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Abstract
Web-page indexing and classification have been studied extensively starting from the early
WWW years. A smart intelligent web agent called focused crawler is a specific software
able to seek web pages that are relevant to a particular topic domain. In this article we
propose a novel approach to focused crawling based on the use of both textual and mul-
timedia web page content. In our approach we define a novel strategy to choose if a web
page should be further explored. We implement our framework in a system which aims to
improve the crawling task using semantic based techniques and combining the results with
novel technologies like convolutional neural networks and linked open data. Our framework
uses ontologies to correlate different topics and understanding their relationships. The cor-
relation among topics is used to improve a textual topic detection step. These results are
combined with multimedia analysis and classification based on convolutional neural net-
works to extract image features. Experimental results are also presented and discussed in
order to measure the effectiveness of our framework compared with other approaches using
a ground truth composed of web pages about a specific domain.
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1 Introduction

In the last years, the size of websites has grown drastically through the addition of different
data formats in particular multimedia components. According to recent analysis of the Web
structure and its content, the size of the indexed web contains at least 4.49 billion pages
[21], and the deep web is considered to be 500 times larger than the surface web [11]. In this
context the use of automatic agents to explore and index such large collection of documents
is a crucial task in the whole web information retrieval process.

The indexing of large collections is a challenging task and for this reason automatic
agents like web crawlers have been designed and implemented since the beginning of the
web age. Moreover, other techniques used for document classification has been investi-
gated to improve the quality of the web crawlers. In the web page analysis it is possible to
perform the classification step after its indexing but some information retrieval tasks need
to seek web page according to predefined criteria and fetch only documents which satisfy
constraints related to a specific topic.

The task of crawling web page according to topical relatedness is tightly related to
document classification and the relative web agent is called focused crawler [18].

Web-pages classification, also known as web page categorization or subject classifica-
tion, is a subset of the text classification problem that has been formally defined by [52].
Different techniques have been proposed and implemented during the years based both on
textual and multimedia data [5, 7, 33, 47].

In the last years deep neural networks (DNN) have been extensively investigated due to
the high performance accuracy in image analysis. Different deep neural network architec-
tures have been proposed [36, 51] and in particular convolutional neural networks (CNN)
provide the best performances in image classification and object recognition tasks. We use
CNN in order to consider web page multimedia contents to improve the classification task.

The aim of this article is to provide a complete framework for focused crawling process
combining novel techniques like ontology-driven topic detection, linked open data (LOD)
and deep learning technologies.

In our approach we use ontologies to represent our domain of interest and implement
the support structure to our algorithms and techniques. Using this cognitive tool we can
also organize categories in a more effective way taking into account their relationships.
Moreover, an innovative use of formal and not-user oriented ontologies during the crawling
process allows a high level of generalization following a novel crawling strategy. The whole
framework has been implemented in a system to crawl web pages about specific conceptual
domains.

We try to give a new solution to the issue related to the use of different features to identify
specific web pages to crawl and to explore in a novel and effective way the related web
graph.

The proposed strategy has been compared with some standard techniques presented in lit-
erature using a ground truth composed of web pages about the animal domain and obtained
results show important improvements.

The presented framework for focused crawling takes advantage of the above cited tech-
niques and propose novel strategies and algorithms to explore portions of the web in a more
effective way and categorize contents. The implemented crawler fetches web pages start-
ing from a seed URL and categorizes them according to a novel combination of textual and
multimedia features.

The article is organized as follow: in Section 2 a literature review is presented and dis-
cussed putting in evidence the novelties of our approach; the system architecture and the
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proposed methodology for document annotation is discussed in Section 3; a use case of
our crawler together with experimental results are in Section 4; eventually, conclusions and
future works are presented in Section 5.

2 Related work

Web crawlers can be divided into general-purpose and special-purpose web agents; the last
ones are also known as focused crawlers [42]. In this section we consider several relevant
works related to focused crawlers leaving out a literature review on general-purpose cat-
egory. For the sake of clarity, we highlight a distinction between the existing approaches.
In particular, since our framework is based on ontologies, we consider works using this
approach and, on the other hand, we provide a review of other techniques putting in evi-
dence the effectiveness of CNN features used as generic features extractors for an image
retrieval task.

A focused crawler is a robust agent with specific abilities in avoiding large perturbations
in the starting set of URLs discovering large overlapping sets of resources. It is capable
to explort and discovert valuable resources far from the starting set and efficiently pruning
millions of pages out of its domain of interest.

