentation approach is applied. The holes in the lung region are filled by using
mathematical morphology technique in the output of the ABC segmented image. After
that the texture features are used to find the cancerous lung nodules. After finding the
location of the cancerous lung nodules the next process is to classify the lung disease
name and its severity based on the feature extraction. Among several feature extraction
methods this work uses six feature extraction techniques such as the bag of visual-words
based on the histogram of oriented gradients, the wavelet transform-based features, the
local binary pattern, SIFT, Zernike Moment. After extracting the features the Fuzzy

Online process
Input Lung
Tissue Image || Pre-processing Segmenting Lung
using ABF and Region using ABC
@ HE Segmentation

Feature Feature
J Selection using Extraction using
FPSO eight features
/
Deep Classified Lung Severity
X — Disease Detection
Learning
Feature Feature Segmenting Lung
. . Extraction using . . s
Selection using ioht feat ‘'l Region using ABC
FPSO technique eight features Segmentation
i —
Trained lung _
. Pre-processing
images X
using ABF and

Fig. 2 Overall architecture of the proposed work
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Particle Swarm Optimization (FPSO) algorithm is used for select the best feature. Finally
these features are classified using Deep learning techniques.

3.1 Pre-processing

Firstly, for pre-processing, the contrast of input CT scan images is enhanced by using
the Histogram Equalization (HE) technique. The HE is applied for adjusting image
intensities to enhance contrast as shown in Eq. (1). Let I be a given CT scan image
represented as a /, by /, matrix of integer pixel intensities ranging from 0 to 256. Let
N denote the normalized histogram bin of image I for available intensity.

I Number of pixels with available intensity n
N =

—~
—_
~—

Total number of pixels

Where n=0, 1... 255.

It locally recovers the contrast of images by dividing the image into numerous sub
regions and by transforming the intensity values of each sub region independently to
fulfil with a specified target histogram [5]. The enhanced images are shown in Fig. 3.

Next, for pre-processing, Adaptive Bilateral Filter (ABF) is used on an enhanced
CT scan images for de-noising. ABF is an expansion of the traditional bilateral filter
[34]. ABF contains some important alterations than bilateral. Range filters used in
ABF locally adaptive. By adding a counterbalance to the range filter, the range filter
on the histogram is shifted as shown in Eq. (2).

(a) (b)

Fig. 3 a Represents the input lung tissue image, b Represents the enhanced image using histogram equalization
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Where x, defines the row index of the current pixel is, y, defines the column index of the
current pixel of the image. x defines the row index of a neighbouring pixel. y defines the
column index of a neighbouring pixel. N is a neighbouring window size. {2, ,, is the centre
pixel of a neighbouring window.

If V, and ¢ is fixed, the ABF will degenerate into a conventional bilateral filter. For ABF, a
fixed low-pas Gaussian filter is adopted. The combination of locally adaptive and bilateral
filter makes ABF into a much more powerful filter that is capable of both smoothing and
sharpening. Moreover, ABF sharpens an image by increasing the slope of the edges. The 0 is
estimated in ABF using Eq. (3).

MAXIMUM (ﬁxo__»v(,)‘G [x0v0] s i Qg > 0

Oboxal =4 mvinunt (,,,,)Glroxa] if D, < 0 3)
07 lf qu.Yo = O

Where x, defines the row index of the current pixel is, yy defines the column index of the
current pixel of the image.

The window size of input image is represented as (2 W + 1) x (2 W + 1). Here each pixel is
represented as (3, , with centre [xg)o]. Let MAXIMUM and MINIMUM depicts the opera-
tions of taking the value of the data in respectively. The effect of ABF with a fixed domain
Gaussian filter and a range filter is effective. Here V,=1 is fixed and V, value changes as
shown in Fig. 4.

Usually, some noises are surrounded on CT Images at the time of image acquisition process
which aids in false detection of nodules. Sometimes noise may be detected as cancer nodules.
Therefore, the extra noises have to be removed for accurate detection of cancer. This ABF
sharpens CT scan image by increasing the slope of the edges without producing overrun. It is
able to smooth the noise, while enhancing edges and textures in the image.

Compared to the conventional filters such as mean and median, ABF provides good results
as shown in Fig. 5. The problems in conventional filters such as overshoot undershoot around
edges, which causes objectionable ringing or halo artefacts are overcome by ABF. ABF
increases the slope of edges in the image without producing overshoot and undershoot which
renders clean, crisp, and artefact-free edges, and also improves the overall appearance.
Bilateral filter fails in restoring the sharpness of a degraded image. ABF provides good results
in both sharpness enhancement and noise removal as shown in Fig. 5.

3.2 Segmentation
In pre-processed image, segmentation process locates objects or boundaries which help in

acquiring the region of interest in the image. It partitions the image into regions to identify the
meaningful information. In lung cancer classification it is important to segment the cancer
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Fig. 4 Impact of V,and V, 4.aV,=14.bV,=1,4.¢V,=5,4.dV,=10,4.eV,=25,4 . fV,=50

nodule from the pre-processed CT scan image. The pre-processed image is first segmented
using Atrtificial Bee Colony (ABC) segmentation algorithm as shown in Fig. 6.

..

[
)

Fig. 5 a Input image, b Mean filter, ¢ Median filter, d Bilateral filter and e ABF
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Fig. 6 a Respresents the pre-processed image, b Ground Truth, ¢ Represents the segmentation using kmeans, d
Represents the segmentation using FCM, e Represents the segmentation using ant colony, f Represents the
segmentation using ABC
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For segmenting the lung cancer nodules, several techniques such as K-Means, FCM and
Ant Colony algorithms are applied. FCM algorithm has long computational time. It is sensitive
to speed, local minima and noise. K-means algorithm has difficulty in predicting the number of
clusters [8]. In Ant Colony Approach, the probability distribution changes by iteration and it is
independent on the earlier decision to find the best solution. It takes lot of time to convergence
uncertain. These drawbacks are overcome by ABC. ABC is Simple, flexible and robust. Its
implementation is easy. It has fewer control parameters to explore local solutions and to handle
objective cost.

The two important functions in ABC segmentation are.

FV;
> FV,
m=1
Cyy =1y + Dy (Iy~1y) (5)

Where PV; is the probability value associated with i" food source that calculated by the Eq. (4).
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An onlooker bee selects a food source relying on PV,. In this equation, F'V; represents ith food
source’s nectar amounts, which is measured by employed bees and SN is the number of food
source which is equal to the number of employed bees. Fitness is calculated by Eq. (6).

FV, = 1/(1+c,])‘ C;j=0 (6)
1 +abs(Cy), Cj<0

Where Cj; is the cost function of the quality of source which is calculated from the Eq. (5) and
abs is the absolute value of Cj;. Greedy selection is applied to select the best source. In the real-
world problems, /;and [irepresent the different old food source positions. The difference
between these two positions is the distance from one food source to the other one. &y is a
random number between [—1, 1] and controls the distance of a neighbour food source position
around Jj;.

