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Abstract
Recently, the convolution neural network (CNN) has achieved significant performance im-
provements toward the image Super-Resolution (SR) problems. Yet, the existing benchmark
arts exist multiple limitations, including make use of the feature information deficiently,
accompany with the gradient disappearance phenomenon and have serious time consumption.
The paper utilizes a newly designed fully convolutional neural network named Accurate Image
Super-resolution Using Dense Connections and Dimension Reduction Network (DCDRN) to
fully exploit the image features. Contextual information of image regions utilizes efficiently
and accurately through uniting dense connections and cascading small filters multiple times.
And such implementation can be regarded as feature extractors to fuse local and global image
features. We newly introduce 1 × 1 CNNs parallelization structure in the image reconstruction
section to reduce data dimensions of the previous layers, which alleviates the computational
burden effectively while avoiding the context info losing. The calculation becomes more
complex and the convergence becomes slower during training because of the pre-processed
images. The proposed DCDRN invents a simple and effective method which processes the
original image directly and the optimization of layers and filters of CNNs shorten the cost of
training significantly. Experiments on benchmark datasets with different methods show that
DCDRN achieves gratifying performance against state-of-the-art methods. Code is available at
https://github.com/doctorwgd/DCDRN.

Keywords Super-resolution . Dense connections . Parallelization . Contextual information

1 Introduction

Single image Super-Resolution (SISR) method has been widely applied in multiple computer
vision related tasks including image compression [14, 25, 40], visual tracking [24, 30, 37],
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intelligent surveillance [23, 26, 41]. On account of the variety and uncertainty of the mapping
make the recovering of high-resolution (HR) image from low resolution image diversely.
Large scale-factor creates redundant details and has a challenging to recover local features. The
obstinate information redundancy also causes the absences of high frequency details. Interpo-
lation method [22] is implementable but the ideal high-resolution output of linear model
usually unavailable. Sparse-based techniques [13, 39] have been applied to enhance image
priors assume that any natural image patch could be sparsely represented by multiple atomic
dictionaries. And the dictionaries are frequently generated from the given image patch pool
database, not to mention its heavy computation costs which brought by the conventional OMP
(orthogonal matching pursuit) reconstruction procedure. Similar to the sparse representation
based methods, other techniques used to simulate the mapping from LR to HR similarly,
includes neighbor embedding [7], random forest [32].

In this paper, our approach develops dense connections inspired by DenseNet [13]. Dense
connections have following advantages: solve the phenomenon of gradient disappearance
effectively, promote the feature propagation and reduce the number of parameters. Dense
connections of each layer obtain more contextual information and model the complex func-
tions of the nonlinear layer while enhances the efficiency of gradient transmission in the
network and the utilization of contextual information. Further, employing a reasonable number
of dense connections in a very deep convolution neural network (CNN) [35] can potentially
increase reconstruction performance. These will be discussed later in Section 3.2. Large
dimension formatted since all the feature outputs are concatenated to the input layer of the
reconstructed network. Therefore, 1 × 1 CNNs has employed to reduce dimension before
generating HR pixels. It also should be noted that our experiment results conduct an opposite
conclusion towards the common agreement, i.e., there exists a positive relationship between
the network depth and the performance improvements.

1.1 Contribution

Different from previous works, the newly introduced dense connections integrate low-level
features into high-level features to provide rich information. Using the proposed structure,
large image region contextual information can be utilized accurately.

In the image reconstruction network, the 1 × 1 CNNs parallelization structure reduces the
dimension of the output from previous layers to expedite the operation. 1 × 1 CNNs organize
information across channels while increase the ability of expressing the model. The direct
processing of the original image reduces the computational complexity. Optimized the number
of layers and filters of CNN to reduce computational costs is essential. The method has been
evaluated on three publicly available benchmark datasets and outperformed the most advanced
methods currently available. In Fig. 1, we compared the PSNR and running times of various
methods. As shown in the figure, the DCDRN has optimal performance than state-of-the-art
methods.