Trained focused crawlers apply machine learning techniques to perform their tasks.
Online taxonomies or manually categorized datasets can be used as training set for super-
vised focused crawling. Some algorithms that seem to be more successful in this context are
based on support vector machines (SVM) and neural networks (NN) [44].

From a general point of view, the pioneering work about focused crawlers is [18] in
which the authors designed two hypertext mining software that guide the crawler: (i) a
classifier to evaluate the relevance of a hypertext document with respect to the focus topics,
and (ii) a distiller to recognize hypertext nodes that present a number of access points to
many relevant pages within few links.

Genetic algorithms also provide interesting performances in the task of focused crawl-
ing. Yohanes et al. [57] argue that genetic algorithms achieve high harvest ratio and avoid
problems of local searching algorithms. The fitness function assigned to a page is obtained
using Jaccard’s similarity based on the ratio of the number of intersection links and union
links between two web pages considering as basic assumption that heavily connected pages
are also topically related. Several studies about text analysis using similar approaches are in
[2–4, 39].

Diligenti et al. [23] present a focused crawler based on context graph, decision tree and
DOM. Given a topic of interest, a context graph is used to provide a list of categories related
to the topic. The use of DOM has been also used in [19] to order the URLs in a web-page
according to a relevance metric or ordering scheme. Several metrics have been proposed by
the author as driving query similarity, backlink count, pagerank and location metrics.

In [55] the authors propose an improved retrieval model, the Semantic Similarity Vec-
tor Space Model (SSVSM), which integrates the TF*IDF values of terms and the semantic
similarities among terms. This model has been used to build topic and document semantic
vectors that are mapped into the same double-term set, and computes the cosine similarities
between these semantic vectors as topic-relevant similarities of documents, including the
full texts and anchor texts of unvisited hyperlinks. In this way, the model can be used to pre-
dict the priorities of unvisited hyperlinks integrating full text and anchor text topic-relevant
similarities.
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Batsakis et al. [10] propose a novel learning crawler based on Hidden Markov Model
(HMM). This kind of crawler is capable to learn not only the content of relevant pages but
also paths in the relevant pages.

Ontologies are also used as enabling technology for focused crawling. In our work we
consider an ontology as an explicit and formal specification of a shared conceptualization
[28].

An early study on the use of an ontology-based focused crawler is presented in [25].
The authors propose a two cycle focused crawler. The ontology cycle is implemented with
a user provided ontology, while the crawling cycle is devoted to the retrieval of documents
considered to be relevant. A relevance score is computed by a metric considering the input
document and the provided ontology.

A similar approach is proposed by Kozanindis [34] where ontologies are used to effec-
tively identify web pages related to pre-defined topics. After the web page fetching and
pre-processing steps, a thematic keyword extraction is implemented to compute a topic
relevance scoring based on a domain ontology.

In [40] the authors propose a weight table of ontology terms created by domain experts
following the same approach previously cited.

OntoDir [45] is an ontology based crawler to categorize web page in according to a
semantic relatedness metric and a categorization schema based on a formal knowledge base.

A topic ontology is used in [53] for the focused crawler pre-processing task providing a
semantically expanded search to improve its effectiveness.

Yang [56] proposes Ontocrawler, a focused crawler which makes an extensive use of
ontologies to build website models that effectively support web search. These models are
built using a component called OntoAnnotator able to annotate ontology terms in the web
page. Web sites models are then sent to a classifier that compute relevance of the web page.

In [29] the author propose an unsupervised adaptive ontology-learning process to
enhance performance of a focused crawler. Furthermore, they adopt approaches such as
large scale crawling and they use hadoop to support big data together with semantic web
technologies.

In our work we are also interested in the use of image analysis to improve the quality of
our focused crawler in the processing of web page contents.

Content based image retrieval (CBIR) is a fervent research field and with the extended
study and use of convolutional neural networks several novel techniques to support the
features extraction task have been explored and proposed in recent years.

Oquab et al [43] propose an approach to learn and transfer mid-level image features
extracted from a CNN and use them for different visual recognition tasks.

A general approach is also proposed by [24] where a framework called DeCAF is pro-
posed to extract features from a CNN. The authors show how features extracted from a CNN
and trained for a given task generalize well on an unrelated task. They also demonstrate the
generality and semantic knowledge implicit in these features.

