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Abstract
In this paper, a plaintext related image hybrid encryption scheme is proposed based on Lagrange
interpolation, generalized Henon map and nonlinear operations of matrices. The proposed scheme
consists of three parts. In the first part, a generalized chaotic map is constructed on the basis of
Henon map. Using the novel map, a chaotic sequence is built. And then, both the chaotic sequence
and the plaintext pixels are used to implement the first nonlinear operation for generating the first
cipher matrix associated with the plaintext. By performing an exclusive XOR operation between the
original pixelsmatrix and the first ciphermatrix, the diffusion encryption is carried out. In the second
part, Lagrange interpolation is used to create the second cipher matrix related to the diffused image;
the second nonlinear transformation is developed between the diffused image and the second cipher
matrix; and sequence rearrangement is adopted to scramble the diffused image. In the third part, the
third nonlinear transformation of matrices based on point operation and rounding operation is
implemented on the scrambled image to complete the image encryption. Accordingly, the decryp-
tion process is executed by the inverse operations in the opposite order. The proposed algorithm has
some distinctive features: a variety of nonlinear tools such as nonlinear polynomial interpolation,
nonlinear chaotic map, and nonlinear operations were involved in the scheme. The cryptosystem is
designed with the plaintext to enhance the algorithm security. Due to the combination of multiple
nonlinear methods and random factors, the scheme is one time pad, which can withstand multiple
types of attacks. The algorithm has a clear structure and a simple calculation, so it is easy to program.
In addition, encryption simulation and performance analysis are carried out. The feasibility and
effectiveness of the algorithm are verified by the simulated results. The security of the algorithm are
proved by the objective indicators such as the running time, key space, statistical properties, key
sensitivity, and differential analysis, etc.
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1 Introduction

With the rapid development of network communication and multimedia technology, informa-
tion exchange and sharing are more and more frequent. In the meantime, the situation of
information security becomes increasingly severe. As the main information carrier, images
account for more than 70% of the total amount of daily information. Under a variety of
security threats, image encryption has become an important issue. In recent years, image
encryption methods [11, 23, 29] mainly represented by chaotic encryption algorithms have
attracted extensive attentions, and many important researching results have been achieved.

Adopting sequence diffusion transform, pixels 8-bit decomposition and chaotic scrambling,
Zhu, Zhang, Wong et al. [33] constructed the bit-plane scrambling encryption scheme (2011).
Applying DNA coding and Chen hyper-chaotic system, Wei, Guo, Zhang et al. [25] discussed
DNA image encryption method (2012). Using the chaotic encryption system of three-
dimensional Arnold map, Kanso and Ghebleh [13] performed a hybrid algorithm for gray
images direct encryption (2012). Combing public key cryptosystem with mixed reality
technology, Amalarethinam and Geetha [3] provided a new image encryption scheme
(2015). Based on chaotic map, Liu, Sun and Zhu [17] put forward a fast image encryption
algorithm (2016). On the basis of block scrambling and dynamic index based diffusion, Xu,
Guo, Li et al. [26] proposed a novel chaotic image encryption algorithm (2017). Utilizing
SPIHT coding and Chirikov standard map, Fu, Chen, Zou et al. [9] studied a selective
compression encryption of images (2017). By means of DNA sequence operations, Chai,
Chen and Broyde [4] suggested a novel chaos-based image encryption algorithm (2017).

Since 2012, the chaotic digital image encryption related to plaintext has received special
attentions. Because part of the plaintext data is added to the cipher generating pattern, this
method enhanced the security of the cryptogram, and thus, highlighted the characteristics of
one time pad for encryption. Zhang [27, 28] is one of the early scholars to study the chaotic
image encryption associated with the plaintext. He proposed a chaotic cipher system using
plaintext data, and suggested a perfect image encryption mode of diffusion-scrambling-
diffusion. These works laid a solid foundation for further research. After this, other researchers
have developed a series of related studies. Using reverse 2-dimensinal chaotic map and
dependant diffusion, Zhang, Wong, Yu, et al. [30] constructed a new image encryption scheme
(2013). Based on hash function, Norouzi, Seyedzadeh, Mirzakuchaki et al. [19] designed an
image encryption scheme with only two-round diffusion process (2014). On the basis of eight
dimensional chaotic cat map, Ganesan and Murali [10] researched image encryption (2014).
Adopting temp-value feedback technique, Zhang, Hu, Liu et al. [31] proposed a chaotic image
encryption algorithm (2014). Utilizing chaotic and lookup table, Cheng, Yang, Wei, et al. [6]
provided a fast image encryption method (2015). Applying chaos and Langton’s Ant cellular
automation, Wang and Xu [24] put forward a novel image encryption scheme (2015). For
medical applications, Kanso and Ghebleh [14] formed an efficient and robust image encryp-
tion algorithm (2015). By the aid of chaos maps with Markov properties, Liu, Li, Zhang et al.
[16] studied a novel image encryption algorithm (2015).

In general, a secure image encryption system should have the following characteristics [21,
29]: First, the key space is large enough, and the key length is not less than 128bit. Second, the
system is sensitive to the key, plaintext, and ciphertext. Third, the ciphertext has statistical
properties similar to noise. Fourth, the cryptosystem can effectively resist various types of
attacks. Fifth, the encryption and decryption algorithms are efficient and effective. To meet
these requirements, some problems should be taken seriously. Firstly, only the encryption
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scheme related to the keys cannot effectively defend the selected plaintext attack and the
known plaintext attack. The research on the algorithm both related to the keys and to the
plaintext should be highly valued. Secondly, the traditional chaotic transformation is limited in
variety and easy to crack. It is necessary to discuss the new chaotic map to encrypt image.
Thirdly, the research of the combination of multiple mathematical methods for the generation
of cryptogram should be accelerated.