3.3 Feature extraction

In this step, the features are extracted from the segmented lung image. Here, four types of ROI
features are used for extracting features. They are volumetric features, texture features,
intensity features and geometric features. For extracting texture features, LBP and wavelet
techniques are used. This paper extracts 96 LBP features, 26 wavelet features, 18 HOG
features, 1 Eccentricity feature, 1 Curvature feature, 18 SIFT Features and 20 Zernike moment
features. Finally, 180 features are extracted. Four feature categories are explained in more
details in the following sections.

3.3.1 Texture features

Wavelet features Wavelets are important and commonly used feature descriptors for texture
feature extraction. Wavelet features show their effectiveness in capturing localized spatial
frequency information and multiresolution characteristics. The wavelet signal passes succes-
sively through pairs of low pass and high pass filters, the analysis filters, which produce the
transform coefficients. Here in this image, a H level decomposition is performed resulting in
3H+1 different frequency bands. The frequency sub-bands LH is used to constitute the
vertical details of the image, HL is used to constitute the horizontal details of the image, HH
is used to constitute the diagonal details of the image. The LL sub-band is combined with
discrete wavelet transform to obtain more level of decomposition as shown in Fig. 7.

It generates another four sub-bands. Sub-band LL represent the approximate element of
image, LH represent the vertical element of image, HL represent the horizontal element of
image and HH represent the diagonal element of image. Thus the information of image is
stored in decomposed form in these sub-bands. Here, the ROIs are decomposed to four levels
by using 2-D symlets wavelet because the symlets wavelet has better symmetry than other
wavelets. The horizontal, vertical, and diagonal detail coefficients are extracted from the
wavelet decomposition structure. Finally, the wavelet features by calculating the mean and
variance of these wavelet coefficients. Some texture features combined with this wavelet
function is shown in Table 1.

LBP features The LBP feature is a compact texture descriptor in which each comparison result
between a centre pixel and one of its surrounding neighbors is encoded as a bit. The LBP
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Fig. 7 Wavelet feature sub-band

operator is a unified approach to statistical and structural texture analysis. Their values are
compared with the value of the centre pixel. For each neighbouring pixel, the result will be set
to one if its value is no less than the value of the centre pixel, otherwise the result will be set to
zero. The LBP code of the centre pixel is obtained by multiplying the results with weights
given by powers of two.

3.3.2 Intensity features

Intensity feature is frequently used as the most important source of image information
in CT images. Intensity features and their equation descriptors are described in more
details in Table 2. The HOG feature is also considered in intensity feature extraction.

HOG features The HOG feature is a texture feature descriptor describing the distribu-
tion of image gradients in different orientations. In the HOG features, histogram of
gradient directions and edge orientations are accumulated over the pixels of the cell.
After that the gradient values are computed. The centred and point discrete derivative
mask is applied in both horizontal and vertical directions. The filter kernels [-1, 0, 1]
and [-1, 0, 1]T are applied.

After applying kernels, each pixel is estimated with a weighted vote for an edge
orientation histogram channel and the votes are accumulated into orientation bins over

Table 1 Texture features used with equations

Texture features used Equation with description

Difference variance -1

> k2P (k)
k=0
Sum average L
T kP (k)
Maximum probability max; ; X(i, j)
Contrast [t
Y ¥ il X3 §)
i=0 j=0
Auto-correlation L S
. 0Il—JIX(u)
i=0 j=i
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Table 2 Intensity features used with equations

Intensity features used Equation with description
Mean x pP P
IEED YD ()
k=1 1=0
Standard Deviation o lid
\/[l:J Z Ik—)?z
k=0
Skewness g‘ (Ix—x)*
EP*I){TZ
Entropy 255 255 255 255
H(E E autniosuk ) + 3 ¥ vk os(vik D) )
Max-Intensity Max[I(k,1)]

local spatial regions. Here, ROI is divided into smaller rectangular blocks of 8 x 8
pixels and further divide each block into four cells of 4 x4 pixels. An orientation
histogram which contains nine bins covering a gradient orientation range of 0—180° is
computed for each cell. Here, a block is represented by linking of the orientation
histograms of cells in it. This means a 36 Dimension HOG feature vector is extracted
for each block in the segmented lung image.

3.3.3 Volumetric features

Zernike moment features The Zernike moments are the descriptors of mass shapes in
extracting features. Here, the input pre-processed image is subjected to histogram
equalization at first, which shows the mass margins of images more visible. Zernike
moments are dependent on the translation and scaling of masses in ROIs. In other
words, the Zernike moments of two similar images that are not equally scaled and
translated are different. Two processes have been employed to resolve the dependency
problems in Zernike moments. The centroid of each image mass is translated into the
centre of corresponding ROI. This process eliminates the dependency of Zernike
moments to object translation.

SIFT features SIFT is called a volumetric feature because it calculates the edges of an
image using keypoints. SIFT features are applied because they are invariant to small
illumination changes, scale changes, image rotation, and viewpoint changes. The SIFT
algorithm have four main steps: (1) Scale-Space Peak Selection (SSPK), (2) Keypoint
Localization, (3) Orientation Assignment, (4) Keypoint Descriptor Computation, and
(5) Keypoint Matching. In the first phase, SSPK has been used by constructing a
Gaussian Pyramid (GP). GP is calculated by searching the extreme local peaks in a
series of Difference-of-Gaussian (DoG) images. DoG is estimated as the difference of
Gaussian blurring of an image with two different values.

@ Springer



Multimedia Tools and Applications (2020) 79:7731-7762 7743

3.3.4 Geometric features

Eccentricity Eccentricity is defined in the equation below,

ECC = 1—ﬁ (7)

2
y

where x and y are semi-major axis and semi-minor axis lengths of nodule region of interest,

respectively.

Curvature descriptor Curvature descriptor is estimated with respect to intensity inside nodule
region of interest, which depends on the intensity variation.

2 2
a,q;

Cdd = tan ' | X——
1+ f(x,»)

(8)

Where «; and o, (o) < ay) are two Eigen values of Hessian matrix.

3.4 Feature selection

In order to achieve good classification results, generally several types of features are
applied at the same time. Since the different types of features may contain comple-
mentary information, it could bring better classification performance through selecting
discriminative features from various feature spaces. The advantage of feature selection
is to determine the importance of original feature set [35, 36]. For feature selection,
Fuzzy Particle Swam Optimization (FPSO) is applied. A FPSO [32] is composed of a
knowledge base, that includes the information given by the expert in the form of
linguistic control fuzzy rules, a fuzzification interface, which has the effect of
transforming crisp data into fuzzy sets, an inference system, that uses them together
with the knowledge base to make inference by means of a reasoning method, and a
defuzzification interface, that translates the fuzzy control action thus obtained to a real
control action using a defuzzification method. FPSO is based on the following
equation,

FPSO () = 3 5 [rul" Wil o)

where, m> 1 is a real number, W; is the cluster centre of i, y is the vector part of k.

i [T ik]myk
w,; = &= (10)
g
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1 -1
2\ w1
] D = i (M) (11)

A \bwol?