In [48] the authors investigate how features extracted from the overfeat convolutional
neural networks can be used for image retrieval, in particular they compare it to state-of-
the-art pipelines such as VLAD and BoVW. The authors propose of dividing images in
sub-patches and feed-forward them to a CNN and compare through L2 distance the query
image to the reference images.

A significant enhancement in the use of CNN in content based image retrieval is shown
by [30] where the authors explore how content based image retrieval can be improved by
using features extracted from a CNN. The authors propose three schemes and among them,
they propose the extraction of activation features from the fully connected layers of a CNN
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using a simple feed-forward pass of an image through the network. The authors explore how
well these models work on some tasks that are unrelated to the training tasks of the CNN
and eventually explain how these approaches can fill the semantic gap that exists between
low-level image features and semantic concepts perceived by humans.

Other works [27, 31, 49] confirm the same intuition from the aforementioned articles
and explain how CNN feature representation can be used as a generic representation even
for unsupervised recognition tasks and in particular for image retrieval. Other interesting
improvements have been obtained from convolutional neural network for content-based
image retrieval by [8, 31, 59] using features extracted from pooling layers and used in image
retrieval tasks.

The proposed framework introduces several novelties with respect to the discussed lit-
erature based on the used of a formal non-user oriented ontology, CNN-based multimedia
retrieval and linked open data. We combine the results obtained by the LOD-based textual
classification and the CNN-based multimedia retrieval to produce a classification. More-
over, we take advantage from the formal ontology to ensure that the classified web page is
in line with the chosen domain. In addition, a novel strategy used to explore the web graph
related to the recognized web pages starting to seed documents hase been proposed and
tested to show the advances of the proposed framework with respect to standard techniques.

3 The proposed framework

A sketch of the proposed system architecture is shown in Fig. 1. Our implemented system is
composed by several modules to support all the focused crawler tasks. The crawling process
starts from an initial seed provided by an URL or a word. The system has a graphical user
interface which is composed by a text box used to define the seed. A conceptual domain has
to be provided as an ontology, which will be imported in an instance of the Neo4j graphDB
due to the characteristic of this kind of NoSQL database [14]. Using these information the
crawler can start the web exploration.

Starting from the initial seed, the main crawler controller creates the crawler threads
scheduling the tasks. The crawler threads receive as input an URL from the scheduler, fetch
the web page and collect the outgoing links.

Once the web page is fetched, it is sent to the pre-processing block which is in charge of
analyzing the page structure and extract text and images. Text is further cleaned removing

Fig. 1 System architecture overview
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stopwords to enhance the successive steps. The text classification block uses several hetero-
geneous technologies to perform a prediction about the relevance of a web page within a
selected conceptual domain. If a page is relevant, a candidate main topic is also selected.

Linked Open Data (i.e.DBpedia and wikidata) are used to analyze the web page text
content. We take advantage of these technologies because they provide an efficient way
to annotate web page raw text and find entities that are semantically related between each
other. These entities are well defined and have specific properties that can be used to infer
a category for a given web page.

The CNN-based image-classifier computes a similarity score between the downloaded
images and the ones stored in the knowledge base. A a multimedia content web page
classification is inferred from those similarity scores.

Textual and image classification are then combined to classify the web page. Once a main
topic is found, we recognize this topic in the domain ontology classes to understand if the
classified web page is relevant to the chosen conceptual domain. If the page is relevant, it is
inserted in the Neo4j database instance, and linked to the corresponding node representing
the detected topic.

The Neo4j instance has been initially populated with data from ImageNet [22] following
a strategy described in [12, 13]. ImageNet is a database of images organized according to the
hierarchy of WordNet [38] (currently only for nouns) in which each node is represented by
thousands of images with an average of about 500 images per node. The conceptual domain
for the focused crawler is a slice of ImageNet regarding “dogs”. We choose this domain due
to the high number of textual and visual information about it and the wide availability of web
documents related to this topic. Moreover, the term dog has various meanings belonging to
very different conceptual domains. These characteristics allow us to have an interesting and
challenging context of application for testing our framework efficacy.

The proposed system has been designed and implemented with a full modular approach
and the different components will be described. In Fig. 2 a detailed view of the crawler
architecture is shown. The main components are highlighted with dashed rectangles.

