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Abstract

Human iris being the most stable biometric modality suffers from presentation attacks like
colored textured contact lenses and print attacks that obfuscate the natural iris texture. The
paper presents discrete orthogonal moment-based invariant feature-set comprising of
Tchebichef, Krawtchouk and Dual-Hahn moments which are extracted at localized iris
regions to capture local intensity distributions of the iris texture. The orthogonal moment-
based feature-set is made rotation, translation and scale-invariant in order to accommodate
for geometric transformations when images are acquired in uncontrolled environment. The
performance of the proposed techniques is evaluated using four publicly available iris
spoofing databases: IIITD-Contact Lens Iris, IIITD Iris Spoofing, Clarkson LivDet 2015
and Warsaw LivDet 2015. The textured contact lens detection rate of 100% for IIITD-CLI
and 99.48% for Clarkson datasets is achieved, respectively. Similarly, print+scan and print+
capture attacks are detected with 99% and 98.93% accuracy for IIS datasets, respectively.
The print attacks are detected with 99.63% and 98.89% accuracy for Clarkson and Warsaw
datasets, respectively. The proposed techniques thus, prove to be effective in terms of contact
lens and print attacks detection when acquired using multiple sensors.

Keywords Contactlens - Dual-Hahn moments - Iris spoofing - Krawtchouk moments - Orthogonal
moments - Print attacks - Tchebichef moments

1 Introduction

Human iris identification is being used in various large-scale security applications like the

Aadhar project in India [49] and in UAE border crossing [46]. Iris being the most stable
biometric modality [17] because of its unique texture still suffers from presentation attacks
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where an imposter impersonates a genuine user. Iris texture was proposed as a biometric
modality for the first time in 1987 by Flom and Safir [5]. After that, Daugman made first
commercial biometric algorithm based on iris recognition which is still widely used in many
commercial systems [3]. Iris is affected by various covariates like usage of colored textured
contact lenses [51], consumption of alcohol [1] and pupil dilation [14]. However, the presence
of textured contact lenses is more prevalent for Presentation Attack Detection (PAD) with the
increase of 3—5% in the number of contact lens wearers worldwide [37]. They are used to
obfuscate the natural iris texture by superimposing the pattern and color of the textured contact
lens onto the natural iris which affects the overall iris recognition accuracy of the system.
However, soft transparent contact lenses do not tamper the natural iris pattern. Other than this,
print attacks are another way to iris spoofing where a printed iris image is presented to the
biometric system for impersonating an already enrolled user [11, 25]. In this, either the iris
pattern is first printed by a high-quality printer and then scanned which is called print+scan or
the photo is captured by a scanner which is called print+capture [11]. Detection of iris spoofing
is the first step to improve the reliability of an iris recognition system.

The manuscript deals with an important and challenging issue of Presentation Attack
Detection (PAD) method for iris recognition. In today’s scenario, biometric systems are being
used in high-surveillance applications where security is the main concern. PAD is a challenge
that researchers are working on these days to have more secure biometric systems. Recent
research revealed that there are no existing methods that can significantly reduce spoofing
attacks. Very few researchers have provided effective techniques which work for both iris
spoofing attacks i.e. contact lenses and print attacks acquired using multiple sensors.

The manuscript deals with cross-sensor iris spoofing problem via contact lenses and print
attacks when acquired using multiple sensors. Acquisition of iris images using multiple sensors
also affects the overall performance of the iris recognition system. The first motive of the paper
is thus, to develop a robust method that can detect any kind of iris spoofing attacks using
different sensors. Thus, the focus of the paper is on iris spoofing detection acquired with
multiple sensors using discrete orthogonal moment-based features which are invariant to noise
and rotation. The paper introduces a novel method of constructing an orthogonal feature-set
consisting of Krawtchouk, Tchebichef and Dual-Hahn moments extracted on localized 32 x 32
normalized iris texture regions. An orthogonal feature-set is deployed as these provide
minimum information redundancy with sufficient number of features to discriminate between
large number of subjects. For this, adequate number of features have been selected which can
best represent the iris textural pattern. A critical analysis is done regarding the optimum
selection of moment order and the number of features that can give best classification results.

With iris recognition systems being affected by various covariates like colored textured contact
lenses and print attacks, there is a need of robust algorithms that can easily detect presentation
attacks so as to make the system more reliable for use in large-scale applications. Acquiring iris
samples using different sensors also affects the overall performance of the biometric system
where samples acquired from one sensor are matched against another. Thus, the key motivation
of the paper is to develop an effective technique that can easily detect presentation attacks
acquired using different sensors. The main objectives of the paper are as follows:

(1) The paper proposes a robust method that can easily detect colored textured contact lenses
as well as print attacks acquired using multiple sensors.

(2) The paper introduces a novel method of constructing an orthogonal feature-set
consisting of Krawtchouk, Tchebichef and Dual-Hahn moments extracted on
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localized 32 x 32 normalized iris texture regions. An orthogonal feature-set is de-
ployed as these provide minimum information redundancy with sufficient number of
features to discriminate between large number of subjects used in this work. For this,
adequate number of features have been selected which can best represent the iris
textural pattern. A critical analysis is done regarding the optimum selection of
moment order and the number of features that can give best results. A feature-set
constructed from discrete orthogonal moments can effectively represent local inten-
sity variations which prove to be useful for iris spoofing attack classification. To the
best of our knowledge, this is the first paper to exploit the property of developing a
feature-set which is orthogonal, has invariance properties and represents local inten-
sity variations that works best with iris texture patterns which is characterized by high-
degree of randomness and irregularities.

(3) This feature-set has been made invariant to rotation, scale and translation as iris spoofed
samples undergo geometric variations when acquired.