2 Related work

Prior to the advent of convolutional neural networks, mainstream methods for reconstructing
high-resolution images were dominated by matrix operations that traversed dictionary atoms
for fast super-resolution. Representative work is A+ [36] and SelfEx [11]. The RFL [33] then
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obtains a high-resolution image by training the random forest which has the leaf nodes with
regression functions.

SRCNN [4], the earliest method takes 2 to 4 convolutional layers for super-resolution [5] to
acquire more significant performance and asserts CNN can use the end-to-end manner to learn
the mapping from LR to HR. Although SRCNN achieved good results by combining deep
learning with super-resolution, it still has some limitations:

& Over-reliance on information in small image domains;
& Has poor ability to convergence during training;
& The network structure only trains a single scale.

Hence, FSRCNN [6] replaced a large kernel into a small one and fine-tuning the final
deconvolution layer result in a great faster than SRCNN. The authors of VDSR [16] concluded
increase the depth of layer is more sensible than employ larger convolution filters and
accelerated the training process by introducing residual learning and gradient clipping [2] into
the network. VDSR proves residual network is particular suitable for solving super-resolution
problems.

After extensive application of residual learning, the network structure tends to be deeply
reconstructed. Deepened the network and reduced the number of parameters by sharing
weights called DRCN [15] increased the computational complexity obviously. In Residual
Encoder-Decoder Networks (RED) [27], the symmetrical structure that each convolutional
layer has a deconvolution layer as a response has strong capacity to train very deep networks
and achieve prominent performance. The algorithm enables inverse propagation signals
transmit to the bottom layer immediately and settles the problem of gradient disappearance.
Yet, the calculation gets more complexity and the time of training is longer than others because
of the structure. Certainly, ResNet [10] and Highway Network [34] train more than 100 layers
of network by bypassing the path between convolutional layers. The stochastic depth [12]

Fig. 1 Compared to the state-of-the-art methods [4, 6, 11, 33, 36], our DCDRN can significantly improves both
the PSNR and computation costs over the scale factor ×2 on the dataset bsd100 [29]
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randomly discards certain layers and features to improve the performance of the residual
network. While above studies reflect the trend of “deeper is better”, Romano recommended
Rapid and Accurate Image Super Resolution (RAISR) [31] invented a shallow and faster
learning-based method. Although performance is slightly lower than [15, 16, 27, 38].

Recently, growing numbers of methods have constructed a novel network by combining
several convolution neural networks for super-resolution. For instance, Image super-resolution
using a dilated convolutional neural network (DCNN) [19] and a two-channel convolutional
neural network for image super-resolution (SDSR) [20] used differentiated convolution and
multi-channel convolution also achieved remarkable performance respectively. FractalNet [17]
combines the parallel networks of several different depths recently proposed and creates many
short paths in the network. Symmetric dense connections have been introduced in an
encoding-decoding network [28] for image restoration tasks. These all have something in
common: dense connections have established between layers for efficient training.

3 Proposed method

3.1 Model overview

From Fig. 2, the network mainly divided into two elements: feature extraction network and
image reconstruction network. We cascade a pair of layers (convolution, activation) in the
feature extraction network. After capturing the local and global features adequately, the whole
outputs are stacked in the concat layers and send into the reconstruction network as inputs. The
deconvolution layers are used to reconstruct the details of the image and finally low resolution
(LR) Images through CNN layers converted to high resolution (HR) images.

Figure 3 shows the loss feature information of model during the training process. Each pixel
up-sampled undergoes a lot of calculations and misses more semantic information, especially
with a growing scale factor. In the initial feature extraction network, we optimize the number

Fig. 2 Our network structure. Low resolution (LR) images through CNNs converted to high-resolution (HR)
images. We employ 64 filters for every convolutional layer in feature extraction network. The blue area in the
figure uses 3 × 3 CNNs, while the yellow part indicates the 1 × 1 CNNs
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of filters at each layer and transfer the extracted features directly to the image reconstruction
part through dense connections. Each output was used as the input to the rest of the layers. In
this paper, the activation layer is added after each convolutional layer to enhance the expres-
sion ability of the network while increasing the characteristic nonlinear conduction. The
PReLU activation function used to address the possible “dying ReLU” problem [8]. Getting
more local features while prevent learning a large negative deviation term for better perfor-
mance. The Table 1 shows 7 group convolution layers make the best performance. These will
future discussed later in Section 4.2.