The crawling control is in charge of manage the crawling process, the pre-processing
block transforms raw web pages in a simplified form using textual transformations and
store the fetched images. The text classification component uses the text extracted from
the web page to produce a classification about the web page topic. The CNN-based image
classifier is implemented with a deep neural network to extract features from web page
images and compute a similarity scores that will used to infer a topic about the web page.
The combination block performs the final classification merging the results of textual and
image classifier.

3.1 Crawling control

The crawler control block is the core component for the spidering and fetching subatsks.
It is initialized through the graphical user interface, which also provides the following
parameters to set for having a correct system initialization:

– Initial seed: this information is used to start the crawling process. It can be an URL or
a word; in the first case it is a web address, while in the second case the system uses
results from a search engine (i.e. Google) to provide an initial URL;

– Number of crawler threads: this parameter sets the number of threads to speed up the
crawling process. It is set according to the hardware resources;
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Fig. 2 Focused Crawler components

– Type of crawler: three types of crawlers are available: (i) Web page crawler - This
crawler is specialized in crawling web page;DBpedia crawler - This agent is specialized
in DBpedia crawling and it is used to populate the Neo4j database with instances of the
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ontology classes; (iii) Evaluation crawler - It is mainly used to fetch web pages from a
controlled dataset to allow the system evaluation;

Once the crawling controller is initialized the seed page is fetched and its outgoing links
are sent to the scheduler. The main scheduler will be in charge of assigning web page
addresses among threads.

Three policies have been used in our crawler: the selection policy, the re-visit policy
and the politeness policy [9]. Focused crawling itself is a specific type of selection policy
then it is set by the chosen topic domain. Our crawler has been built to be a polite agent
implementing three basic rules:

– Crawler identification: This is done by setting the user-agent; the defined user agent is
“Dogs focused crawler”.

– Compliance with robots.txt (Robot exclusion protocol): We use crawler4j library to
define and implement all common rules of the robots exclusion protocol.

– Low bandwidth usage on a given web site: The crawler is configured with a maximum-
requests-per-second parameter. This means that given a particular web domain, the
crawler will avoid flooding it with requests and observe a fixed time-constraint. This
parameter can be changed by a configuration file during the crawling bootstrap.

The analyzed outlinks from a given web page could be not relevant considering the
crawler domain of interest. The implemented system takes into account this issue and if
more than a certain percentage of the outgoing links of a given web page are considered
to be not relevant an early stopping criteria of the crawling process for the outlinks of the
flagged page is performed.

In Fig. 3 the flagger process is shown. When a new page is ready to be visited, the system
verifies that the source URL, i.e. the page whose outlink was the page we are currently
visiting, is not a flagged page.

In case it was flagged, the page is not visited, otherwise it is analyzed. If the processed
page is considered not relevant to the domain of interest, a counter is increased and a ratio
is computed as follows:

Percentage of irrelevant pages = Number of irrelevant pages

Number of outlinks

The value of the ratio grows while the outlinks are explored and the pages are classified as
irrelevant.

Fig. 3 Bad page flagger flowchart
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The pseudo-code of the crawler visiting algorithm is shown in Listing 1.
The overall crawling strategy is a combination of the crawler4j frontier scheduling algo-

rithm, and the focused crawling selection policy. Crawler4j is the underlying java crawler
engine used in the proposed framework; it allows the use of customizable priorities. A crawl
frontier is a data structure that is used to store the URLs that will be processed and crawled.
The basic operations for this data structure are adding, reordering and selecting URLs. The
frontier is a specialized version of a priority queue.

The frontier of the proposed system will comply with the following rules:

– Outgoing links from the seed page will always be explored.
– Outgoing links from pages that were judged to be irrelevant will not be fetched.
– Outgoing links from pages that were judged to be relevant, but that were successively

flagged bad will not be further visited.
– Links of DBpedia domain will be added to a special queue that will be processed by

the DBpedia crawler.
– URLs will be dynamically selected from the crawler frontier according to a priority

algorithm that is described in the following section.

The crawl frontier is a priority queue that is specialized for url-prioritizing tasks. An
URL priority is a positive integer number and lower is its value higher is its the priority. If
no priority is specified by a user, the frontier will follow a normal FIFO queue and the basic
strategy will be a breadth-first exploration starting from the root. URL priority is assigned
to the URL in the first visit and it will not be further changed.