Where c=1, 2, ...n, lly,— Will? represents the Euclidean distance between y; and W;, and [7;;]¢*
D is the membership degree of part k in group i.

For feature selection process several existing algorithms such as PSO, DE, GA are
available. GA does not guarantee an optimal solution. This problem is solved by
using PSO. Both GA and DE have high computational cost. But PSO is computa-
tionally less expensive. In PSO, the best particle in each neighbourhood exerts its
influence over other particles in neighbourhood. To overcome these problems, several
particles in each neighbourhood can be allowed to influence others to a degree by a
fuzzy variable. The selected features using DE,GA, PSO and FPSO using various test
rounds are shown in Table 3.

3.5 Classification
3.5.1 Bag classifier

The Bag classifier is mainly used in natural language processing and information
retrieval (IR). Recently, this classifier has also been used for computer vision. In
computer vision application, it is applied to image classification regarding image
feature data sets. In this classifier, each image is treated as a document, and it is
characteristically symbolized by a histogram generated from the training images. Here,
the classes of the images are selected and labelled in advance. Here, classifier makes
a decision that which class name from given training classes to be the class name of a
test image.

3.5.2 Naive Bayes classifier
Naive Bayes classifier depends on a probability model and allocates the specific class, which
has the maximum estimated posterior probability to the feature vector. The posterior proba-

bility P(C/FV) of a specific class C, is given by a feature vector FV is determined using
Bayes’ theorem is given in equation below,

Table 3 Number of Selected Features using DE, GA, PSO and FPSO with various Test Rounds

Test Rounds Feature Selection Approaches
DE GA PSO FPSO
1 115 108 99 94
2 141 131 127 122
3 159 150 144 140
4 164 159 151 145
5 168 160 155 150
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P(FV/C,) P(C,)

PICFY) = =5

(12)
Naive Bayes Classifier [6] technique is based on the Bayesian theorem and is particularly
suited when the dimensionality of the inputs is high. Despite its simplicity, Naive Bayes can
often outperform more sophisticated classification methods.

3.5.3 K-NN classifier

The k-Nearest Neighbors algorithm is a non-parametric method [5] used for classification and
regression. The input consists of the k closest training examples in the feature space. In k-NN
classification, the output is a class membership. An object is classified by a majority vote of'its
neighbors, with the object being assigned to the class most common among its k-nearest
neighbors. If k=1, the object is simply assigned to the class of that single nearest neighbour.

3.5.4 Adaboost classifier

Adaboost classifier is trained on more training examples. It provides a good fit to training
examples by producing low training error. It is very simple. Adaboost improves the classifi-
cation results by combining weak predictors together [6].

Adaboost algorithm maintains a set of weight over the training images. Let us consider the
training set of images be (¢, x ), (#2, X2), ...(t,, X,,) where ¢; belongs to some domain space of 7.
After that each label of x; is in the label set of X ={—1, +1} is shown in equation below,

(t1,x1), ... (tn, xn)s i€T, x,e{~1, +1} (13)

The weight on the training example i on round r is depicted as Wy(i). The weights are
initialized using the next equation below,

Wi(i)=1/N,i=1..N (14)

Where k = 1...K, which represents the series of rounds. The images are trained along with their
assigned weights.

3.5.5 SVM classifier

SVM [5] is a binary classification method that takes as input labelled data from two classes and
outputs a model file for classifying new unlabelled/labelled data into one of two classes. It
group items that have similar feature maps into groups. SVM constructs a hyperplane that
maximizes the margin between negative and positive samples. Finally, classification is per-
formed by the decision based on the value of the linear combination of the features.

SVM is trained by feeding known data with previously known decision values, by forming
a finite training set. It is from the training set that an SVM gets its intelligence to classify
unknown data. In SVM, for two class classification problem, input data is mapped into higher

@ Springer



7746 Multimedia Tools and Applications (2020) 79:7731-7762

dimensional space using RBF kernel [5]. Here, a hyper plane linear classifier is applied in this
transformed space utilizing those patterns vectors that are closest to the decision boundary.

The estimation for the classification using SVM with N support vectors g, g»,...g, and
weights 7, 7, 7, is given by:

SVM = 3 7 (gix) + b (15)
i=1

i=

Where x represents a feature vector and b represents a bias.
3.5.6 ELM classifier

The existing classifiers encounter several problems while training such as local minima, not
proper learning rate and over fitting, differentiable activation functions etc. To overcome these
problems, ELM has enhanced generalization result. ELM will provide the results directly
without such difficulties. ELM classifier can also be used to train SLFNs with many non-
differentiable activation functions.

ELM are feed forward neural networks for classification, regression, clustering, sparse
approximation, compression and feature learning with a single layer or multiple layers of
hidden nodes, where the parameters of hidden nodes need not be tuned. In most cases, the
output weights of hidden nodes are usually learned in a single step, which essentially amounts
to learning a linear model as shown in Fig. 8.

ELM contains a Single Hidden Layer Feed-Forward Neural Networks (SLFNs) which will
randomly select the input weights and analytically establish the output weights of SLFNs. This
algorithm provides the best generalization performance at extremely fast learning speed.
Usually, ELM contains an input layer, hidden layer and an output layer. The training process
of ELM can be carried out in seconds or less than seconds for many applications. For all the
existing classifiers, the training performed by feed forward network will take a huge chunk of
time even for straightforward applications. ELM classifier can be represented as following
below

X1

m input n hidden Output
neurons layer neurons
neurons

Fig. 8 ELM Architecture
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qg=W2o(WLX) (16)

where W2 is the weight matrix between the hidden layer and the output layer, W1 is the weight
matrix between the input and the hidden layer, o is the activation function. q(x) = [q;(X)q2(X). ..
qu(x)] is the vector obtained from the hidden layer output for x, where n is the number of
neurons in the hidden layer. q(x) maps the input ‘x” onto ELM feature space. W, gives the
weight between the input and the hidden layer. 3 provides the weight between the hidden and
the output layer. Gaussian radial basis activation function is used in ELM. It helps to
distinguish diagonal elements of the matrix.

3.5.7 Fuzzy particle swarm optimization convolution neural network (FPSOCNN)

Convolutional Neural Networks are very similar to ordinary Neural Networks. They are made
up of neurons that have learnable weights and biases. Each neuron receives some inputs,
performs a dot product and optionally follows it with a non-linearity. A CNN consists of one or
more convolutional layers and pooling layers. Pooling layers are also called sub sampling
layers. Normally CNN are used for classification purpose. Here, CNN is used to classify the
lung cancer disease. The pooling layer is used to perform down sampling. It is used to reduce
the amount of computation time by reducing the extracted features in convolution layer as
shown in Fig. 9.