(4) The proposed method is evaluated using performance metrics namely Correct Clas-
sification Rate (CCR), Attack Presentation Classification Error Rate (APCER),
Bonafide Presentation Classification Error Rate (BPCER), Average Classification
Error Rate (ACER), DET (Decision Error Threshold) Curve and Detection Equal
Error Rate (D-EER) and the performance is validated by comparing it with recently
proposed algorithms available in the literature.

The paper has been organized as follows: Section Il summarizes the research work done till
date on iris spoofing. Section III discusses the details on the introduction of the discrete
orthogonal moment-based polynomials along with the proposed technique used in the
manuscript for detecting iris spoofing attacks. Section IV demonstrates experiments per-
formed by taking various spoofed samples from multiple sensors using proposed method-
ology and a comparison is drawn with the techniques available in the literature. Section V
concludes the manuscript along with possible future scope to make the proposed system
more reliable and secure.

2 Related work

In 2003, Daugman introduced Fourier spectrum of the printed iris pattern which gave
periodic iris pattern that occurs in dot matrix printing. These days the dot matrix printing is
not used, thus making Fourier transform less reliable for PAD [2]. Recently, many
researchers have implemented algorithms for iris spoofing detection. Yadav et al. pro-
posed modified LBP (Local Binary Pattern) with SVM (Support Vector Machine) classi-
fication for textured contact lens detection using IIITD-Contact Lens Iris (INTD-CLI) and
Notre Dame Contact Lens databases. The textured contact lenses were detected with an
accuracy of 95% and it was concluded that the removal and detection of contact lenses
improves the reliability of the iris recognition system [51]. Hu et al. implemented regional
features based on spatial pyramid for iris liveness detection on contact lens and print attack
iris spoofing databases. The proposed methods gave minimum error rates when compared
with other state-of-the-art methods [16]. Gupta et al. proposed LBP, HOG (Histogram of
Oriented Gradients) and GIST with SVM classification for detection of iris spoofing via
print attacks [11]. LBP was found to perform best giving PAD rate of above 95%. Kohli
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et al. implemented multi-order Zernike and LBP with variance for iris spoofing detection
via contact lens and print attacks. The proposed method resulted in detection rate of
82.20% using combined iris spoofing database [31]. Kohli ef al. analysed that colour
cosmetic lenses degrade the performance of a biometric system with increase in false
rejection using VeriEye. It was concluded that lens detection helps maintain the perfor-
mance of the iris recognition system [30]. Menotti ez al. proposed deep representation via
convolutional networks and back-propagation for iris spoofing detection [34]. Silva et al.
implemented deep representation through convolutional network with softmax regression
for classification on IIITD-CLI database thus, achieving 30% performance gain as com-
pared to other approaches [45]. Gragnaniello et al. proposed local descriptors based on
microtextural features for iris liveness detection [9]. Nalla et al. proposed bi-spectral iris
recognition which acquired both visible and near infrared with pixel-to-pixel correspon-
dences. The Domain Adaption- Naive Bayes Nearest Neighbor (DA-NBNN) with real-
valued log-gabor phase features were extracted on IIITD-CLI database obtaining 89.92%
accuracy [36]. Pala et al. implemented triplet convolutional network along with relative
distance matching which proved to be effective for both photo-based and contact lens
attacks [38]. Raghavendra et al. implemented deep convolutional neural network with
fifteen layers for three-class classification of normal, soft and textured contact lenses on
IIITD-CLI database. It showed an improvement of more than 10% in correct classification
rate when compared to other state-of-the-art approaches [42]. Doyle et al. implemented
modified LBP method which was applied to different iris regions at multiple scales for
classifying no lens, soft lens and textured contact lens. Results gave 98% of textured
contact lens detection rate on Notre Dame Contact Lens Database (NDCLD12) [4].
Sequeira et al. implemented a set of five features for liveness detection in a mobile
scenario. These features included high frequency power, local contrast, global contrast,
adapted frequency distribution rates and statistical texture analysis. The best features were
selected using Sequential Forward Floating Selection (SFFS) which were classified using
SVM, k-Nearest Neighbor (k-NN) and Discriminant Analysis (DA). The experiments were
conducted on Biosec, Clarkson, NotreDame, MobBIOfake and Warsaw databases out of
which Biosec gave best classification error of 2.0% using SVM [44]. Galbally et al.
implemented 25 general image quality features to distinguish between fake and real iris
images. The classification was done using Quadratic Discriminant Analysis (QDA). The
experimental results were conducted on real images of CASIA-Iris V1 and WVU-
Synthetic Iris databases along with self-developed ATVS-Fir database which consisted
of 800 fake and 800 genuine iris samples. For ATVS-Fir database, 97% of samples were
correctly classified. The synthetic iris samples gave False Fake Rate (FFR) of 4.2, False
Genuine Rate (FGR) of 0.8 and Half Total Error Rate (HTER) of 2.1 [7]. Table 1
summarizes recent literature survey of promising algorithms for iris spoofing attack
detection.

3 Proposed methodology

An iris recognition system has the following steps: 1) Image Acquisition 2) Iris Segmen-
tation 3) Iris Normalization 4) Feature Extraction 5) Classification. The acquired iris
sample is matched against the enrolled users resulting in either acceptance or rejection.