In the proposed system the breadth-first search strategy (BFS) for web exploration is
used since it has been proved to be very efficient for crawling tasks [41]. However, we
added a rule to the BFS: if a WWW URL belongs to a domain name that was previ-
ously found to be relevant it will be prioritized with respect to URLs whose domain names
were previously explored and judged to be non relevant. It is important to highlight the
difference between a WWW domain name and an URL. For example given the URL:
“https://www.wikiart.org/en/caravaggio” its domain is “wikiart.org”. The basic assump-
tion is that web pages fetched from a domain whose previously crawled URLs were judged
to be relevant have a higher chance of being relevant themselves. If the found domain was
never explored in previous crawling sessions the system will use BFS.

3.2 Web page pre-processing

The pre-processing task is a crucial step for the text classification process. As a matter of fact
for a generic web page, there are some parts of the text that are more important than others.

Listing 1 Crawler visiting algorithm
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Web pages have a semi-structured nature, they are readable by both humans and automated
agents. HTML is the most commonly used language on the web and it uses several tags to
structure the web-page.

The DOM analyzer component extracts text only from the most content-rich parts of the
document. The use of these tags can be very useful to extract rich context text [26].

Once the text is extracted, a stopwords removal step is performed. Stopwords are words
that appear too frequently and represent noise in the text analysis because they don’t have
informative content [9]. The pre-processed text is then sent to the text-classification block.

The web-page is also mined for images fetching because the system will perform both
textual and visual classification. A web-page usually consists of several images of different
size, nevertheless, not all images are the same relevance for web page selection. Hence, too
small size images (e.g. icons) will not be fetched. All the other images are then extracted
and sent to the CNN-classifier block.

3.3 Web page classification

Once the page text has been extracted the next step is to classify web pages in according
to the focused crawler selection policy. We point out that the classification process uses
different informative sources as Linked Open Data and ontologies. It can be formalized as
a function:

T → f (A,D, C, O)

where T is the detected topic; A is a list of DBpedia annotations extracted from the text; D
is a set of wikidata descriptions for the annotated entities; C represents a set of candidate
topics for the given entities; O is a list of ontology classes.

We use two LODs repositories, i.e. DBpedia and wikidata, for our purposes. DBpedia
is used to annotate entities within the page and to link these entities among each other.
Moreover, we use wikidata to extract a brief and precise description of the annotated entities.

The pseudo-code for the topic detection is shown in Listing 2.
Once the text has been extracted it is passed to the text classification block. The DBpedia

annotator interacts directly with the DBpedia spotlight service [37]. It is a tool for automati-
cally annotating mentions of DBpedia resources in the text, providing a solution for linking
unstructured information sources to the Linked Open Data cloud through DBpedia.

Given an unstructured text expressed in natural language, the annotator returns a list of
DBpedia entities extracted from the document. DBpedia spotlight disambiguates the recog-
nized terms and tries to choose the most suited DBpedia entity. The DBpedia spotlight APIs
allow to select entities of a specific category, e.g. selecting only entities of type “Animal”
given a raw text.

Listing 2 Topic detection alghoritm
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Using this approach is possible to have a high degree of system reconfigurability from a
conceptual domain point of view. In fact, if the DBpedia ontology and the focused crawler
ontology have a good overlapping, the annotation step can give better results since it will
not annotate entities that are outside from the specific ontological domain. This is possible
using LOD technology.

The annotations extracted from a given text have to be analyzed. We follow the Luhn
assumption and its application based on statistical information [9] but we use it on annotated
entities and not for simple keywords. Therefore, we suppose that more frequent an entity is
annotated and more important it is for a given text.

In the context of information retrieval the most frequent terms are often stopwords and,
for this reason, the term frequency is usually used in combination with other schemes such
as T FxIDF . In our case this problem is solved by DBpedia spotlight which doesn’t anno-
tate stopwords but only DBpedia entities. Moreover, stopwords are filtered from the original
text during the preprocessing step.

Once the entities are sorted by frequency, the system consider the first K entities where
K is a tunable parameter that can be set before initializing the crawling session. For each of
these entries, related DBpedia pages are crawled.

The Fig. 4 shows the steps in the Web page annotation task.
It’s important to point out that not all the annotated entities might exist at crawling time.

If a missed entity is annotated, the crawler will create a Neo4j node that will be generated
by the DBpedia page. This is an important task because if this kind of entity will be chosen
as main-topic, the web page will have to be linked to the related Neo4j node.