There are two kinds of pooling layers, max pooling and average pooling. In max pooling,
the value of the largest pixel is considered in the receptive field of the filter. In average pooling,
the average of all the values is considered in the receptive field. The output of the pooling layer
is given as input to the next convolution layer. CNN has very high computational cost for large
feature maps. CNN [33] is slow to train large feature maps. To overcome the drawback of
CNN, Fuzzy Particle Swarm Optimization Convolution Neural Network (FPSOCNN) is
proposed. This reduces high computation cost and improves speed. The dimension reduction
of image space is realized by vector of features that is created by FPSO from multidimensional
image space to low dimensional feature space. This approach radically reduces the number of
features for lung cancer disease classification. Instead of using max and average pooling
concept in CNN, PSO and GA are applied. FPSOCNN method is compared with CNN,
PSOCNN and GACNN. Figure 10 shows the architecture of FPSOCNN.

input image  feature maps feature maps feature maps feature maps
(256x256) (256x256)  (128x128)  (128x128)  (64x64) c::';::r“

0

convolution subsampling convolution subsampling fully
1 layer 1 layer layer 1 layer | connected |

Fig. 9 Lung Cancer Detection using CNN
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input image

(256x256) output
}50 category
convolution convolution fully
L layer 1 layer | connected 1

Fig. 10 Lung Cancer Detection using Proposed FPSOCNN

3.5.8 Severity finding

From the lung cancer segmented image, five severity finding parameters such as Area, Longest
Diameter, Shortest Diameter, Perimeter and Elongation are depicted in Table 4. After extracting the
severity parameter values, it is compared with range values of the Benign and Malignant stages to
find out the severity of the input lung cancer image. The range values of these four stages are shown
in Table 5. The severity results of the Lung cancer dataset are shown in Table. 6.

4 Results and discussions

4.1 Data set used

4.1.1 Real-time data set

Lung cancer images are collected from Aarthi Scan Hospital, Tirunelveli, Tamilnadu,
India. Aarthi Scan Hospital dataset contains nearly 1000 lung images. The original
dataset has taken from patients in Digital Imaging Communication Medicine (DICOM)

images. The resolution of every image is 256 X 256. Here the training and testing
process are performed as shown in Table 7. TrTeD1 contains high number of

Table 4 Severity Finding Parameter with equations

Intensity features used Equation with description
Area & &
> 2 Slij)
i=1 j=
Longest Diameter 2 2
¢ (i=x2)’ + (v72)
Shortest Diameter 2 2
(v=x1)” 4+ (1)
Perimeter 27r
Elongation Longest Diameter

Shortest Diameter
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Table 5 Lung Cancer Severity Ranges of Benign and Malignant

S. No Stage Finding Parameters Benign Malignant

1 Area 100-1000 1000-10,000
2 Longest Diameter 20-70 70-150

3 Shortest Diameter 1040 40-120

4 Elongation 0.1-0.3 0.3-1.5

5 Perimeter 20-70 70-500

malignant images from the total training and testing images. TrTeD9 contains high
number of benign images from the total training and testing images.

Figure 1la shows the benign pulmonary nodule with the rank of malignancy ‘1°.
Figure 11b shows the benign pulmonary nodules with the rank of malignancy 2°.
Figure 11c shows the malignant pulmonary nodules with the rank of malignancy ‘4°.
Figure 11d shows the malignant pulmonary nodules with the rank of malignancy °5’.

Table 6 Stages of Lung Cancer
Images in Dataset

S.No FLAIR Input Image Lung Cancer Stage Finding Parameter Lung Cancer Stage
Region

1 Img 1 Area - 551
Longest Diameter - 43
Shortest Diameter - 44 Benign
Elongation -1.0233
Perimeter -17.777

2 Img 2 Area - 108
Longest Diameter - 40
Shortest Diameter - 20 Benign
Elongation -0.2704
Perimeter - 11.876

3 Img 3 Area - 2610
Longest Diameter - 77
Shortest Diameter - 52 Malignant
Elongation -0.6753
Perimeter -241.78

4 Img 4 Area - 1626
Longest Diameter - 69
Shortest Diameter - 49 Malignant
Elongation -
0.71014
Perimeter -216.66

5 Img 5 Area - 7123 Malignant

Longest Diameter - 158
Shortest Diameter - 132
Elongation - 0.83544
Perimeter - 496.12
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Table 7 Data set details

Data set Taken from Training (Tr) Testing (Te) Total

names Images

TrTeD1 Real— Time 250 (150 Malignant, 100 750 (500 Malignant,250 Benign) 1000
Benign)

TrTeD2 Real — Time 500 (350 Malignant, 150 500 (350 Malignant, 150 1000
Benign) Benign)

TrTeD3 Real — Time 750 (500 Malignant, 250 250(150 Malignant, 100 Benign) 1000
Benign)

TrTeD4 Real — Time 900 (700 Malignant, 200 100 (70 Malignant, 30 Benign) 1000
Benign)

TrTeD5 LIDC 250 (150 Malignant, 100 750 (500 Malignant, 250 1000
Benign) Benign)

TrTeD6 LIDC 500 (350 Malignant, 150 500 (350 Malignant, 150 1000
Benign) Benign)

TrTeD7 LIDC 750 (500 Malignant, 250 250 (150 Malignant, 100 1000
Benign) Benign)

TrTeD8 LIDC 900 (700 Malignant, 200 100 (70 Malignant, 30 Benign) 1000
Benign)

TrTeD9 Real — Time 250 (150 Benign, 100 750 (500 Benign,250 Malignant) 1000
Malignant)

TrTeD10 Real — Time 500 (350 Benign, 150 500 (350 Benign, 150 1000
Malignant) Malignant)

TrTeD11 Real — Time 750 (500 Benign, 250 250 (150 Benign, 100 1000
Malignant) Malignant)

TrTeD12 Real — Time 900 (700 Benign, 200 100 (70 Benign, 30 Malignant) 1000
Malignant)

TrTeD13 LIDC 250(150 Benign, 100 Malignant) 750 (500 Benign, 250 1000

Malignant)

TrTeD14 LIDC 500 (350 Benign, 150 500 (350 Benign, 150 1000
Malignant) Malignant)

TrTeD15 LIDC 750 (500 Benign, 250 250(150 Benign, 100 Malignant) 1000
Malignant)

TrTeD16 LIDC 900 (700 Benign, 200 100 (70 Benign, 30 Malignant) 1000
Malignant)

4.1.2 B LIDC data set

LIDC dataset of thoracic CT scans is considered to evaluate the performance of the ELM and
various classifiers for the classification of benign and malignant pulmonary nodules. LIDC
[19] data set is the largest library of thoracic CT scans publicly available, which contains 1018
CT thoracic scans. Here, pulmonary nodule appears in several slices of a CT scan. The
semantic rating is used for testing and training the classifier ranges from 1 to 5 by four

(a) (b) (© (d)

Fig. 11 Shows the examples of benign and malignant pulmonary nodules from the real-time data set.
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(©) (d)

(b)
Fig. 12 Examples of rated benign and malignant pulmonary nodules from the LIDC radiologist’s marks

experienced thoracic radiologists, which indicates an increasing degree of the manifestation of
nodule characteristics. The ground truth data for LIDC dataset are collected the website
(https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI).