The deconvolution layer proposed by Matthew D. Zeiler [42] is common to learn up-
sampled filters in the reconstruction network. The input dimension is quite large since all the
features connected before the reconstruction network. Superposition training of the
deconvolution layer is essential in order to obtain better reconstruction performance. The
proposed structure is similar to the Network in Network [21] contains one or more 1 × 1
CNNs. In Fig. 4b shows the feature map extracted in the image reconstruction section. The
same as the rest of the deep learning network, the proposed model focuses on learning the
remaining output, even in the case of shallow (less than or equal to 7) module.

3.2 Benefit of feature combination

As shown in Fig. 4, the output of feature maps is demonstrated accurately. The formula is: xl =
Hl(|x0,x1, ⋯, xl − 1|), xl represents the input of l-th layer, Hl includes the weights of PReLU and
3 × 3 CNNs. |x0, x1, ⋯, xl − 1| indicates the output from layer 0 to layer l − 1. Each layer can
directly obtain a gradient from the loss function to obtain the input signal to reduce the loss of
the feature.

Fig. 3 The loss feature information of Set5

Table 1 The comparison table with different parameters(Scale Factor = 3, test dataset = Set 5). The italic part is
the best performance of PSNR

Layer 5 Layer 6 Layer 7 Layer7
(filters = 32)

Layer 7
(filters = 128)

PSNR(dB) 33.21 33.30 33.56 33.47 33.32
Epochs 53 48 59 54 51
Steps 65,540 59,357 72,960 67,705 63,067
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Dense connections are committed to improving network performance from the perspective
of feature reuse and splice the features extracted from each layer and connected low-level and
high-level feature-linked feature maps and then use as input to the image reconstruction
network. The output of each layer in front is equivalent to the input of each subsequent layer.
In addition, the combination of feature maps generated from feature extraction network used
for SR reconstruction. In the experimental part, the SR results compared with different network
parameters in Table 1.

3.3 The structure of dimension reduction

Explained previous section, the transposed layer of convolution (also known as the
deconvolution layer) proposed by [42] has widely application in up-sampled. In order to
obtain better reconstitution performance, it is necessary to increase the depth of the
deconvolution layer.

We propose a parallel structure consists of three 1 × 1 CNNs to avoid the expensive
calculation. In Fig. 2, A1 and B1 after the concat layer is mainly to reduce the input dimension
and the network parameters before generating the HR image. The last occurrence of L
performs a final dimensionality reduction operation on the advanced features to facilitate the
addition of the interpolated image to reconstruct the final HR image. Advantages of the
structure are:

& Reduce the dimension of the input to the previous layer to perform less calculation with
transferring more accurate information and less information loss, make more nonlinear
combinations to enhance the potential representation of the network.

& Reduce the number of CNNs or transpose CNNs filters significantly.
& The calculation of 1 × 1 CNNs is at least 9 times less than 3 × 3 CNNs.

3.4 Model for multiple and large scales

Table 3 shows the results among different methods with large-scale factors. DCDRN yields
more details than other existed methods indicate the algorithm has superiority when the scale
factor becomes larger. Most methods with small scale factor work well and gradually
deteriorate when the scale factor increases, because when the scale factor increases, the sub-

(a) 64 features merged at Conv.0 (b) 64 features merged at A1

Fig. 4 Features obtained from different layers
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pixel edge recovery is more difficult and the information loss is more serious. Almost all
methods based on deep learning associate with bicubic interpolation, the proposed algorithm
combines it with dense connections to make the image recovery more apparent. As a result, we
have observed that multi-scale training can improve large-scale performance.

4 Experimental results

This section shows the concrete performance of our method on several datasets. First, we
introduce several datasets for testing and training, and then give detail parameters of the
algorithm. Finally compare our methods with some state-of-the-art methods.