The DBpedia page contains several information about the annotated entity. The proper-
ties (fields) of the entity are high dependent to the ontology class which this particular entity
is assigned.

One of the most important issue is that all the properties are structured. The choice to
use some of the proposed technologies in our framework is for example that one of the
main efforts of DBpedia is to transform unstructured wikipedia data to structured one. This
allows a great flexibility in the transformation of a DBpedia entity in a Neo4j node because
a property mapping schema has been implemented using Neo4j schemaless property.

One of the most important bottlenecks in the crawling process is the computational
overload due to the number of analyzed pages and their contents.

We try to smooth this problem using DBpedia entity linked data to wikidata entities.
Wikidata is an open machine readable knowledge base similar to DBpedia but enriched with
human created structured content on wikipedia documents. Wikidata provides a concise

Figure 4 Web page annotation pipeline
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sentence for each item giving an accurate description of a given entity. This information
simplify the crawler text classification task.

In this step of the the pipeline a list of entities with a brief descriptions is generated.
These entities are possible candidates for the web page linking. However, it’s necessary to
understand if such annotated entities are related to the specific domain of interest, for this
reason the next step is to run a topic detection in order to get a list of candidate topics for
a given web page. The textual component of our knowledge base (i.e. ImageNet) is derived
from WordNet. Therefore we can use it for our metrics.

We propose a topic detection algorithm using a metric that combines two components
namely, a syntactic semantic grade and a semantic grade:

T D(ν) = SSG(ν) + SeG(ν) (1)

where the SSG is a measure of the ambiguity of a term and is defined as:

SSG(ν) =
n∑

i=1

1

poly(wi)
(2)

where ν being the considered document, wi being the analyzed word and poly(wi) is
the number of meanings af a given term. This information is carried out form WordNet.

The SeG is based on the semantic distance between two WordNet concepts represented
by terms. More specifically, it is based on a combination of the path length between pairs
of terms and the depth of their subsumer, expressed as the number of hops from the roots of
WordNet:

SeG(ν) =
∑

(wi ,wj )

e−α·l(wi ,wj ) e
β·d(wi ,wj ) − e−β·d(wi ,wj )

eβ·d(wi ,wj ) + e−β·d(wi ,wj )
(3)

where ν is the considered document, (wi, wj ) being the pairs of words and α ≥ 0 and β ≥ 0
are two scaling parameters whose values are defined by experiments.

The proposed algorithm will generate a main topic for each annotation and a comparison
with the ontology classes is performed in a descending order on the annotations list. If the
topic is present in the ontology it is stored otherwise it is discarded. The list of candidate
topics is then sent to the combination block.

The CNN classifier block is the core of image classification pipeline shown in Fig. 5.

Figure 5 The proposed image pipeline analysis
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In this article we use the VGG-16 architecture presented by a team of Google researchers
in [54]. The authors argue that more hidden layers are added to a CNN a more accurate
prediction will be obtained. Due to the outstanding results obtained by this CNN and the
publicly available Keras model, VGG-16 CNN has been chosen for our purposes. This
model was also adopted for content based image retrieval task in a similar fashion in [58,
60]

The images in our topic domain have been processed by the VGG-16 and the obtained
vector features have been stored as a Neo4j node property.

The first step of the visual feature extraction process is to resize an image to a default
size, in the case of the chosen CNN-model the size is 224px x 224px . A normalization step
is also performed by subtracting from each pixel the mean of every other pixel [1]. Once we
have a fixed size normalized picture, a feed-forward pass of the image is performed by the
convolutional neural network.

Convolutional neural networks have the ability to learn features in a hierarchical fashion.
Recent works have explored the possibility of extracting features from a given hidden layer
of a CNN. In particular in [24] the authors argue that the features extracted from a CNN
trained on a specific task can be used for other types of tasks that are unrelated to the original
one. This is an important result for the purposes of this article because we will not further
train the CNN having a general and task-independent system.

In the same article the authors also hypothesize that the neurons activations in its late
hidden layers might serve as very strong features extractor for a variety of object recogni-
tion tasks. This statement has been confirmed by the authors’ experiments. However, the
authors in [8, 31, 59] highlight that features extracted from pooling layers can be used for
image retrieval tasks which are the ones that we have carried out in this work. In particular,
we extract features from the last max pooling layer of the CNN and use these features to
perform a content based image retrieval.