In this paper, all training images are classified into malignant and benign nodules. A
malignancy nodule will have scored lower than 3 are called as a benign nodule and a
malignancy nodule will have scored higher than 3 are called as a malignant nodule. The
pulmonary nodules with a score of 3 in malignancy are removed to avoid the ambiguousness
of nodule samples. In this paper, 1000 nodules are randomly selected per class to train ELM
classifier as shown in Table 7. Figure 12 shows examples of benign and malignant pulmonary
nodules with different ranks of malignancy from the LIDC dataset. Figure 12a depicts the
benign pulmonary nodules with the rank of malignancy ‘1°. Figure 12b depicts the benign
pulmonary nodules with the rank of malignancy ‘2’. Figure 12¢ depicts the benign pulmonary
nodules with the rank of malignancy ‘4’. Figure 12d depicts the benign pulmonary nodules
with the rank of malignancy ‘5°.

4.1.3 C parameter setting

In our experiments, two dimension sizes were chosen in FPSO: d = 10 and d = 30. The number
of iterations was set to 1000 and 2000 corresponding to the dimensions 10 and 30 in FPSO.
The number of particles was equal to 30 and the number of trials was equal to 30 in all
experiments in FPSO. The parameters used for ABC segmentation approach is shown in
Table 8 and parameters used for ELM Training and Testing process is shown in Table 9.

Table 8 Test parameters for Artificial Bee Colony (ABC)

Parameters used Value
Colony Size 100
ABC Cycles (Max Number) 5000
Employed Bees 50
Onlooker Bees 49
Random Scouts 1
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Table 9 ELM Training and Testing parameters

Parameters used Value
Number of Layers 3

Number of Input Neurons in the Layer 8

Number of Hidden Layer 10, ....50
Number of Output Layer 1

Activation Function Radial Basis
Sum Squared Error 1

4.1.4 D performance metrics used

4.1.5 D a overlap measure (OM)

‘S@A ﬁSeM|

OM =
|SeauSey |

(17)

Where Se, and Sey, represents the segmentation results. |Se,| and |Se,,| represents the numbers
of pixels in Seq and Sey,. |Ses N Sey,| represents the number of pixels in both Sey and Sey,.
|Seq N Sey,| represents the number of pixels in either Sey and Sey,.

4.1.6 D b sensitivity (Sn)

Sensitivity (Sn) is defined as the fraction of malignant nodules predicted perfectly as shown in
Eq. (18).

T,P

- " 1
S = T P+ FuN (18)

4.1.7 D c specificity (Sp)

Specificity (Sp) is defined as the fraction of benign nodules predicted perfectly as shown in Eq.
(19).

T.n
Sp=——"" 19
A (19)
4.1.8 D d classification accuracy (CA)
T.P+T,n

CA (20)

T TP+ Tn+ Fop+ FuN
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Where 7,P represents the number of malignant nodules perfectly predicted. N represents the
number of malignant nodules imperfectly predicted. 7,n represents the number of benign
nodules perfectly predicted. F,p represents the number of benign nodules imperfectly
predicted.

4.1.9 Error rate (ER)

Fup+ FuN

ER =
T, P+ T,n+ Fap+ FoN

4.2 Experimental analysis
4.2.1 Experiment no 1: Analysis of segmentation approaches

In this experiment, the contribution of each segmentation approaches has been evaluated. The
segmentation methods used in the work are K-Mean, FCM, Ant Colony and ABC. To evaluate
the performance of this segmentation approach, the performance metric called overlap measure
is used. Ideally, a good segmentation approach is expected to have a high overlap measure.
Table 10 lists the overlap measures of segmentation approaches such as K-Mean, FCM, Ant
Colony and ABC.

As observed from Table 10, the mean of the overlap measures obtained by the ABC segmen-
tation method is 0.933, which is higher than that of the other existing segmentation methods. Next to
ABC segmentation methods Ant colony provides efficient result with 0.931 for TrTeD1. For
TrTeD7, ABC has obtained 0.95 which is more than other methods. For TrTeD16, ABC has
obtained 9.959 which is 2% — 8% more than other methods. Next to ABC, Ant colony provides
good results. K-means provides good results for TrTeD12 data set with 0.841 values and for TrTeD4

Table 10 Overlap measures obtained by K-Mean, FCM, Ant Colony and ABC

Data sets Segmentation Approaches

K-Means FCM Ant Colony ABC
TrTeD1 0.805 0.884 0.913 0.933
TrTeD2 0.821 0.9 0.929 0.949
TrTeD3 0.832 0911 0.94 0.96
TrTeD4 0.85 0.929 0.958 0.978
TrTeD5 0.795 0.874 0.903 0.923
TrTeD6 0.811 0.89 0.919 0.939
TrTeD7 0.822 0.901 0.93 0.95
TrTeD8 0.84 0.919 0.948 0.968
TrTeD9 0.796 0.875 0.904 0.924
TrTeD10 0.812 0.891 0.92 0.94
TrTeD11 0.823 0.902 0.931 0.951
TrTeD12 0.841 0.92 0.949 0.969
TrTeD13 0.786 0.865 0.894 0914
TrTeD14 0.802 0.881 0.91 0.93
TrTeD15 0.813 0.892 0.921 0.941
TrTeD16 0.831 0.91 0.939 0.959
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Table 11 Analysis of Average accuracy, sensitivity, specificity and Error Rate of Real-time Dataset for Feature
Extraction Approaches

Metrics Accuracy Sensitivity Specificity Error Rate Accuracy Sensitivity Specificity Error Rate
TrTeD1 TrTeD2
Intensity 82.23 91.13 94.35 17.77 82.232 91.132 94.352 17.772
HOG 83.14 92.15 93.52 16.86 83.142 92.152 93.522 16.862
Wavelet 83.66 90.74 94.74 16.34 83.662 90.742 94.742 16.342
LBP 82.58 914 93.91 17.42 82.582 91.402 93.912 17.422
SIFT 81.12 90.51 92.85 18.88 81.122 90.512 92.852 18.882
Zernike 82.71 89.82 93.8 17.29 82.712 89.822 93.802 17.292
Eccentricity 81.6 90.53 92.62 18.4 81.602 90.532 92.622 18.402
Curvature  80.28 89.64 91.28 19.72 80.282 89.642 91.282 19.722
Proposed 97.47 98.11 97.77 2.53 97.472 98.112 97.772 2.532
TrTeD3 TrTeD4
Intensity 82.252 91.152 94.372 17.792 82.273 91.173 94.393 17.813
HOG 83.162 92.172 93.542 16.882 83.183 92.193 93.563 16.903
Wavelet 83.682 90.762 94.762 16.362 83.703 90.783 94.783 16.383
LBP 82.602 91.422 93.932 17.442 82.623 91.443 93.953 17.463
SIFT 81.142 90.532 92.872 18.902 81.163 90.553 92.893 18.923

Zernike 82.732 89.842 93.822 17.312 82.753 89.863 93.843 17.333
Eccentricity 81.622 90.552 92.642 18.422 81.643 90.573 92.663 18.443
Curvature  80.302 89.662 91.302 19.742 80.323 89.683 91.323 19.763