It is worth pointing out that, as early as 1979, Shamir [22] put forward a key sharing method
based on Lagrange interpolation, which opened the applied research of interpolation polynomial
in cryptography. In 2012, Akif [2] comprehensively applied Lagrange polynomial, quadtree
technology, and RC4 standard to image encryption and achieved good security results.

Using Lagrange interpolation [18], generalized Henon map, matrix nonlinear operations,
and the random functions in Matlab [15], we construct a novel image encryption scheme
related to plaintext. From the perspective of mathematics, our work focuses on expanding the
application of algebraic interpolation, irreversible chaotic map and non-linear transformation in
image processing. In view of practical technology, this paper provides a candidate of image
encryption method.

The paper consists of the following main parts: The first part introduces the concepts of
algebraic interpolation, Lagrange polynomial, and the generating of interpolation cryptograph-
ic matrix. The second part constructs a generalized chaotic map based on Henon map [23], and
gives the method of the chaotic cipher sequence. The third part discusses three types of matrix
nonlinear transformations. The fourth part describes the algorithm in details. The fifth part
carries out the encryption simulation. The sixth part gives the performance and security
evaluation of the proposed algorithm, and compares the effects of the algorithm with those
of other algorithms. The seventh part summarizes the full paper.

2 Algebraic interpolation, Lagrange polynomial and interpolation cipher

2.1 Algebraic interpolation and Lagrange polynomial

Definition 1 Suppose that the continuous function y = f(x) is defined on the interval [a, b]. At
the n + 1 different points xi ∈ [a, b], i = 0, 1, ⋯, n, f(x) satisfies f(xi) = yi. If there is a n ‐ th
degree polynomial Pn(x) which satisfies Pn(xi) = yi, then Pn(x) is called the n ‐ th degree
algebraic interpolation of f(x). The function f(x) is known as the interpolated function. The
points xi are the interpolating nodes. And, [a, b] is the interpolation interval [18].

The basic theory of numerical analysis has proved that the solution of algebraic interpola-
tion is existing and unique. Lagrange polynomial [18] is one of the most common solutions,
which is denoted as follows:

Pn xð Þ ¼ y0l0 xð Þ þ y1l1 xð Þ þ⋯þ ynln xð Þ ¼ ∑
n

k¼0
yklk xð Þ; ð1Þ

where, li(x) are the n − th bases of Lagrange polynomial, which are defined as follows:

li xð Þ ¼ x−x0ð Þ⋯ x−xi−1ð Þ x−xiþ1ð Þ⋯ x−xnð Þ
xi−x0ð Þ⋯ xi−xi−1ð Þ xi−xiþ1ð Þ⋯ xi−xnð Þ ¼ ∏

n

i ¼ 0
i≠ j

x−xið Þ
x j−xi
� � ; i ¼ 0; 1;⋯; n: ð2Þ
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As we known, the bases li(x) satisfy the following Kronecker equation:

li xkð Þ ¼ 1k ¼ i
0k≠i

�
: ð3Þ

In practice, either the quadratic or the cubic Lagrange polynomials are the most widely used.
They are respectively expressed as follows:

P2 xð Þ ¼ y0l0 xð Þ þ y1l1 xð Þ þ y2l2 xð Þ; ð4Þ

P3 xð Þ ¼ y0l0 xð Þ þ y1l1 xð Þ þ y2l2 xð Þ þ y3l3 xð Þ: ð5Þ

2.2 Lagrange interpolation cipher sequence (matrix)

Suppose that the grayscales matrix is Ghk = (gij)hk, i = 1, 2,⋯h, j = 1, 2,⋯k, h, k ∈N; It is easy
to convert this matrix into a row vector L1 × (hk). After using the internal function ‘rand’ or
‘randn’ [15] in Matlab to generate the n + 1 random integers xj, j = 0, 1,⋯n on the interval [1,
h × k], we normalize xj to double precision floating decimals on the interval [0, 1] by the
equation ex j ¼ x j−1

� �
= h⋅k−1ð Þ, and record the corresponding pixels by yj. And then, by means

of the interpolating notes ex j; y j� �
and Eq. (4), we construct Lagrange polynomial Nn(x),

where, x∈ a; b½ �; a ¼ min ex j� �
; and b ¼ max ex j� �

: Furthermore, we uniformly take the samples

xi, i = 1, 2,⋯hk from the interval [a, b], compute the correspondingNn(xi), and rearrange Nn(xi)
into the matrix Khk. Thus, we achieve the interpolating cipher matrix Khk.

In encryption practice, the parameter n, which is the degree of the Lagrange polynomial,
can be regarded as an optional key.

3 Henon map, generalized Henon map and chaotic cipher

3.1 Henon map

Henon map [23] is one of the commonly used chaotic systems for image encryption. It is
defined as follows:

x k þ 1ð Þ ¼ 1−a⋅x2 kð Þ þ y kð Þ
y k þ 1ð Þ ¼ b⋅x kð Þ

�
;

where, the parameters a, b are free variables. When 0.54 < a < 2, 0 < ∣ b ∣ < 1, the system is
in a hyper chaotic state with two positive Lyapunov exponents. So it is suitable for a
cryptogram generating system.