The proposed methodology has been illustrated in Fig. 1.
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Table 1 Recently proposed promising iris spoofing attack detection techniques

Ref. Author and Database Feature Extraction Results
Year
[4] Doyle et al. Notre Dame Cosmetic  Weighted LBP CCR: 98% for detecting
(2013) Contact Lens 2012 textured contact lenses
database
[30] Kohli et al. IITD Contact Lens LBP with SVM At 0.01% FAR, VeriEye
(2013) database classification simulator: 72.95%
accuracy
LBP with SVM
classification, lens
detection accuracy
improves to 94.41%
[51] Yadav et al. HIT-D Contact Lens Modified LBP IITD- No Lens: 62.14%
(2014) Iris Database, Notre Soft Lens: 61.63%
Dame Contact Lens Textured Lens: 94.74%
Detection ND Contact Lens: No Lens:
72.6% Soft Lens: 50%
Textured Lens: 97%
[11] Gupta et al. HITD iris spoofing LBP, HOG and GIST  Print+Scan Accuracy:
(2014) database LBP: 100% HOG: 97.22%
GIST:65.19% LBP
+HOG:92.32%
Print+Capture Accuracy:
LBP: 95.26% HOG:81.04%
GIST:58.66%
LBP + HOG:72.38%
[16] Hu et al. (2015) Warsaw (852 live iris ~ LBP histogram, LBP  Error Rates:
images and 815 correlogram, Warsaw: 1.05%
fake printouts intensity histogram, MobBIOfake: 2.40%
collected in NIR intensity Clarkson: 2.43%
illumination), correlogram, Local ~ Notre Dame: 0.41%
Clarkson, Notre Phase Quantization
Dame and (LPQ) histogram
MobBIOfake
database
9] Gragnaniello Warsaw, Notre Dame  LBP, SIFT, SID, BSIF  Error Rates:
et al. (2015) and ATVS (Binarized SID: 0% for both Warsaw
Statistical Image and ATVS.ND I: 0.1%
Features), Local ND II: 0.0%
Contrast-Phase Cogent: 6.2%
Descriptor (LCPD), Vista: 3.5%
Multi-resolution
LBP
[38] Pala et al. Iris-2013-Warsaw and  Deep Triplet Average Classification Error:
(2017) ITD Embedding Warsaw: 0.0 IIITD Cogent:
network 5.5 IIITD Vista: 0.7
[31] Kohli et al. Combined Iris Multi-order Zernike Mean classification
(2016) Spoofing database moments, Local accuracy: 82.20%
Binary Pattern
Variance
[42] Raghavendra IITD and Notre Deep Convolutional CCR (Multisensor):
et al. (2017) Dame 2013 Neural Network HITD (Combined): 94.65%
ND (Combined): 92.60%
This paper  This paper’s IITD-CLI, IIS, Discrete Orthogonal CCR:
proposed Clarkson LivDet Moment-based HITD-CLI: 100% Clarkson:
methodology 2015, Warsaw Features 99.48% (textured lens),
LivDet 2015. (Tchebichef, Print+Scan: 99%,
Krawtchouk and Print+Capture: 98.30%,
Dual-Hahn Clarkson: 99.63% (Print
Moments) attacks), Warsaw: 98.89%

(Print Attacks)
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Performance Evaluation: Correct Classification Rate (CCR), Attack Presentation
Classification Error Rate (APCER), Bonafide Presentation Classification Error Rate
(BPCER), Average Classification Error Rate (ACER), DET (Decision Error Threshold)
Curve and Detection Equal Error Rate (D-EER)

Fig. 1 Proposed Iris spoofing detection algorithm

3.1 Iris segmentation

The first step of iris recognition is to detect iris-pupil and iris-sclera boundary. For this,
Circular Hough Transform (CHT) has been deployed which detects circles in an image and
is insensitive towards noise [33].

CHT(xcﬁyc,r) = ZfZICHT(xiﬁyi_’xc‘yc,r) (1)
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where, (x;, yi),1=1,2,3.....n are all edge points in an image. A binary edge map of the image is
generated using Canny edge detector where each edge point is treated as the centre of the circle
with varying radii. Iris being the largest circle with maximum number of edges is detected
using CHT. The circumferential pixels are stored in an accumulator. CHT (x, y., 1)=1 is
stored in accumulator, when CHT (x;, y;) lies on the perimeter of the circle else, CHT (x,, Y.,
1) =0 is stored. The highest value stored in the accumulator corresponds to centre co-ordinates
of iris.

3.2 Iris normalization

The segmented iris samples are transformed into fixed dimensions due to variations in
illumination and acquisition of samples at varying distances. For normalizing segmented iris
samples Daugman’s homogeneous rubber sheet model [3] is employed which transforms iris
segmented image F (X, y) into polar co-ordinates (r, 0), where r € [0, 1] and 0 € [0,27]:

F(x(r,0),y(r,0))—F(r,0) (2)
x(r,8) = (1-r)x,(0) + rx; () (3)
y(r,0) = (1-7) y,(0) + r,(0) (4)

Xp,Yp and x;, yy are the pupil and iris co-ordinates, respectively. The normalized iris samples are
shown in Fig. 2.

3.3 Feature extraction

Moments have been widely used by many researchers for applications like face recognition
[43], gesture recognition [20-23, 40] and watermarking [48]. Hu for the first time proposed
seven moment invariants for recognition [15]. Because of their non-orthogonal nature, there
was maximum information redundancy which affected recognition performance. Teague
introduced continuous orthogonal moments namely Zernike and Legendre which were
rotation-invariant and orthogonal in nature but had numerical instabilities at higher orders
[27, 28, 47]. To overcome this, discrete orthogonal moments like Tchebichef [23, 24, 26, 35]
Krawtchouk [20-24, 26, 29, 53] and Dual-Hahn [23, 24, 26, 54] moments were introduced

(a) (b) (c) (d)

Fig. 2 Iris segmentation and normalization results of iris samples for a IIITD-CLI (Cogent) textured lens b IIS
(Cogent) Print+Scan ¢ Clarkson patterned lens d Warsaw fake printout
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which worked in image co-ordinate space with no discretization errors and minimum infor-
mation redundancy.