Proposed 97.492 98.132 97.792 2.552 97.513 98.153 97.813 2.573
TrTeD5 TrTeD6

Intensity 82.033 90.933 94.153 17.967 81.853 90.753 93.973 18.147

HOG 82.943 91.953 93.323 17.057 82.763 91.773 93.143 17.237

Wavelet 83.463 90.543 94.543 16.537 83.283 90.363 94.363 16.717

LBP 82.383 91.203 93.713 17.617 82.203 91.023 93.533 17.797

SIFT 80.923 90.313 92.653 19.077 80.743 90.133 92.473 19.257

Zemike 82.513 89.623 93.603 17.487 82.333 89.443 93.423 17.667
Eccentricity 81.403 90.333 92.423 18.597 81.223 90.153 92.243 18.777
Curvature ~ 80.083 89.443 91.083 19.917 79.903 89.263 90.903 20.097

Proposed 97.273 97.913 97.573 2.727 97.093 97.733 97.393 2.907
TrTeD7 TrTeD8

Intensity 81.623 90.523 93.743 18.377 81.783 90.683 93.903 18.217

HOG 82.533 91.543 92913 17.467 82.693 91.703 93.073 17.307

Wavelet 83.053 90.133 94.133 16.947 83.213 90.293 94.293 16.787

LBP 81.973 90.793 93.303 18.027 82.133 90.953 93.463 17.867

SIFT 80.513 89.903 92.243 19.487 80.673 90.063 92.403 19.327

Zernike 82.103 89.213 93.193 17.897 82.263 89.373 93.353 17.737
Eccentricity 80.993 89.923 92.013 19.007 81.153 90.083 92.173 18.847
Curvature  79.673 89.033 90.673 20.327 79.833 89.193 90.833 20.167

Proposed 96.863 97.503 97.163 3.137 97.023 97.663 97.323 2.977
TrTeD9 TrTeD10

Intensity 81.873 90.773 93.993 18.127 81.863 90.763 93.983 18.137

HOG 82.783 91.793 93.163 17.217 82.773 91.783 93.153 17.227

Wavelet 83.303 90.383 94.383 16.697 83.293 90.373 94.373 16.707

LBP 82.223 91.043 93.553 17.777 82.213 91.033 93.543 17.787

SIFT 80.763 90.153 92.493 19.237 80.753 90.143 92.483 19.247

Zernike 82.353 89.463 93.443 17.647 82.343 89.453 93.433 17.657
Eccentricity 81.243 90.173 92.263 18.757 81.233 90.163 92.253 18.767
Curvature  79.923 89.283 90.923 20.077 79.913 89.273 90.913 20.087

Proposed 97.113 97.753 97.413 2.887 97.103 97.743 97.403 2.897
TrTeD11 TrTeD12

Intensity 81.893 90.793 94.013 18.107 81.953 90.853 94.073 18.047

HOG 82.803 91.813 93.183 17.197 82.863 91.873 93.243 17.137

Wavelet 83.323 90.403 94.403 16.677 83.383 90.463 94.463 16.617

LBP 82.243 91.063 93.573 17.757 82.303 91.123 93.633 17.697
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Table 11 (continued)

Metrics Accuracy Sensitivity Specificity Error Rate Accuracy Sensitivity Specificity Error Rate

SIFT 80.783 90.173 92.513 19.217 80.843 90.233 92.573 19.157
Zemike 82.373 89.483 93.463 17.627 82.433 89.543 93.523 17.567
Eccentricity  81.263 90.193 92.283 18.737 81.323 90.253 92.343 18.677
Curvature  79.943 89.303 90.943 20.057 80.003 89.363 91.003 19.997

Proposed 97.133 97.773 97.433 2.867 97.193 97.833 97.493 2.807
TrTeD13 TrTeD14

Intensity 81.973 90.873 94.093 18.027 81.903 90.803 94.023 18.097

HOG 82.883 91.893 93.263 17.117 82.813 91.823 93.193 17.187

Wavelet 83.403 90.483 94.483 16.597 83.333 90.413 94.413 16.667

LBP 82.323 91.143 93.653 17.677 82.253 91.073 93.583 17.747

SIFT 80.863 90.253 92.593 19.137 80.793 90.183 92.523 19.207

Zemike 82.453 89.563 93.543 17.547 82.383 89.493 93.473 17.617
Eccentricity 81.343 90.273 92.363 18.657 81.273 90.203 92.293 18.727
Curvature  80.023 89.383 91.023 19.977 79.953 89.313 90.953 20.047

Proposed 97.213 97.853 97.513 2.787 97.143 97.783 97.443 2.857
TrTeD15 TrTeD16

Intensity 81.933 90.833 94.053 18.067 81.973 90.873 94.093 18.027

HOG 82.843 91.853 93.223 17.157 82.883 91.893 93.263 17.117

Wavelet 83.363 90.443 94.443 16.637 83.403 90.483 94.483 16.597

LBP 82.283 91.103 93.613 17.717 82.323 91.143 93.653 17.677

SIFT 80.823 90.213 92.553 19.177 80.863 90.253 92.593 19.137

Zemike 82.413 89.523 93.503 17.587 82.453 89.563 93.543 17.547
Eccentricity 81.303 90.233 92.323 18.697 81.343 90.273 92.363 18.657
Curvature  79.983 89.343 90.983 20.017 80.023 89.383 91.023 19.977
Proposed 97.173 97.813 97.473 2.827 97.213 97.853 97.513 2.787

data set with 0.929 values. ABC has obtained 0.923 value for TrTeD5 data set while K-means, FCM
and Ant colony provides less results.

4.2.2 Experiment no 2: Analysis of feature extraction approaches

In this experiment, the contributions of each feature extraction approaches which are used in this
work are evaluated. To evaluate the performance of these feature extraction approaches, the
performance metrics, namely, accuracy, sensitivity, specificity and error rate measures are used.
Ideally, a good feature extraction approach is expected to have a high accuracy, high sensitivity, high
specificity and low error rate. Table 11 depicts accuracy, sensitivity, specificity and error rate
measures of various feature extraction approaches. For TrTeD1 to TrTeD16, the proposed method
depicts good results in accuracy, sensitivity, specificity and error rate.

As observed from Table 11, accuracy of the proposed features is 97.47 for TrTeD1, which is
higher than that of the individual feature extraction methods. As well as, in the proposed
feature extraction approach, the error rate is 2.53 for TrTeD1 which is lower than that of the
traditional individual feature extraction methods. For TrTeD16, Accuracy obtained is 97.213,
Sensitivity is 97.853, Specificity is 97.513 and error rate is 2.787 which is very high compared
to other methods.