3.2 GHM

Based on Henon map, we construct a novel map named as GHM (Generalized Henon Map),
which is expressed as follows:
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x k þ 1ð Þ ¼ 1−a⋅x2 kð Þ þ b⋅x kð Þ⋅y kð Þ þ c⋅y kð Þ
y k þ 1ð Þ ¼ d⋅x kð Þ

�
; ð6Þ

where, the parameters a, b, c, d are system variables. It is not hard to proved that this map has
one positive Lyapunov exponent when 0.54 < a < 2, 0 < ∣ b ∣ < 1, 0 < ∣ c ∣ < 1, 0 < ∣ d ∣ <
1, so it can be used to generate cipher codes.

Considering that the subsequent contents do not involve the inverse of GHM, we do not
discuss the inverse of GHM here.

4 Matrices nonlinear transformation based on dot power operation

Suppose that the original image is P = (pij)h × k, where, pij ∈ [0, 1] are pixels grayscales. The dot
power of a matrix [15] is the power operation objected to the elements of the matrix, it is
defined as follows:

P:m ¼ pij
� �m� �

h�k
; ð7Þ

where, .^ is the operator of dot power, and m ∈ R.
Let A1, A2, A3 and A4 be the nonzero matrices with the size of h × k, the first type nonlinear

transformation (FTNT) of the matrix P is expressed as follows:

P1 ¼ f 1 Pð Þ ¼ a1 b1⋅P þ c1⋅A1ð Þ:d1 þ e1⋅A2; ð8Þ
where, the parameters a1, b1, c1, d1, e1 ∈ R+ are optional.

Similarly, the second type nonlinear transformation (STNT) and the third type nonlinear
transformation (TTNT) are respectively defined as follows:

P2 ¼ f 2 Pð Þ ¼ a2 b2⋅P þ c2⋅A3ð Þ:d2 ; ð9Þ

P3 ¼ f 3 Pð Þ ¼ a3⋅P:b3 þ c3⋅A4; ð10Þ
where, the variables a2, b2, c2, d2, a3, b3, c3 ∈ R+ are candidate.

Perform the inverse operations of Eqs. (8), (9) and (10) respectively, we can obtain:

P ¼ f −11 Pð Þ ¼ P1−e1⋅A2ð Þ=a1ð Þ: 1=d1ð Þ−c1⋅A1

� �
=b1; ð11Þ

P ¼ f 2
−1 Pð Þ ¼ P2=a2ð Þ: 1=d2ð Þ−c2⋅A3

� �
=b2; ð12Þ

P ¼ f −13 Pð Þ ¼ P3−c3⋅A4ð Þ=a3ð Þ: 1=b3ð Þ: ð13Þ
In addition, for the known nonzero matrix Mhk, the F transformation of Mhk is denoted as
follows:

F Mð Þ ¼ Mhk−floor Mhkð Þ; ð14Þ
where, the symbol floor is the rounding function of Matlab. If we consider Cd = floor(Mhk) as a
constant matrix (called the third cipher matrix), then we can easily derive the inverse of F
transformation as follows:
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M ¼ F Mð Þ þ Cd : ð15Þ

5 Plaintext related image hybrid encryption algorithm

5.1 Pixels diffusion using GHM

Using GHM in Eq. (6) to generate the chaotic sequence C1 × (hk), we rearrange it into the matrix
C1 with the size of hk. Performing FTNT in Eq. (8) among the known matrices P,C1 and the
random matrix R1, we obtain the following result:

P1 ¼ a1 b1⋅P þ c1⋅C1ð Þ:d1 þ e1⋅R1: ð16Þ

And then, we rearrange P1 into a row vector to form the first cipher sequence eC, convert the
plaintext P into a row vector eP, and successively implement the forward and backward

diffusion algorithms between the vector eP and eC. The diffusion calculations are accomplished
by the following XOR operation [29]:

Cti ¼ Cti−1⊕Ci⊕Pi; i ¼ 1; 2;⋯hk; ð17Þ

Cti ¼ Ctiþ1⊕Ci⊕Pi; hk; hk−1;⋯1: ð18Þ
Where, the matrix Ct is referred to as the diffused image. The initial value of Ct0 in Eq. (17)
and that of Cthk in Eq. (18) come from the keys. The symbol ⊕ denotes the operator of XOR.

In this stage, the parameters a, b, c, d, a1, b1, c1, d1, and e1 are the alternative keys.

5.2 Pixels scrambling based on Lagrange interpolating cipher

For the diffused result Ct, we apply Lagrange interpolation in Eq. (4) to deduce the second
cipher matrix Khk. After carrying out STNT in Eq. (9) between Ct and Khk, we acquire the
matrix as follows:

Ct ¼ a2 b2⋅Ct þ c2⋅Khkð Þ:d2 : ð19Þ

Furthermore, we sort the row vector Ct derived from eCt by the inner function randperm in

Matlab, and record the number of the elements in Ct before and after sorting as Iold and Inew,
respectively. For the row vector Ĉt converted from Ct, we firstly sort it by Inew, and then,
rearrange the sorted result into the matrix Ct with the size of hk. Thus, we obtain the scrambled
image Ct.