Once the images are retrieved it’s possible to infer their content and topic according to
their semantics. The image semantics are well known thanks to the structure of the knowl-
edge base. As a matter of fact, any image is linked to its topic and meaning in a Neo4j
graphdb. In the same line of these considerations the features will be extracted from the
pool-5 layer. A L2 normalization of the extracted feature vectors has been used because it
improves accuracy following the results in the aforementioned works.

We use DeepLearning4J framework [20] to extract the visual features. The first step is
to import the trained model, in our case the VGG-16 and after an initialization step it is
ready to process images. The current analyzed image is first preprocessed as previously
described then it is fed-forward to the convolutional neural network, where each layer will
be responsible of a specific task such as convolution, pooling and non linearity.

As previously described, the layer activations are used as visual feature representation,
and when an image is processed by the pool-5 layer its activations are extracted and stored.

The features of the analyzed web page images are extracted and compared with the ones
stored in the Neo4j database.

The similarity measure used in our content based image retrieval process is the cosine
similarity due to its performance in similar technology contexts and purposes [58].

Given a query image q and a generic image b:

S(q, b) = h(q) · h(b)

‖h(q)‖‖h(b)‖ (4)

where q and b are the two images to compare and h(q) and h(b) the respective feature
vectors.
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In the case of a single image, we have to compare it to the rest of images in the feature
database, and consider the maximum bret = Max(S(q, bk)) between the query image q and
all the other images bk in our knowledge base.

bret is the the image associated with the maximum cosine similarity score w.r.t. the image
q.

The topic represented by our image will be extracted from our database due to its
knowledge structure.

The related information has been retrieved using Cypher queries. We can perform this
task because in the Neo4j database structure there are specific relationships between images,
documents and ontology concepts. Using these relationships an image depicting a mastiff
(i.e. a specific dog bread) is related to the node “Mastiff”, which is in turn linked to the
ontology node representing that concept. An example showing such structure is provided in
Fig. 6 where we highlight also the expressive power of graph db visualization [16].

Once both the text and image classifications have been obtained, they have to be com-
bined in order to have a final classification. The combination block will receive in input a
list of candidate topics from both the image and text classifiers. The similarity score for an
image is in a [0,1] range because a cosine similarity has been used. The same cannot be said
for the text classification where the scores are simply the number of times an entity is found
in the given page.

The following equation is used to have values between 0 and 1:

sn(ai) = eβ·s(ai ) − e−β·s(ai )

eβ·s(ai ) + e−β·s(ai )
(5)

where ai is the i-th annotation, s(ai) is its score and β is an empirical parameter set by
experiment [6, 35].

Now we are in the position of combining the scores from the two classifiers.

Figure 6 An example of the graph db structure
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There are several approaches which combine classifiers and the SUM function gives
very good performances [32, 46]. In this article a weighted sum will be used where the
weights have been set by experiments under different contexts, in particular when there are
no similar images in the Neo4j database. Another situation that have to be considered is
when a near-perfect match is found. This situation happens when the almost-same picture is
found. In this case it would be wrong to ignore it. Therefore, if the similarity S(q, bret ) ≈ 1,
then the image classification is considered as a one take all strategy.

The combining classifier process is shown in Fig. 7.
When a given web page is downloaded and its topic is detected, we have to store it in

our knowledge base. A new Neo4j node that represents the web page is created and linked
to the found main-topic. A cypher query is used to handle the creation and linking to the
crawled web-page. A relation of “HAS RESOURCE” exists between the main topic entity
and the classified web page. All the images that have been found in the crawled web page
are also linked to the created node. The overloading in the creation of too many image nodes
is avoided by means of a parameter in the crawler configuration file which sets a maximum
number of images per web site to be stored.

Figure 7 Combining textual and image classifications
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4 Experimental results

The performances evaluation of a focused crawler is a hard task and it presents several
challenges. A first challenge is to define which kind of measures should be used in order to
evaluate the accuracy of the crawling process.

A first approach could be in the use of a categorized web pages dataset comparing the
human classification with the ones provided by the crawler. However, this approach requires
to manually label a sub-graph of the web, and since the crawler needs to work with large
amounts of web pages the labeling effort would be too high. Another metric that could be
used is the one proposed in [18], the authors state that a focused crawler should be evaluated
on the base of the harvest ratio which is defined as the rate of relevant page acquisition and
how irrelevant pages are discarded off a crawling session. We can formalize the harvest ratio
as:

Hr = Relevant pages

Crawled pages
(6)

A larger harvest ratio implies better performances because it means that the crawler
discovers a web subgraph full of relevant pages.