The accuracy has been improved from (7-11) % compared to the other feature extraction
methods. Accuracy, Sensitivity and specificity are more compared to the other existing
methods. Next to the proposed, HOG provides good results in accuracy and Sensitivity. For
specificity, Wavelet provides good result next to the proposed method.
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Table 12 Analysis of Average accuracy, sensitivity, specificity and Error Rate of Real-time Dataset for Classifier
Approaches

Metrics Accuracy Sensitivity Specificity Error Rate Accuracy Sensitivity Specificity Error Rate
TrTeD1 TrTeD2
SVM 94.23 95.61 9491 5.77 94.25 95.63 94.93 5.75
Bagging 89.26 90.75 89.95 10.74 89.28 90.77 89.97 10.72
Naive Bayes 85.71 86.63 86.42 14.29 85.73 86.65 86.44 14.27
KNN 84.23 85.21 84.96 15.77 84.25 85.23 84.98 15.75
AdaBoost 91.76 92.82 9243 8.24 91.78 92.84 9245 8.22
ELM 97.14 98.39 97.87 2.86 97.16 98.41 97.89 2.84
CNN 98.18 98.43 98.76 1.82 98.21 98.46 98.79 1.79
GACNN 98.76 98.88 98.93 1.24 98.79 98.91 98.96 1.21
PSOCNN 98.91 98.95 98.99 1.09 98.94 98.98 99.02 1.06
FPSOCNN  99.23 99.31 99.43 0.77 99.13 99.24 99.36 0.87
TrTeD3 TrTeD4
SVM 94.272 95.652 94.952 5.728 94.291 95.671 94.971 5.709

Bagging 89.302 90.792 89.992 10.698 89.321 90.811 90.011 10.679
Naive Bayes 85.752 86.672 86.462 14.248 85.771 86.691 86.481 14.229

KNN 84.272 85.252 85.002 15.728 84.291 85.271 85.021 15.709
AdaBoost 91.802 92.862 92.472 8.198 91.821 92.881 92.491 8.179
ELM 97.182 98.432 97.912 2.818 97.201 98.451 97.931 2.799
CNN 98.2 98.45 98.78 1.8 98.18 98.43 98.76 1.82
GACNN 98.78 98.9 98.95 1.22 98.76 98.88 98.93 1.24
PSOCNN 98.93 98.97 99.01 1.07 98.91 98.95 98.99 1.09
FPSOCNN  99.12 99.23 99.35 0.88 99.1 99.21 99.33 0.9
TrTeD5 TrTeD6
SVM 94.161 94.971 94.841 5.839 94.051 94.861 94.731 5.949

Bagging 89.191 90.011 89.881 10.809 89.081 89.901 89.771 10.919
Naive Bayes 85.641 86.481 86.351 14.359 85.531 86.371 86.241 14.469

KNN 84.161 85.021 84.891 15.839 84.051 84.911 84.781 15.949
AdaBoost 91.691 92.491 92.361 8.309 91.581 92.381 92.251 8.419
ELM 97.071 97.931 97.801 2.929 96.961 97.821 97.691 3.039
CNN 98.05 98.76 98.63 1.95 97.94 98.65 98.52 2.06
GACNN 98.63 98.93 98.8 1.37 98.52 98.82 98.69 1.48
PSOCNN 98.78 98.99 98.86 1.22 98.67 98.88 98.75 1.33
FPSOCNN  99.18 99.33 99.2 0.82 99.07 99.22 99.09 0.93
TrTeD7 TrTeD8
SVM 94.121 94.931 94.801 5.879 94.171 94.981 94.851 5.829

Bagging 89.151 89.971 89.841 10.849 89.201 90.021 89.891 10.799
Naive Bayes 85.601 86.441 86.311 14.399 85.651 86.491 86.361 14.349

KNN 84.121 84.981 84.851 15.879 84.171 85.031 84.901 15.829
AdaBoost 91.651 92.451 92.321 8.349 91.701 92.501 92.371 8.299
ELM 97.031 97.891 97.761 2.969 97.081 97.941 97.811 2919
CNN 98.01 98.72 98.59 1.99 98.06 98.77 98.64 1.94
GACNN 98.59 98.89 98.76 1.41 98.64 98.94 98.81 1.36
PSOCNN 98.74 98.95 98.82 1.26 98.79 99 98.87 1.21
FPSOCNN  99.14 99.29 99.16 0.86 99.19 99.34 99.21 0.81
TrTeD9 TrTeD10
SVM 94.291 95.101 94.971 5.709 94.221 95.031 94.901 5.779

Bagging 89.321 90.141 90.011 10.679 89.251 90.071 89.941 10.749
Naive Bayes 85.771 86.611 86.481 14.229 85.701 86.541 86.411 14.299

KNN 84.291 85.151 85.021 15.709 84.221 85.081 84.951 15.779
AdaBoost 91.821 92.621 92.491 8.179 91.751 92.551 92.421 8.249
ELM 97.201 98.061 97.931 2.799 97.131 97.991 97.861 2.869
CNN 98.18 98.89 98.76 1.82 98.11 98.82 98.69 1.89
GACNN 98.76 99.06 98.93 1.24 98.69 98.99 98.86 1.31
PSOCNN 98.91 99.12 98.99 1.09 98.84 99.05 98.92 1.16
FPSOCNN 9931 99.46 99.33 0.69 99.24 99.39 99.26 0.76
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Table 12 (continued)
Metrics Accuracy Sensitivity Specificity Ermror Rate Accuracy Sensitivity Specificity Error Rate
TrTeD11 TrTeD12
SVM 94.171 94.981 94.851 5.829 94.141 94.951 94.821 5.829
Bagging 89.201 90.021 89.891 10.799 89.171 89.991 89.861 10.799
Naive Bayes 85.651 86.491 86.361 14.349 85.621 86.461 86.331 14.349
KNN 84.171 85.031 84.901 15.829 84.141 85.001 84.871 15.829
AdaBoost 91.701 92.501 92.371 8.299 91.671 92.471 92.341 8.299
ELM 97.081 97.941 97.811 2.919 97.051 97.911 97.781 2919
CNN 98.06 98.77 98.64 1.94 98.03 98.74 98.61 1.94
GACNN 98.64 98.94 98.81 1.36 98.61 98.91 98.78 1.36
PSOCNN 98.79 99 98.87 1.21 98.76 98.97 98.84 1.21
FPSOCNN  99.19 99.34 99.21 0.81 99.16 99.31 99.21 0.81
TrTeD13 TrTeD14
SVM 94.141 94.951 94.821 5.859 94.141 94.951 94.821 5.859
Bagging 89.171 89.991 89.861 10.829 89.171 89.991 89.861 10.829
Naive Bayes 85.621 86.461 86.331 14.379 85.621 86.461 86.331 14.379
KNN 84.141 85.001 84.871 15.859 84.141 85.001 88.876 15.859
AdaBoost 91.671 92.471 92.341 8.329 91.671 92471 92.341 8.329
ELM 97.051 97.911 97.781 2.949 97.051 97.911 97.781 2.949
CNN 98.03 98.74 98.61 1.97 98.03 98.74 98.61 1.97
GACNN 98.61 98.91 98.78 1.39 98.61 98.91 98.78 1.39
PSOCNN 98.76 98.97 98.84 1.24 98.76 98.94 98.84 1.24
FPSOCNN  99.16 99.31 99.18 0.84 99.16 99.31 99.19 0.84
TrTeD15 TrTeD16
SVM 94.121 94.931 94.801 5.879 94.141 94.951 94.821 5.859
Bagging 89.151 89.971 89.841 10.849 89.171 89.991 89.861 10.829
Naive Bayes 85.601 86.441 86.311 14.399 85.621 86.461 86.331 14379
KNN 84.121 84.981 84.851 15.879 84.141 85.001 84.871 15.859
AdaBoost 91.651 92.451 92.321 8.349 91.671 92.471 92.341 8.329
ELM 97.031 97.891 97.761 2.969 97.051 97911 97.781 2.949
CNN 98.01 98.72 98.59 1.99 98.03 98.74 98.61 1.97
GACNN 98.59 98.89 98.76 1.41 98.61 98.91 98.78 1.39
PSOCNN 98.74 98.95 98.82 1.26 98.76 98.97 98.84 1.24
FPSOCNN  99.14 99.29 99.16 0.86 99.16 99.31 99.18 0.84