3.3.1 Tchebichef moments

These are derived from Tchebichef polynomials and can extract global features in an image by
varying moment order. These are made translation and scale invariant [35].
The Tchebichef polynomial is defined as:

(i) = (1-X),3 Fo(-r,—i, 1 + r;1,1-r; 1), where, r,i,j = 0, .. X—1 (5)
To avoid numerical instabilities, normalized Tchebichef moments are derived [35]:

- t (i)
B (i:X) = (6)
p(r; X)
For an image intensity function f (i,j) of size X x Y, the Tchebichef moments of order (r, q) is
[35]:

Trg =Yy 'Yy t(::X)ig (s V) (i, )) (7)
where, ; Fo(m,m,0;p,q;r) = Zf:o% is a hypergeometric function.where, (m) is

pochhammer symbol:

I'(m+k)

(m), = m(m+1)....(m + k-1) = o

(8)

X +r
< X)—(2)!
where, p(r; X)—(2r)! (21" L 1)

3.3.2 Krawchouk moments

These are obtained from Krawtchouk polynomials associated with binomial functions. These
are used to extract local features from a specific ROI in an image. These are made rotation,
scale and translation invariant [53].

The ' order classical Krawtchouk polynomial is given by [53]:

¥ 1
K, (i;p,X) = kz (ak,r.,pik> =,F (*F, =1 *X;;> 9)
=0

where, i, r=0, 1, 2...... X, X=0, pe(0, 1), ay, ,, , are Krawtchouk polynomial coefficients.
Here, »F is a hypergeometric function which is given by:

Lo & (m)(m)
L Fy(m,n;0;1) =X o)) (10)
where (m), is a pochhammer symbol given by:
I'(m+k
(m)k:m(m+1)....(m+k—l):% (11)
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The normalized Krawtchouk polynomials are given by [53]:

/ 1
k-(i;p,X) =K, (i;p, X)) | ———— 12
(62, ) (62, ) p(r;p, X) (12)
The weighted Krawtchouk polynomials are given by:
K (i:p. ) = K, (i:p. ) [ 2E22) (13)
5P, = K, \Lp, VTN
p(r:p,X)
The weight function is given by [53]:
. X i —i
w(isp, X) = < . )p (1-p)*
(14)

)= () iy

The weighted Krawtchouk polynomials were derived in order to overcome numerical insta-
bilities at higher orders.
The Krawtchouk moments of order (r+ q) for an image intensity function f(i,j) is given by:

qu = ;\,:701 ]Y;(l)l?r (l’plax_l)l_(q(]?p27Y_l)f(l7]) (15)

where, f(i,j) is of size X x Y and these are substituted for X-1 and Y-1. p; and p, are used for
varying ROI in an image [53].

‘p1” and ‘p,’ are used for ROI variation in horizontal and vertical directions. For p; >0.5,
ROI shifts towards positive x-direction and for p; < 0.5, it shifts towards negative x-direction.
With p, > 0.5, shifting occurs towards negative y-direction and with p, <0.5 it takes place
towards positive y-direction. In this paper, ‘p;” and ‘p,” have been taken to be 0.5 so that the
focus of the moment invariants is towards the centre of the image.

3.3.3 Dual-Hahn moments

Dual-Hahn moments can extract global as well as local features with rotation, scale and
translation invariance as opposed to Tchebichef moments that extract global features and
Krawtchouk moments that extract local features from a specific ROI of the image [54].

(a=b+1)(a+v+1)
r!

Y (p,a,b=

sFo(-r,ap,a+p+ Lab+1,+v+ 1;1) (16)

where, =0, 1,2.... R—1,p=a,a+1....... b—1
To avoid numerical fluctuations at higher orders, the Dual-Hahn polynomials are scaled
using a weighted function which is given by [54]:

Tla+p+1)I(v+p+1)

wip) = T(p—a+ OI(b—p)L(b+p+ DI (p—v+1)

(17)
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h<V)V(p7avb) = h(V)V(pva’ b) VZ’(Zp) (18)

where,

I'la+v+r+1)

a2, = rl(b—a—r—=1)\I"(b—v-r)

(19)

For an image intensity function f (p,u) the Dual-Hahn moments with order (r,q) are calculated
as [54]:

b1 b-1
hrq - Z Z h(V)r(pvavb) h(V)q(u7aab) f(pvu) (2’0)
p=au=a
where,—0.5<a<b, | v| <l+a,b=a+R, r,q=0,1....... .R—1 and f(p,u) is R xR.

Feature Extraction is carried out using moment invariants which include discrete orthogonal
moments i.e. Tchebichef (TM), Krawtchouk (KM) and Dual-Hahn moments (DM). In case of
orthogonal moments, the image is projected onto a set of pair-wise orthogonal axes which
minimize information redundancy and gives compact description of the image. The images are
described in terms of moment-based orthogonal kernels which are real-values that represent
features of a particular image. Based upon the moment order, different features are extracted
for different orders. As the moment order increase, the features get added up which helps in
discriminating between different classes.

3.3.4 Iris spoofed sample

Figure 3 shows the top views of discrete orthogonal basis polynomials for different moment
orders. Visualization of the moment basis functions in the spatial domain. These basis
functions are projected onto the image to give numerical values that represent features of an
image. As the moment order increases, the number of zero-crossings increase which enhances
the ability of the moments to represent the image. Dual-Hahn, Krawtchouk and Tchebichef
polynomials behave as multi-frequency filter banks with polynomials having increased oscil-
lations (zero-crossings) at higher orders. For both cases, horizontal and vertical edges are
preserved at lower orders. However, Tchebichef moments have wider supports in terms of
polynomial oscillations, thus capturing global information. But as the order increases, the
polynomial oscillations become compact with local information capturing. In case of
Krawtchouk moments the polynomials have wider supports at higher orders, thus capturing
global information and compact support at lower orders, thus capturing local information. The
Dual-Hahn moments act as Krawtchouk moments and Tchebichef moments, depending on its
tuning parameters which are discussed in detail in this section. Further, it is seen that the
enhancement is achieved up to a certain moment order, after which the recognition accuracy
saturates. For discrete orthogonal feature-set, the recognition accuracy increases till 15th order
after which it saturates. Also, to extract local information, the discrete orthogonal moment set
is extracted for sub-images (32 equal sized (32 % 32 iris normalized sub-images).