In this stage, both the variable n and the parameters a2, b2, c2, d2 are optional keys.

5.3 The encryption based on TTNT

Performing TTNT in Eq. (10) between the scrambled image Ct and the random matrix R2, we
obtain the following result:

Ct f ¼ a3⋅Ct:b3 þ c3⋅R2: ð20Þ
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For the matrix Ctf, we implement the transformation in Eq. (14) to achieve:

CtF ¼ Ct f −floor Ct f
� �

: ð21Þ
At this point, the encryption process is completed. The matrix CtF is the final encrypted image.

In this stage, the parameters a3, b3 and c3 serve as keys. The third cipher matrix Cd is
interpreted as a procedural cryptogram.

5.4 Decryption algorithm

The image decryption can be fulfilled in opposite order by performing the inverse transfor-
mations and operations. By means of Eqs. (15) and (13), we successively transform the
encrypted image CtF into the matrices CtF1 and CtF2. Using CtF2 to form a row vector, we
rearrange the vector according to Iold, and then change the result into the matrix CtF3 with the
size of hk. Thus, the scrambling decrypted image is gotten by the matrix CtF3. Furthermore, we
convert CtF3 into the row vector CT, and carry out the inverse operation of forward and
backward diffusing algorithms by following two equations:

Pi ¼ CTi−1⊕CTi⊕Ci; i ¼ 1; 2;⋯hk; ð22Þ

Pi ¼ CTiþ1⊕CTi⊕Ci; i ¼ hk; hk−1;⋯1: ð23Þ
And then, we rearrange the result into the matrix P0 with the size of hk. The matrix P0 is the
expected diffusion decryption image, and it is also the final decrypted image.

It should be specially noted that, in the process of encryption and decryption, there is a
specific matching between the various operations and the data types. If necessary, the
conversion between the double precision data and 8-bit integer data should be executed in
time to satisfy the requirements of the calculations.

5.5 Algorithm description

5.5.1 The encryption algorithm

The encryption algorithm includes the following steps:

Step 1 Image preprocessing

★1 Convert the original image into the pixels gray matrix Phk.

Step 2 Diffusion encryption

★2 Set the parameters a, b, c, and d respectively, generate the chaotic sequence C1 × (hk)

using Eq. (6), and rearrange C1 × (hk) to the matrix C1 with the size of hk.
★3 Apply the function rand of Matlab to form the matrix R1 with the same size of Phk.
★4 Assign the parameters a1, b1, c1, d1, and e1 respectively. Perform FTNT among the
matrices Phk, C1 and R1 to obtain the matrix P1.
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★5 Rearrange P1 into the first cipher sequence eC, and covert Phk into a row vector P. For

the vectors P and eC, successively implement the operations in Eqs. (17) and (18) to infer
the vector Ct, and then change Ct into the matrix Cthk.

In this step, a, b, c, d and a1, b1, c1, d1, e1 are candidate keys and thematrixCthk is the diffused image.

Step 3 Scrambling encryption

★6 Form the second cipher matrix Khkby Eq. (4), and carry out SINT in Eq. (19) between

Cthk and Khk to deduce the matrix eCt.
★7 Convert eCt into the row vector Ct, sort Ct using the function randperm of Matlab, and

record the elements number of Ct before and after sorting as IoldandInew, respectively.
★8 Change Cthk into the row vector Ĉt, rearrange Ĉt according to Inew, and transform the
result to the matrix Cthk .

In this step, the candidate keys include a2, b2, c2, d2, n. The matrix Cthk is the scrambled image.

Step 4 Encryption using nonlinear transformation

★9 Use the function rand to generate the random matrix R2, and perform TTNT in Eq.
(20) between Cthk and R2to derive the matrix Ctf.
★10 Utilize the third cipher matrix Cd to implement the transformation in Eq. (21) to
receive the matrix CtF. The matrix CtF is the final encrypted image.

In this step, the parameters a3, b3, c3 are optional keys. ThematrixCtF is the final encrypted image.

5.5.2 The decryption algorithm

Based on the encrypted image CtF, the decryption process can be fulfilled as follows:

Step 1 Decryption of nonlinear transformation

◆1 Convert the matrix CtF into the matrix CtF1 by performing the transformation in Eq.
(15), and implement the transformation in Eq. (13) to achieve the matrix CtF2.

Step 2 Scrambling decryption

◆2 Transform CtF2 into a row vector, rearrange the vector according to Iold, and then
change the rearranged result into the matrix CtF3 with the size of hk.

Step 3 Diffusion decryption

◆3 Rearrange CtF3 to the row vector CT, successively implement the transformations in Eqs.
(22) and (23), and then rearrange the operating result into the matrix P0 with the size of hk.

Thus, we obtain the final decrypted image presented by the matrix P0.
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5.6 The diagram of the proposed algorithm

The process of encryption and decryption are now demonstrated in Figs. 1 and 2, respectively.

6 Encryption simulation

The original images are downloaded from the website of BSD-S500 [8], and all of the
experiments are conducted under the MATLAB 2016b integrated environment. The software
is run on the platform with Intel Core (TM) i7 CPU (2.4 GHz), 8.0-GB RAM, and 64-bit
operating system Win7.1.

The sizes of the three experimental images Tiger, Pilots, Pyramid are 342 × 512, 512 × 342,
and 684 × 1024 pixels, respectively. The encryption and decryption algorithms are run in the
key space of Ω1 ×Ω2 ×Ω3 = (a, b, c, d, a1, b1, c1, d1, e1) × (n, a2, b2, c2, d2) × (a3, b3, c3).