4.2.3 Experiment no 3: Analysis of classifier approaches

In this experiment, the contributions of various classifiers which are used in this work are
evaluated. To evaluate the performance of these classifiers, the performance metrics used are
accuracy, sensitivity, specificity and error rate. Ideally, a good classifier is expected to have a

Table 13 Analysis of Average accuracy, sensitivity and specificity for existing works for Whole LIDC data set

Existing works

Average Accuracy (%)

Average Sensitivity (%)

Average Specificity (%)

Suren et al. [20]

Taruna et al. [1]

Hiram Madero et al. [24]
Hiram Madero et al. [23]
Hong Shao et al. [28]
Silva et al. [11]

Costa et al. [14]
Proposed

92.24
97.12
89.52
95.66
90.35
94.78
91.81
95.62

93.65
97.14
90.90
96.15
89.47
94.66
93.42
97.93

%

91.23
96.33
88.15
97.32
90.52
95.14
91.21
96.32
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Table 14 Analysis of Average accuracy, sensitivity and specificity for existing works for Whole Real Time data
set

Existing works Average Accuracy (%) Average Sensitivity (%) Average Specificity (%)
Suren et al. [20] 90.42 91.27 89.14
Taruna et al. [1] 94.27 95. 42 93.41
Hiram Madero et al. [24] 87.42 88.48 87.38
Hiram Madero et al. [23] 92.27 93.25 91.74
Hong Shao et al. [28] 88.64 85.56 84.37
Silva et al. [11] 93.14 93.53 94.28
Costa et al. [14] 90.74 92.13 90.57
Proposed 94.97 96.68 95.89

high accuracy, high sensitivity, high specificity and low error rate. Table 12 lists the accuracy,
sensitivity, specificity and error rate measures of various classifiers.

As observed from Table 12, accuracy, sensitivity, error rate and specificity for 16 data sets
are provided. For TrTeD1, the proposed method got an accuracy of 99.23, for sensitivity the
value obtained is 99.31, for specificity the result value is 99.43 and error rate is 0.77. For
TrTeD16, the proposed method got an accuracy of 99.16, for sensitivity the value obtained is
99.31, for specificity the result value is 99.18 and error rate is 0.84.

4.2.4 Experiment no 4: Analysis of proposed method with existing works

In this experiment, the contribution of proposed method is evaluated with the existing works.
To evaluate the performance of this proposed approach, the performance metrics used are
accuracy, sensitivity, specificity and error rate. Ideally, a good proposed approach is expected
to have a high accuracy, sensitivity, and specificity. Table 13 depicts the results with the state-
of-the-art methods for LIDC data set. The proposed method shows 95.62% accuracy, 97.93%
sensitivity and 96.32% specificity for LIDC data set.

As observed from Table 14, the average accuracy value of the proposed obtained is 94.97,
which is higher than of the all existing works. As well as, average sensitivity of the proposed
method obtained is 96.68, which is higher than of the all existing works. The specificity value
of the proposed method obtained is 95.89 which are higher than of the all existing works. So,
from the Table 14, it is concluded that the proposed method provides good results than other
existing works.

Confusion Matrix (No.1) Confusion Matrix (No.2) Confusion Matrix (No.1)

Begnin 42 Begnin 84 Begnin 138

Malignant Malignant Malignant 135

Begnin Malignant Begnin  Malignant Begnin  Malignant

(@ (b) (©)

Figure 13 Results of confusion matrices on different numbers of testing samples a Confusion matrix on 100
testing samples, b Confusion matrix on 200 testing samples, ¢ Confusion matrix on 300 testing samples
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4.2.5 Experiment no 5: Analysis of proposed method with confusion matrix

To verify the performance of the proposed classification method, the confusion matrix [6, 58,
59] is used as the metric. Here there are two classes: benign nodules and malignant nodules.
Therefore, the confusion matrix with a size of 2 x 2 is used. Figure 13 depicts the confusion
matrices on different numbers of testing samples.

4.2.6 Computational complexity

The computational complexity of CNN is calculated by using big o notation. The computa-
tional complexity of CNN is calculated using Eq. (22)

CNN Time Complexity = 74y.sConvolution filer size.Pooling size (22)

CNN = O(n*.n*.n*) = O(n®) (23)
The computational complexity of PSOCNN is found by using Eq. (24)
PSOCNN Time Complexity = 7/ge. Convolution filer size (24)

PSOCNN = O(n'.n* ) = O(n°) (25)
The computational complexity of GACNN is found by using Eq. (26)

GACNN Time Complexity = 1. Convolution filer size (26)

GACNN = O(n'.n* ) = O(n’) (27)
The computational complexity of FPSOCNN is found by using Eq. (28)
FPSOCNN Time Complexity = #14y,;.Convolution filer size (28)

FPSOCNN = O(n'.n* ) = O(n) (29)

5 Conclusion

This work is to detect the cancerous lung nodules from the given input lung image and to
classify the lung cancer and its severity. To detect the location of the cancerous lung nodules,
this work uses novel Deep learning methods. Here, features are classified using Deep learning.
A novel FPSOCNN is proposed which reduces computational complexity of CNN. This work
uses best feature extraction techniques such as Histogram of oriented Gradients (HoG),
wavelet transform-based features, Local Binary Pattern (LBP), Scale Invariant Feature
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Transform (SIFT) and Zernike Moment. After extracting texture, geometric, volumetric and
intensity features, Fuzzy Particle Swarm Optimization (FPSO) algorithm is applied for
selecting the best feature. An additional valuation is performed on another dataset coming
from Arthi Scan Hospital which is a real-time data set. From the experimental results, it is
shown that novel FPSOCNN performs better than other techniques.

In future, further improvement will be performed in the classification performance of
pulmonary nodules and optimise the proposed model. In addition, the further work will be
grading the images based on the degree of the malignancy of pulmonary nodules, which is of
valuable significance for the diagnosis and treatment of lung cancer in clinical applications.
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