The purpose is to extract sufficient number of features which can best represent different
classes. Table 2 illustrates the feature-set based on moment-based methods. Tchebichef
moments based on Tchebichef polynomials also act as global feature descriptors defined in
the image co-ordinate space, are extracted till 15th order, thus representing details of the entire
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Fig. 3 Representation of moments in spatial domain a Tchebichef b Krawtchouk ¢ Dual-Hahn

image for further classification. In case of Krawtchouk moments, local description pertaining
to a specific ROI is preserved in an image. For this, the ROI is localized at the centre of the
image (using ‘p;’ = ‘p,” =0.5) and features are extracted till 15th order representing the image
in terms of discrete Krawtchouk polynomials. Dual-Hahn moments extract both global and
local features depending on tuning parameters ‘a’ and ‘v’ through which ROI can be varied
using eq. (20). In order to accommodate for geometric transformation and scale changes in iris
images during acquisition, the discrete orthogonal moment feature-set is made rotation, scale
and translation invariant [6].

With ‘a’,*v’ > 0, local information is captured from a specific ROI. As the values of ‘a’ and
‘v’ increase, the ROI starts shifting from top-right to bottom-right corner of the image. Thus,
by tuning ‘a’ = ‘v’ =18 at 15th order the ROI is focused to the centre of the image. However,
for global feature extraction of the entire image, the parameters are set to ‘a’= ‘v’ =0.

The normalized iris samples of size 512 x 64 are partitioned into non-overlapping 32 equal
sub-regions each of size 32 x 32. At each patch, the feature-set till 15th order comes out to be

Table 2 Moment-based feature-set

Order (1, q) TM/KM/DM No. of features Accumulative features
1 Qo.15 Qr0; Qui 3 3

2 Q2,05 Qo2 Qa5 Q125 Qa2 5 8

15 Qi50; Qo,55---- Qus.15 31 255
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32 localized regions x 255 features till 15th order = 8160 features. However, in case of Dual-
Hahn moments the feature-set is a fusion of 8160 local and 8160 global features [18, 19].

Pseudo code for calculation of Krawtchouk moments
Let f (i,j) be a binary image with size NxN after pre-processing
Wx = zeros (1, N); % Initialize weight vector
Wy = zeros (1, N);

p1=0.5; Y%Initialize ROI by setting parameters p, and p,
p2=0.5; % ROI fixed at centre

r=1; % Set orders

=1

K=[L Y%Initialize Krawtchouk matrix

for i=0:N-1

for j=0:N-1

%Calculation of weights

Wx (i) =(factorial(N)/factorial(i).* factorial (N-1)).*(p;(i)). *(1-p;)"(N-1) ;

Wy (j) =(factorial (N)/factorial (j).*factorial (N-})).*(p."())-*(1-p2)"(N-j) ;

%Calculation of Krawtchouk features

K(i.j)= (hypergeom([-r.-i],-N,(1/p1)). *sqrt(Wx)). *(hypergeom([ -q,-j1,-N,(1/p2)). *sqrt(Wy)). *{(i.j);
end

end

Pseudo code for calculation of Dual-Hahn moments
Let f (p,u) be a binary image with size RxR after pre-processing
Wx = zeros (1, R); % Initialize weight vector
Wy = zeros (1, R);
a=18;v=18;b=18; % Set tuning parameters for local/global feature extraction

r=1; % Set orders

q=1;

h=[]; %Initialize Dual-Hahn matrix
for p=0:R-1

for u=0:R-1

%Calculation of weights

W(p) = (gamma(a+p+1)*gamma(v+p+1))/(gamma(p-a+1)*gamma(b-p)*gamma(b+p+1)*gamma(p-v+1));
%Calculation of Dual-Hahn features

h(p,u) = h(p,u)*sqrt(W(p))*f(p,u);

end

end

end

3.4 Classification

For classification, k-Nearest Neighbor (k-NN) is used which works best with large databases.
It is based on the principle that the instances belonging to the same class are closer to each
other. Manhattan distance [12] is calculated between the training and the testing samples.
Based on majority voting, the testing samples are classified into their respective classes.
Moment-based techniques contain features which are highly correlated with the same class
and uncorrelated with a different class. Thus, k-NN works best with moment-based features for
discriminating between different classes. The best recognition accuracy results for all the
databases are shown by Manhattan distance at ‘k’ = 1. Thus, experiments have been performed
using these parameters.

4 Results and discussions
The experiments have been conducted on MATLAB R2014a using Intel(R) Pentium(R) laptop

with windows 7, 32-bit operating system at 2GHz with 4GB RAM memory using four
publicly available iris spoofing databases: IIITD Contact Lens Iris (IITD-CLI) (consists of
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6570 images from 101 subjects captured using Cogent dual iris sensor (CIS 202) and
VistaFA2E single iris sensor) [30, 51], IIITD Iris Spoofing (IIS) (contains 4848 images
acquired from 101 subjects with two types of print attacks: print+scan and print+capture)
[11, 31], Clarkson LivDet 2015 (consists of 828 genuine images for 45 subjects, 1152 fake
images from 7 subjects using 20 contact lenses and 1746 printed iris images) [52] and Warsaw
LivDet 2015 (The testing set contains 2002 genuine and 3890 fake printed samples while the
training set consists of 852 genuine and 815 printed fake images) [52].