Figures 3, 4 and 5, respectively exhibit the encrypted and decrypted results of the three
sample images, where, a = 1.2, b = 0.5, c = 0.8, d = 0.314, n = 3, a1 = 20, b1 = 3, c1 = 2.5, d1 =
0.5, e1 = 4, a2 = 2, b2 = 3, c2 = 2, d2 = 4, a3 = 30, b3 = 2, c3 = 3. In these figures, (a) denotes the
original image; (b) shows the encrypted image of (a); and (d) presents the recovered image of
(b).

From these figures, we observe that the cipher images are messy and rambling, so the
attackers could hardly obtain any useful information from the ciphertexts.

In order to evaluate the encryption and decryption effect of the algorithm objectively, we
calculate the absolute values of PSNR (Peak-Signal to Noise Ratio) and SSIM (Structural
Similarity) between the encrypted images and the original ones, as well as those between the
decrypted images and the original ones. The data are shown in Table 1. Where, P01, S01 present
the PSNR, the SSIM between the encrypted image and the original one, respectively; P02, S02
indicate the PSNR, the SSIM between the decrypted image and the original one, respectively.

The data shown in Table 1 prove that the algorithm can achieve good encryption and
decryption effects. In addition, after performing the decryption algorithm on the decrypted
images, we obtain the same results as the original images. Hence, we confirm that the proposed
algorithm is a lossless encryption method.

GHM Plaintext

FTNT

The first cipher

Lagrange interpolation

The second cipher

STNT

TTNT

The third cipher

Ciphertext

F transformation

ScramblingDiffusionPlaintext

Fig. 1 The encryption diagram
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7 Encryption performance analysis and security

In this section, we discuss several performance indicators of the proposed algorithm such as
the time consuming and space occupying of the algorithm, the size of the key space, the
statistical properties of the images, key sensitivity, plaintext sensitivity, etc. These indexes
objectively reflect the efficiency and security of our scheme.

It is necessary to explain that, since the numerical calculations and random factors are involved
in the algorithm, there may be differences in analysis data obtained from different experimental
rounds, but these differences in quantity have nothing to do with the final conclusions.

7.1 Time and space consumption of the algorithm

For the five images selected from large scale datasets [1, 7, 8] with the sizes of 32 × 32, 256 ×
256, 342 × 512, 512 × 512 and 1024 × 684 pixels, respectively, we record the average running
time of the algorithm after 500 times tests. The results are shown in Table 2. In addition, the
total amount of encoding, the size of the files and the storage spaces are also listed in this table.
The data indicates that the algorithm takes up limited system resources and has high operating
efficiency. Note that, since the running time of the algorithm is related to the computer system

The third cipher Inverse of TTNT The first cipher

Ciphertext F-1 transformation

Plaintext

Inverse of scrambling Inverse of 

Iold

Fig. 2 The decryption diagram

Fig. 3 The encrypted and decrypted result of the image Tiger
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configuration and the coding volume and the storage space are subject to programming
languages, the data in Table 2 is not absolute and just for reference.

According to the data in the table, we fit out the encryption and decryption time curves
using quadratic polynomial. The results are demonstrated in Fig. 6. In the integrated environ-
ment of Matlab 2016b, the memory occupied by running the encryption and decryption files of
this size can be neglected, while the memory occupied by the platform is approximated to
560 MB. Thus, the system resources used by the encryption scheme are limited. A conven-
tionally configured personal computer can meet this demand.

7.2 Resistance to the brute force attack

7.2.1 Keys space

The set of all possible values of the keys is called the key space. It is one of the important
indexes to measure whether an image encryption algorithm can resist brute force attack or not.
For 8 bit integer images, the applied cryptography has affirmed that the secure key space of an
encryption algorithm should be not less than 128 bit. Otherwise the encryption scheme will be
broken by exhaustive search to get the secret keys in a limited amount time.

As mentioned above, the key space of the proposed algorithm is Ω1 ×Ω2 ×Ω3. If all of the
parameters are taken as double precise decimals, then they should be set to beO (10−14). So the
key space of the algorithm is not less than log2(10238) ≈ 790bit. In the encryption practice, the
conservative range of the parameters is [10−4, 104], so the key space is not less than
log2(10136) ≈ 451bit. Such a key space is large enough to ensure the algorithm to resist the
brute force search for secret keys. In addition, the key space of the proposed algorithm is
obviously larger than those of the algorithms in [5] (about 144 bit) and [20]. This indicates that
the proposed algorithm is more secure than the later two with respect to resistance to brute
force attack.

Fig. 4 The encrypted and decrypted result of the image Pilots

Fig. 5 The encrypted and decrypted result of the image Pyramid

Multimedia Tools and Applications (2020) 79:2719–2743 2729



7.2.2 Keys sensitivity

Keys sensitivity is another important index to measure the ability of an algorithm to resist brute
force attacks. In general, using two sets of keys with small difference to encrypt the same plain
image, if we obtain two cipher images which have great difference, we consider that the
encryption algorithm is sensitive to the keys. Obviously, the more sensitive the algorithm is to
the keys, the higher the security of the algorithm.