To assess the relevance of a web page assigned by an automatic web crawler, its outputs
must be compared with a ground truth. The ground truth is determined by humans. In the
web information retrieval task, where the system may be evaluated using corpora consisting
of tens of thousands of documents, it would be almost impossible to judge the relevance of
all documents with respect to all queries used in the evaluation. Moreover, in a real scenario
as the web this is literally impossible due to the size of the web itself.

We develop an automatic process to recognize if a given page is relevant for the domain
of out focused crawler using a an experimental setup similar to [55].

A ground truth related to the crawler topic (i.e. animal domain) will be created, then a
measure of similarity will be computed between the crawled page and each document in
the ground truth. If the arithmetic mean of the similarity scores is greater than a predefined
value, the page will be judged to be relevant.

Given a crawled page Ci and a set of relevant ground truth documents R, a similarity
score sim(Ci, Ri) can be computed between Ci and a page Ri extracted from R. We define
the average similarity as the arithmetic mean of the similarity scores:

AS(Ci) = 1

|R|
∑

Ri∈R

sim(Ci, Ri) (7)

A web page is defined to be relevant if AS ≥ threshold. The threshold value has been
set to 0.7 following the results in [55] Once the ground truth is created and a seed URL
is chosen, different type of crawlers can be initialized with the same seed URL. For each
crawled page, using the aforementioned strategy, an average similarity is computed and a
crawled page is set to be relevant or irrelevant.

Given N crawled pages, the harvest ratio is:

HR = |V |
|N | (8)

where |V | is the cardinality of the set of web pages that satisfy the Vj ∈ V → AS(Vj ) ≥ th

condition.
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Figure 8 Harvest rate comparison

We compare our algorithm with the breadth first and the best first approaches. The exper-
imental results are shown in Fig. 8. It is possible to argue how the proposed approach
improves the average of the harvest rate of the given pages. As a matter of fact the average
harvest ratio of the proposed crawler is higher then the one of the other two approaches.

Figure 9 Harvest rate comparison
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The obtained improvement is also show in Fig. 9 where the comparison between the
three algorithms is visualized in terms of relevant pages span over time. In this figure the
difference of performances among the analyzed approaches is further highlighted.

5 Conclusion and future work

In this article an ontology-driven focused crawler based on the combination of image and
text classification techniques has been presented. The system integrates modern technolo-
gies and novel algorithms achieving good results with regards to a well know measure as
harvest ratio compared with state of the art techniques.

We highlight how heterogeneous technologies such as convolutional neural network
and linked open data can co-exist to achieve significant improvements in hard information
retrieval tasks, and how different classifiers can have benefit from each other to improve the
overall result.

The built system makes extensive use of deep learning and takes advantage of such pow-
erful technologies, confirming that convolutional neural networks are an important tool to
improve several image analysis tasks such as retrieval, classification and detection. The use
of features extracted from CNN is also explored and they are used to enhance the crawl-
ing process. Linked open data have an important role in information retrieval tasks and this
work follows the general consensus on the use of the semantic web technologies in complex
application context as the web. Moreover, the use of formal structures to represent knowl-
edge as ontologies allow us to have a high level of generalization in different conceptual
domains.

The implementation of graph database as knowledge repository has a great impact on
the efficient of the whole framework and it greatly improve the overall crawling experience
providing a native graph structure where properties among concepts, entities and documents
are clearly represented.

The proposed architecture is highly modular and reusable, making the process of inte-
grating other tools very simple. Several new research line could be further investigated as
the merge of domain specific ontologies on our knowledge base. In this context schema
matching techniques and automatic population of very large knowledge bases implemented
as a graph db [15, 17] together with the integration of multimedia components [50] are an
interesting research domain

Moreover, the accuracy of our crawler could be improved by training the convolutional
neural network on specific domains used in the focused crawler. It would also be enhanced
by the classification task to recognize the different objects within a given image by using
a semantic instance segmentation approach. Using this technique, it would be possible to
have multiple entities classification on a single image, whereas with the one-image one-
classification approach we are limited to reduce images with several complex objects to an
unique categorization.
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