4.1 Performance evaluation of the proposed technique

The proposed technique is evaluated on four publicly available presentation attack databases
using performance indices: APCER, BPCER, ACER and D-EER. APCER incorrectly classifies
spoofed images as normal images and BPCER misclassifies normal images as spoofed images.
ACER gives the average of APCER and BPCER. D-EER is a point where both BPCER and
APCER are equal. The lower the D-EER value, better will be the performance of the system.

For fair comparative analysis of the proposed approach with other techniques available in
the literature, the databases have been divided using the same training-testing protocol as done
by existing approaches.

The problem of PAD via contact lenses and print attacks has been approached through 3-
class classification i.e. no lens, soft lens and textured lens for contact lenses and original, print+
capture and print+scan for print attacks. Correct classification rate has been evaluated on four
publicly available presentation attack databases. These include inter-sensor, intra-sensor and
multi-sensor classification also.

4.1.1 Intra-sensor

In this case, the training as well as testing sets have been evaluated using the same type of
sensors. By fusing discrete moments best recognition accuracy is observed. For IIITD-Cogent,
89.20% normal, 100% textured and 99.99% soft lenses are correctly detected. In case of IIITD-
Vista, 87.90% normal, 100% textured and 99.98% soft lenses are correctly classified. For IIS
(Print+Scan) Cogent, 89.60% normal, 96.56% textured and 90.43% transparent lenses are
correctly detected. In case of IIS (Print+Scan) Vista, 92.70% normal, 96.67% textured and
89.67% transparent lenses are correctly classified. For IIS (Print+Capture) Cogent, 56.98%
normal, 98.50% textured and 99.32% transparent lenses are correctly detected. In case of IIS
(Print+Capture) Vista, 85.89% normal, 92.60% textured and 89.78% transparent lenses are
correctly classified. For Clarkson LG, the average CCR has resulted in 98.48% with patterned
contact lens and printed detection rate of 100% and 98.56%, respectively. For Clarkson Dalsa,
the average CCR is 99.39% with patterned contact lens and printed detection rate of 100% and
99.42%, respectively. In case of Warsaw, CCR obtained is 99.39% with fake iris printout
detection rate of 100%. The results are summarized in Tables 3 and 5 with moment-based
method achieving superior results in comparison to other approaches.

4.1.2 Inter-sensor
In this, database trained on one sensor is tested on another sensor to evaluate cross-sensor
performance of the proposed system. Tables 4 and 6 show the proposed moment-based

techniques outperform existing techniques for cross-sensor iris recognition problem. When
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Table 5 Classification results of proposed method for intra-sensor iris spoofing (CCR in %); L-L: Live P-P:
Patterned Contact Lens Pr-Pr: Printed

Database Classification Tchebichef Krawtchouk Dual-Hahn Fusion
Moments Moments Moments
1IS (Print+Scan) Cogent N-N 72.70 74.60 77.56 89.60
T-T 86.50 89.70 90.95 96.56
Tr-Tr 84.45 85.35 86.67 90.43
Total 83.22 85.22 87.08 94.20
IIS (Print+Scan) Vista ~ N-N 83.70 85.40 86.98 92.70
T-T 92.99 93.78 95.68 96.67
Tr-Tr 82.43 82.89 84.68 89.67
Total 88.40 89.36 91.11 95.01
1IS (Print+Capture) N-N 77.31 77.89 78.00 56.98
Cogent T-T 89.30 92.67 95.90 98.50
Tr-Tr 90.56 94.79 95.90 99.32
Total 87.73 90.45 91.93 86.94
1IS (Print+Capture) N-N 73.69 74.89 75.23 85.89
Vista T-T 83.70 85.90 88.50 92.60
Tr-Tr 83.56 84.70 85.87 89.78
Total 82.32 83.83 85.20 91.43
Clarkson LG L-L 88.79 93.42 94.40 96.60
P-P 93.39 97.76 98.64 100
Pr-Pr 90.54 95.84 97.63 98.56
Total 92.90 97.67 97.89 98.48
Clarkson Dalsa L-L 87.59 94.52 95.95 98.74
P-P 95.89 96.74 97.84 100
Pr-Pr 92.45 97.64 96.74 99.42
Total 93.97 96.30 97.84 99.39
Warsaw L-L 87.59 94.52 95.95 98.74
Pr-Pr 95.89 96.74 97.84 100
Total 93.97 96.30 97.84 99.39

models trained on IIITD Cogent were tested on IIITD Vista, the average CCR was observed to
be 99.20% with 100% of textured contact lenses correctly detected. In case of models trained
on IIITD Vista and tested on IIITD Cogent, the average CCR improved to 99.06% with contact
lens detection accuracy of 100%. When models trained on IIS (Print+Scan) Cogent were tested
on IIS (Print+Scan) Vista, the average CCR obtained is 93.60% with an accuracy of 93.60%
contact lens detection. In case of models trained on IIS (Print+Scan) Vista and tested on IIS
(Print+Scan) Cogent, the average CCR is 91.80% with contact lens detection accuracy of
93.78%. Similarly, in case of Print+Capture attack, models trained on Cogent and tested on
Vista showed CCR of 93.35% with contact lens detection accuracy of 95.94%. When trained
on Vista and tested on Cogent, the average CCR dropped to 92.57% with contact lens
detection accuracy 93.89%. When models trained on Clarkson LG were tested on Clarkson
Dalsa, the average CCR obtained is 99.81% with an accuracy of 100% of contact lens and
print attack detection. In case of models trained on Clarkson Dalsa and tested on Clarkson LG,
the average CCR is 99.98% with contact lens and print attack detection accuracy of 100%.