As mentioned above, the keys of the proposed algorithm include: a, b, c, d, a1, b1, c1, d1, e1,
n, a2, b2, c2, d2, a3, b3, c3. Without loss of generality, we chose the parameters a, b1, c2, and c3
for key sensitivity testing. For each parameter, we set the variation as 10−10, and let

K0 ¼ a; b; c; d; a1; b1; c1; d1; e1; n; a2; b2; c2; d2; a3; b3; c3ð Þ;
K1 ¼ aþ 10−10; b; c; d; a1; b1; c1; d1; e1; n; a2; b2; c2; d2; a3; b3; c3

� �
;

K2 ¼ a; b; c; d; a1; b1 þ 10−10; c1; d1; e1; n; a2; b2; c2; d2; a3; b3; c3
� �

;
K3 ¼ a; b; c; d; a1; b1; c1; d1; e1; n; a2; b2; c2 þ 10−10; d2; a3; b3; c3

� �
;

K4 ¼ a; b; c; d; a1; b1; c1; d1; e1; n; a2; b2; c2; d2; a3; b3; c3 þ 10−10
� �

:

Applying the parameter values used in Section 6, we respectively encrypt the image Tiger using
the keys K0, K1, K2, K3, and K4. The ciphertexts are shown in Figs. 1c, and 7a, b, c, and d,
respectively. And also, the difference figures between Figs. 7a, b, c, d and 1c are exhibited in Figs.
6e, f, g, and h, respectively. Furthermore, we calculate some objective comparison indexes
between the later four ciphertexts and the first ciphertext. These indexes include the correlation
coefficients, SSIM, NPCR (Number of Pixels Change Rate), UACI (Unified Average Changing
Intensity) and BACI (Block Average Changing Intensity), which are fully listed in Table 3.

As can be seen in Fig. 7, while keeping other parameters constant, a small change in one
key resulted in a great difference in ciphertexts. This shows that the proposed encryption
scheme is quite sensitive to the key. Meanwhile, Table 3 reveals that the correlations and SSIM
are almost zero, and the other indexes approach to the ideal values. Thus, we conclude that the
algorithm has strong ability to resist exhaustive attack.

Table 1 The PSNRs and SSIMs of different images

Images Tiger Pilots Pyramid

Image sizes 342 × 512 512 × 342 684 × 1024
P01 4.7985 4.8218 4.8122
S01 3.6274 × 10−8 3.5264 × 10−8 9.7235 × 10−9

P02 107.2011 107.4921 107.0527
S02 0.9996 0.9994 0.9991

Table 2 Time and space consumption of the proposed algorithm

Images 1 2 3 4 5

Sizes (pixels) 32 × 32 256 × 256 342 × 512 512 × 512 684 × 1024
Average encryption time (s) 0.7816 1.9054 2.5096 3.7109 5.9196
Average decryption time (s) 0.7533 1.8453 2.4477 3.1101 5.7581
Total Code Volume (Matlab lines) 188
Total Code Volume (Number of Characters) 3380 3542 3701 3916 4168
File sizes (kb) 5.09 5.25 5.41 5.62 5.83
Storage space (kb) 8.0
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7.3 Resistance to the statistic attack

7.3.1 Gray histogram and gray surface

Generally, the gray distribution of the ciphertext obtained by a robust encryption algorithm
should be uniform, which is usually reflected in the ciphertext gray histogram. Meanwhile,
another intuitive tool, the gray surface, can be either used to reveal this phenomenon. The gray
surface is a spatial graphics, in which the pixels coordinates constitute a plane grid, and every
pixel grayscale denotes the altitude of each vertex for the grid. Corresponding to the uniformity
of the gray histogram, the gray surface should put up the shape of equal height almost
everywhere.

Figure 8 shows the gray histograms of the plaintext and ciphertext for the three experi-
mental images. Figure 9 is the corresponding gray surfaces.

Figure 8 reveals that the gray histograms of the plaintexts have a large fluctuation, whereas
those of the ciphertexts are flat and uniform. This means the statistical attacks are impossible.
Meanwhile, the same conclusion can be drawn from the gray surfaces in Fig. 9.

7.3.2 Pixels correlation

In general, the pixels of a plain image with clear meanings have a certain correlation, but an
effective and safe encryption algorithm can successfully eliminate this correlation. That is, the
pixels correlation of the corresponding cipher image is uncertain.

Fig. 6 The fitting curves of encryption and decryption time

Table 3 Correlation, SSIM, NPCR, UACI and BACI of the ciphertexts before and after the change of the keys

Indexes K1-K0 K2-K0 K3-K0 K4-K0 Ideal values

correlation −0.0010 7.2569 × 10−4 0.0037 0.0015 0.0000
SSIM 0.0050 0.0065 0.0092 0.0065 0.0000
NPCR 99.6242% 99.6088% 99.6145% 99.6065% 99.6094%
UACI 33.3545% 33.3176% 33.2678% 33.3122% 33.4636%
BACI 26.6567% 26.6976% 26.6576% 26.6886% 26.77124182%
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Taking the image Tiger as an example, we now discuss the pixels correlation of the
plaintext and ciphertext in the horizontal, vertical, and diagonal directions, respectively. For
the plaintext, we randomly select 3000 pixels in the three directions, respectively calculate the
absolute values of their correlation coefficients, and list them in Table 4. Then we draw their
distribution diagrams as shown in Fig. 10a, b, and c, respectively. As a contrast, the corre-
sponding data of the ciphertext are also given in Table 4, and the diagrams are shown in
Figs. 10d, e, and f, respectively.

From Fig. 10 we find that the plaintext pixels exhibit approximately linear distribution in all
of the three directions, whereas the distributions of the ciphertext pixels are not clear. This
indicates the encryption algorithm effectively destroyed the pixels correlation of the plaintext.
Thus, the statistical attacks are invalid. This conclusion is also supported by the data in Table 4.

7.3.3 Information entropy

Information entropy (IE) is the measure of the disorder state for an information system. It
reflects the randomness and unpredictability of an information sources. For an 8-bit integer
image, the ideal value of IE is 8. In fact, the closer the IE of the cipher image is to the ideal
value, the stronger the robustness of the algorithm.

The information entropies of the plaintexts and ciphertexts for the three experimental
images are now shown in Table 5. The data show that the information entropies of the

(a) (b) (c) (d)

(e) (f) (g) (h)
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ciphertexts are very close to 8. Thus, it is inferred that the proposed algorithm is
robustness and strong enough to resist statistical attack. Meanwhile, the data also proves
that the proposed algorithm is superior to that mentioned in [20] in the sense of
information entropy.
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Fig. 9 Gray surfaces of plaintext and cipher images
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7.4 Resistance to differential attack and plaintext sensitivity

Under the same condition of keys, plaintext sensitivity focuses on the influence extent of the
quantitative changes in plaintext on ciphertext. Using P0;P0 þΔP;CP0 ; and CP0þΔP,

Table 4 Correlations of the plaintext and cipher images in the three directions

Direction Horizontal Vertical Diagonal

Plaintext 0.9531 0.9569 0.9345
Ciphertext 0.0094 0.0081 0.0105
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Fig. 10 The plaintext and ciphertext pixels distributions of the image Tiger
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respectively to represent the plaintexts and the corresponding ciphertexts before and after the
variation, the plaintext sensitivity analysis is to find the differences between CP0 and CP0þΔP

when ΔP is taken as a small numerical value. If the difference is great, then the algorithm is
considered to be sensitive to the plaintext.

Respectively increasing the gray values of the three experimental images by 10−10, we
calculate the correlation coefficients, SSIM, NPCR, UACI, and BACI of the two cipher
images before and after the change. The results are shown in Table 6. The data state clearly
that the correlations and SSIM of the ciphertexts are very close to zero. Meanwhile, the values
of NPCR, UACI, and BACI are very close to the ideal values, respectively. This demonstrates
that the proposed algorithm is sensitive to plaintext and can effectively defend against
differential attacks.

7.5 Resistance to chose-plaintext attack

The practice of image encryption has proved that pure scrambling encryption or sequence
encryption is insecure for chose-plaintext attack. Compared with these simple encryption
methods, the proposed scheme adopts such an encryption pattern of diffusion- scrambling-
nonlinear transformation to improve the security for chose-plaintext attacked. From the
differential attack test, we find that even a light change in plain image should cause a huge
change in the cipher image. This fully shows that the algorithm is very sensitive to the change
of plaintext. And what’s more, as mentioned in the Section 2.2, the generating of Lagrange
interpolation cipher sequence is based on the two important factors, that are random compo-
nents and plaintext relation. This feature guarantees that the algorithm is still secure against
chose-plaintext attacks even when other part of the key is cracked.

7.6 Comparison with other schemes

In order to evaluate the algorithm more objectively, we compare some performance indicators of
our scheme with that of two other image encryption methods published in recent years, namely,
Refs. [5, 12, 32]. The indexes are listed in Table 7, which are obtained based on the image Tiger.

Table 5 Entropies of the plaintext and cipher images

Image Tiger Pilots Pyramid

Size (Pixels) 342 × 512 512 × 342 684 × 1024
The IE of the plain image in this paper 7.4109 7.1581 7.3069
The IE of the cipher image in this paper 7.9973 7.9969 7.9980
The IE of the cipher image in [20] 7.4109 7.1581 7.3069

Table 6 Correlation, SSIM, NPCR, UACI, and BACI of the ciphertexts before and after the variation of the
plaintexts

Indexes Tiger Pilots Pyramid Ideal values

correlation −0.0022 −9.5294 × 10−4 −1.8331 × 10−4 0.0000
SSIM 0.0034 0.0048 0.0056 0.0000
NPCR 99.5951% 99.6174% 99.6161% 99.6094%
UACI 33.3744% 33.3580% 33.3509% 33.4636%
BACI 26.6951% 26.5986% 26.6841% 26.7712%
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From this table, we can see that the key space of our algorithm is the biggest among the four
schemes. This reveals that our method is optimal for resisting brute force attack. The data in
line 2 show that the information entropy values of the three schemes are all very close to 8.0.
Although the value of our scheme is slightly smaller than that of Ref. [12, 32], it has little
influence since which can guarantee no information leak of cipher image. For correlation
indicators in horizontal, vertical and diagonal direction, our method is superior to Ref. [12, 32]
and inferior to Ref. [5], but this slight difference has little influence since they are all extremely
close to zero. As for differential analysis, the values of NPCR and UACI of the three schemes
are all very close to the ideal values, so all the four schemes can resist differential attack
effectively. In contrast, our algorithm takes advantages of mathematical methods not com-
monly used in cryptography, such as non-linear interpolation, irreversible chaotic system, non-
linear transformation, etc., which can achieve high security with simple structure. Thus, the
proposed scheme demonstrates some advantages and is expected to be applied to image
encryption practice.