4.1.3 Multi-sensor
The inter-sensor and intra-sensor results indicate that the proposed system performs well for
cross-sensor iris recognition system. In case of multi-sensor classification, the training dataset

contains images from multiple sensors and the testing dataset contains images from the same
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set of multiple sensors. Tables 4 and 6 indicate that a high CCR is obtained even when
database consists of images from multiple sensors. In case of IIITD combined database, fusion
of discrete moments gives an average CCR of 99.89% and contact lens detection accuracy of
100%. For IIS combined database, average CCR of 95.45% with contact lens detection
accuracy of 94.75% is obtained. For Clarkson combined database, the detection rate of
patterned contact lenses and print attacks obtained is 99.74% and 98.46%, respectively. For
a 3-class classification problem results of all the iris spoofing databases are summarized in
Table 6. In case of IIITD and IIS combined databases, the textured contact lens can be easily
detected with 98.90% and 96% accuracy, respectively. Both Print+Scan and Print+Capture
attacks can be easily detected with 99% and 98.93% accuracy, respectively thus giving
competent results. The patterned contact lenses and printed fake images in case of Clarkson
database give recognition accuracy of 99.48% and 99.63%, respectively (Table 7).

Fake printouts of iris images in Warsaw dataset are detected with 98.89% accuracy. Tables 8
and 9 illustrate that the ACER value of 4.15% and 1.11% for Clarkson Dalsa and LG,
respectively outperforms other algorithms submitted for LivDet-Iris 2015 competition. For

Table 6 Classification results of proposed method for inter-sensor and multi-sensor iris spoofing attacks (CCR in
%)

Database Models Classification Tchebichef Krawtchouk Dual- Fusion
Moments Moments Hahn
Moments
IIS (Print+Scan) 1IS (Print+Scan) N-N 72.76 73.79 75.32 89.46
Cogent Vista T-T 84.75 85.40 86.32 93.60
Tr-Tr 83.76 85.75 85.90 90.67
Total 80.75 81.67 82.57 93.60
IIS (Print+Scan) IS (Print+Scan) N-N 75.48 76.54 77.69 83.89
Vista Cogent T-T 84.97 85.49 86.79 93.78
Tr-Tr 82.89 83.30 85.77 91.74
Total 81.78 82.74 83.47 91.80
1IS (Print+Capture) 1S N-N 76.59 78.40 80.39 85.34
Cogent (Print+Capture) T-T 86.54 87.39 87.60 95.94
Vista Tr-Tr 83.62 84.53 85.98 92.78
Total 83.43 84.42 85.57 93.35
1IS (Print+Capture) 1IS N-N 74.89 75.48 76.40 83.86
Vista (Print+Capture) T-T 84.80 85.00 85.45 93.89
Cogent Tr-Tr 85.40 86.44 87.00 93.98
Total 81.69 82.78 83.00 92.57
IIS Combined IS Combined N-N 76.54 77.45 79.34 85.98
T-T 95.34 96.90 97.34 94.75
Tr-Tr 92.56 93.75 94.00 99.53
Total 88.68 89.85 90.95 95.45
Clarkson LG Clarkson Dalsa N-N 94.83 96.25 97.29 98.53
P-P 95.76 98.20 98.25 100
Pr-Pr 97.54 98.00 99.03 100
Total 98.04 98.48 99.19 99.81
Clarkson Dalsa Clarkson LG N-N 93.47 97.38 98.29 99.05
P-P 95.02 97.86 98.59 100
Pr-Pr 97.85 98.74 99.34 100
Total 97.46 98.99 99.74 99.98
Clarkson Combined Clarkson N-N 95.67 96.84 98.62 99.42
Combined P-P 96.57 97.36 98.97 99.74
Pr-Pr 97.74 98.33 99.25 98.46
Total 98.66 99.51 99.94 99.21
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Table 7 Classification results of proposed methods for iris spoofing detection (CCR in %)

Database  Class Classes Tchebichef Krawtchouk Dual-Hahn Fusion
Type Moments Moments Moments
IITD 3-class  Normal 86.80 88.00 89.00 94.89
CLD Textured 95.84 96.80 97.80 98.90
Soft 87.43 88.30 89.80 95.97
Total 90.02 91.56 92.64 98.56
JIN] 3-class Normal 86.74 87.40 89.00 93.90
Textured 93.74 94.80 96.37 96.00
Transparent ~ 87.62 89.73 91.40 95.93
Total 89.36 91.00 92.68 97.27
JIN] 3-class Original 96.74 97.40 99.00 99.90
Print+Scan 97.74 97.80 98.37 99.00
Print+Capture  97.62 99.73 98.40 98.93
Total 98.36 98.31 98.59 99.28
‘Warsaw 2-class Live 93.68 95.93 97.40 97.89
Printed 95.43 96.40 98.52 98.89
Total 96.55 98.17 98.96 99.39
Clarkson  3-class Normal 95.70 96.38 97.00 98.56
Patterned 96.58 97.47 98.68 99.48
Printed 97.59 98.72 98.89 99.63
Total 98.63 98.57 99.19 99.68

Warsaw dataset, ACER value of 0% is obtained. In case of IIITD and IIS databases, the results
obtained are encouraging when compared to other approaches with ACER as low as 1.27% for
IITD Vista and 1.20% for IIS Vista. Table 10 compares D-EER values of presentation attack
databases with other state-of-the-art techniques with proposed technique achieving lower D-
EER values for all the databases. Figure 4 indicates the performance of the proposed system
using DET curve by plotting APCER and BPCER with performance curves closer to lower left
corner of the graph showing minimum errors for all the datasets. However, by fusing moment-
based features, a superior performance is observed.

The results provided by existing research papers using SIFT, LBP and HOG do not provide
invariant features and have redundant information involved in the features which results in
poor accuracy. The redundancy in the feature-set results in overfitting thus, decreasing the
accuracy performance. Also, these features have a large computation time.