7.7 Performance evaluation on large scale datasets

Only the three experimental images can not reveal all the truth. In order to strongly prove the
effectiveness and security of our method, we use two large scale image datasets to evaluate the
proposed algorithm. The Cifar-10 [7] dataset contains images of objects belonging to 10
categories, with 6000 images per category. Another image processing dataset BSD500 [8]
includes 800 images belong to various species and scenes. For performance evaluation, we
randomly pickup 5 images per category from Cifar-10 and other 50 images from BSD500
respectively, which forms a testing subset of 100 images. We encrypt all the 100 images using
the proposed algorithm and calculate the main performance data. Limited to the space, the

Table 7 Performance comparison of the proposed algorithm with other schemes

Ref. [5] Ref. [32] Ref. [12] Our algorithm Ideal value

Key space 144 bit 259 bit 449bit 451 bit Less than 128 bit
Information entropy – 7.9968 7.9992 7.9970 7.9973 8.0000
Correlation analysis Horizontal −0.0048 0.0183 0.0178 0.0094 0

Vertical −0.0039 0.0170 0.0086 0.0081 0
Diagonal −0.0098 0.0217 0.0201 0.0105 0

Differential analysis NPCR 99.62% 99.59% – 99.5951% 99.6094%
UACI 33.46% 33.45% – 33.3744% 33.4636%

Table 8 Statistical results of the indexes for performance and security

Index Sub-index Distribution interval Mean Variance Ideal value

Information entropy – [7.7811, 7.9974] 7.9013 0.0098 8.0000
Correlation analysis Horizontal [0.0024, 0.0651] 0.0272 0.0004 0

Vertical [0.0030, 0.0904] 0.0300 0.0008 0
Diagonal [0.0008, 0.0540] 0.0203 0.0003 0

Differential analysis CORL [−0.0435, 0.0829] 0.0031 0.0006 0
SSIM [−0.0413, 0.0852] 0.0089 0.0006 0
NPCR [99.3164, 99.8047] 99.6047 0.0166 99.6094%
UACI [32.0293, 34.0648] 33.2427 0.2446 33.4636%
BACI [25.6772, 27.5603] 26.6648 0.1665 26.7712%

Multimedia Tools and Applications (2020) 79:2719–2743 2737



encrypted images and detailed data of the various indexes are omitted here. The statistical
results of the indexes are shown in Table 8. In this table, the sub-index CORL of differential
analysis means the correlation coefficients of the two cipher images before and after the plain
image variation. The data demonstrate that the mean of every indicator is very close to the
ideal value and the distribution of the data is reasonable, uniform, and stable. So, our
encryption scheme is effective and safe for large scale image datasets.

Fig. 11 Decrypted results of the cropped cipher for the experimental image Tiger

Fig. 12 Decrypted results of the noised cipher for the experimental image Pilots
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7.8 Decryption of cropped, noised, and compressed cipher image

In this subsection, we discuss whether a cipher can be correctly de decrypted if it is cropped,
noised, of compressed. For the three images used in Section 6, we carry out the decryption
experiment. The results are exhibited in Figs. 11, 12, and 13, respectively.

In Fig. 11, (a) is the initial image of Tiger, (b) is the decrypted result of the cipher in which
80,000 random pixels are replaced with the Matlab constant ‘Nan’, (c) is the decrypted image
of the cipher in which an image block is substituted by ‘Nan’. The block ranges from the
10000th pixels to the 40000th pixel.

In Fig. 12, (a) is the initial image of Pilots, (b), (c), and (d), respectively are the decrypted
results in three different noised ciphers. These ciphers include those in which 40,000 random
pixels, a block of pixels, and all the pixels, are added with random noise, respectively.

In Fig. 13, (a) is the initial image of Pyramid, (b) is the decrypted result of the cipher after
Huffman compression and decompression, and (c) is the decrypted image of the cipher after
DCT compression and decompression.

These figures show that, for lossless compressed ciphertext, the result after decompression
and decryption is exactly the same as the plain image. Even for cropped, noised, and loss
compressed ciphertext, the decrypted results are extremely close to the plain image.

8 Conclusions

In this paper, the plaintext related image hybrid encryption scheme is detailed discussed based
on multiple theories and techniques such as Lagrange interpolation, generalized chaotic map,
matrix nonlinear transformation, random matrix, and sequence rearrangement, etc. The en-
cryption scheme is implemented in the mode of diffusion-scrambling-transformation. Using
the operation of XOR and the first cipher matrix, the image diffusion is carried out. Combing
Lagrange interpolation cipher with random matrices and sequence rearrangement, the image
scrambling is performed. Utilizing the point operation and rounding operation, the compound
transformation encryption is executed. Accordingly, the decryption process is fulfilled by the
inverse operations in the contrary order. In our algorithm, the cryptographic mechanism related
to plain image is fully complied through nonlinear transformations and operations. The results
of the experimental simulation show that the proposed algorithm is feasible and effective. And
the performance evaluation reveals that the scheme is quite secure to resist different attacks,
such as statistical attack, chosen-plaintext attack, brute force attack, and differential attack, etc.
Compared with other algorithms, the characteristics of our method are demonstrated in the
paper. So it can be regarded as a candidate for practical image encryption.

Fig. 13 Decrypted results of the compressed cipher for the experimental image Pyramid
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