However, in case of moment-based feature-set the image is projected onto a set of pair-
wise orthogonal axes which minimize information redundancy and gives compact descrip-
tion of the image. This feature-set is further made invariant to rotation, scale and translation
because of image scale variations and geometrical transformations that are embedded in iris
images when acquired. Iris spoofed texture contains irregular and random patterns for
which features capturing local intensity variations prove to be more effective than those
which extract features from the entire image that work well with well-defined shape-based
applications.

The orthogonal moment-based features provide compact description with invariance prop-
erties of rotation, scale and translation which are extracted from localized iris textural patterns
emphasizing on local intensity distributions of the random and irregular iris spoofed texture.
Table 11 compares the performance of the existing approaches which are applied using the
proposed methodology with the proposed moment-based feature-set. Experimental results
reveal that the proposed moment-based feature-set proves to be robust in presentation attack
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Table 10 Detection-Equal Error Rates of proposed methods for iris spoofing detection (in %)

Database SURF WPD(db4 Even 1-D Log- Real-valued Fusion
[36] +svd) [8] symmetric gabor phase Log-Gabor phase with DA- (TM+KM
Gabor [32] [39] NBNN [36] +DM)
IIT Cogent 12.36 19.47 10.09 9.84 0.67 0.015
T Vista 20.85 16.47 13.11 17.04 1.94 0.023
IIT Cogent vs 34.75  39.33 29.59 32.17 3.29 0.036
Vista
IIS Cogent - - - - - 0.036
IIS Vista - - - - - 0.025
IIS Cogent vs  — - - - - 0.045
Vista
Clarkson - - - - - 0.047
Warsaw - - - - - 0.028

detection as it achieves superior performance results when compared with existing algorithms
available in the literature.

5 Conclusions and future scope

The paper discusses iris spoofing attacks by which an imposter impersonates a genuine user.
Thus, detection if iris spoofing attacks would make the system secure for practical applica-
tions. In this paper, discrete orthogonal moment-based invariant feature-set comprising of
Tchebichef, Krawtchouk and Dual-Hahn moments is extracted at localized iris regions till 15th
order. Results demonstrate that the features show textured contact lens detection rate of 100%
for IIITD-CLI and 99.48% for Clarkson datasets, respectively. Similarly, print+scan and print+

Table 11 Accuracy results for iris spoofing detection (CCR in %) using different feature-sets

Training/Testing Cogent Vista Cross-sensor
IITD-CLI

N-N F1: 89.20 F2: 85.68 F1: 87.90 F2: 82.34 F1:99.50 F2: 87.89

S-S F1: 100 F2: 89.56 F1: 100 F2: 90.23 F1: 100 F2: 89.65

T-T F1:99.99 F2: 85.45 F1:99.98 F2: 86.78 F1: 100 F2: 89.89
1IS (Print+Capture)

N-N F1: 56.98 F2: 56,34 F1: 85.89 F2: 81.56 F1: 85.98 F2: 82.35

T-T F1:98.50 F2: 67.89 F1:92.60 F2: 87.45 F1:94.75 F2: 87.89

Tr-Tr F1:99.32 F2: 75.89 F1: 89.78 F2: 84.57 F1: 99.53 F2: 89.78
IIS (Print+Scan)

N-N F1: 89.60 F2: 84.56 F1:92.70 F2: 86.78 F1: 85.98 F2: 83.57

T-T F1: 96.56 F2: 87.98 F1: 96.67 F2: 89.87 F1:94.75 F2: 86.90

Tr-Tr F1:90.43 F2: 89.67 F1: 89.67 F2: 87.68 F1:99.53 F2: 89.46
Clarkson LivDet-Iris 2015

Training/Testing LG Dalsa Cross-sensor

L-L F1: 96.60 F2: 89.67 F1: 98.74 F2: 90.67 F1:99.42 F2: 87.89

P-P F1: 100 F2: 87.89 F1: 100 F2: 91.46 F1: 99.74 F2: 88.49

Pr-Pr F1: 98.56 F2: 89.90 F1:99.42 F2: 92.36 F1:98.46 F2: 88.89
Warsaw LivDet-Iris 2015 (Iris Guard AD100)

L-L F1: 98.74 F2: 89.67 - -

Pr-Pr F1: 100 F2: 89.79 - -

F1: KM + TM + DM F2: SIFT+LBP + HOG
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capture attacks are detected with 99% and 98.93% accuracy for IS datasets, respectively. The
print attacks were detected with 99.63% and 98.89% accuracy for Clarkson and Warsaw
datasets, respectively. Experiments suggest that iris spoofing detection improves the reliability
of the biometric system.

However, various possible future directions can be explored to make the system more
secure and reliable. The performance of the iris spoof attack detection can be further improved
by using deep convolutional neural networks for learning complex patterns more deeply when
working on different spoofed samples. Also, the performance of the iris biometric system
degrades when an unknown spoofing attack is encountered. This limits its application for real
world when the nature of attacks is unpredictable. Therefore, effective and generalized
algorithms need to be proposed that can detect unpredictable or unseen spoofing attacks by
designing mathematical models of spoofs characterized by different materials and techniques
like an artificial eye ball, a printed or video image and an eye removed from the authenticated
user. Real world applications require a robust iris scanning system that uses surveillance
cameras that can track the activities and identify individuals from a distance. Developing
effective iris scanning systems that can scan multiple moving individuals at a distance of
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several feet is also an interesting future research direction. In addition to this, the biometric
templates can be exploited to create synthetic spoofing databases. This threat can be addressed
by using cancelable biometrics which means a non-invertible mathematical transformation is
applied and only the transformed biometric template is stored through which biometric trait
cannot be procured. Another solution could be using cryptographic keys for biometric
templates to protect the user’s privacy.
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