4.1 Datasets for training and testing

4.1.1 Training dataset

Different methods of deep learning have various training dataset. Dataset we used is 91 images
from Yang et al. [39] and 200 images from Berkeley Segmentation Dataset [1]. We take 291
images as training data and flipped the images horizontally and vertically shown in Fig. 5.
During the training phase, employed dataset Set5 [3] to evaluate performance and supervise if
the model is over-fitting or convergent. The proposed method takes a color (RGB) image
convert to an YCbCr image and only processing the Y channel.

4.1.2 Testing dataset

Three benchmark datasets, Set5, Set14 [43] and bsd100, are used for various networks
commonly. Timofte et al. used the Berkeley segmentation dataset of natural images in [29].
All the super-resolution methods in Table 3 test on these three datasets to make the comparison
results more convincing.

4.2 Training parameters

The learning rate has been set as 0.001, reduced twice while loss stop to decrease after 5
training epochs, training will terminative if the learning rate is lower than 0.00002. Different
from the rest of deep learning super-resolution models of other technologies, we have fixed 7

Fig. 5 Augment result of “15,088” (bsd100) flipped horizontally, vertically
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group of 3 × 3 CNNs in the feature extraction network and 64 outputs of each layer in order to
reduce the parameters. Figure 4a shows the 64 feature maps extracted by the first layer during
training. More detailed training process and specific parameters are shown in Table 2. Each
training image is divided into 32 patches, using 64 patches as a mini-batch. A total of 118,384
batch data were generated of Set5. We optimized the regression target based on gradient
descent of back-propagation [18]. L2 norm produce fuzzy predictions inevitably and the
recovered high-resolution images tend to be more smoothly when training the network. Hence,
the proposed DCDRN employ the L1 norm (the penalty factor is multiplied by 0.0001) to
optimize the network model and set the momentum parameter to 0.9. The L1 norm refers to the
difference between the absolute values of each element in the vector and called “Sparse Rule
Operator”. It is used to improve the generalization ability by preventing over-fitting. L1-
regularization reflects the mapping from LR to HR and obtains better hierarchical features.

Let x represents the interpolated low-resolution image and y be the high-resolution image.
Given a training set, the aim is to learn a model f with an estimated value of ŷ ¼ f xð Þ. ŷ is the
target high-resolution image we estimated. Most of the deep-learning-based super-resolution
methods use Rectified linear Units (ReLU) as an activation function:

max 0; xið Þ ¼ 0; if xi≤0
xi; if xi > 0

�

In the less than zero part, ReLU all abandoned that causes many features lost, increasing the
uncertainty of the image recovery. Therefore, a new activation function PReLU introduced by
He et al. [9] used in our model. The expression is:

yji ¼
xji; if xji≥0

ajixji; if xji < 0

�

where

aji∼U l; uð Þ; l < u&l; u∈ 0; 1
�h

Table 2 The training parameters of each layer (While the scale factor = 2)

Network Layer Kernel size Input Total output

Feature extraction network Conv_0 3 × 3 × 64 1 64
Conv_1 64 128
Conv_2 128 192
Conv_3 192 256
Conv_4 256 320
Conv_5 320 384
Conv_6 384 448

Image reconstruction network A1 1 × 1 × 64 448 64
B1 1 × 1 × 32 448 32
B2 3 × 3 × 32 32 32
L 1 × 1 × 4 96 4
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Comparing the two equations, PReLU introduced a new parameter aji its value often set as
0.01 and make the value of the negative distribution retained. This method retains the original
advantages of ReLU and obtains as many characteristics as possible. Above, employ PReLU
as the activation function of the model. Each CNN layer is initialized with what He.et.al said.
Also initialize the bias and PReLU to zero. Our training time took nearly 3 h on GTX 1080Ti.

4.3 Comparisons with state-of-the-art methods

Peak signal-to-noise ratio (PSNR) is used to compare the accuracy of the proposed method and
other SR algorithms. Figure 6 shows the test results for different scale factors and the
relationship between the number of iteration (k) and PSNR (dB) when using different scale
factors. Numbers of experiments illustrate in Table 1 while looking for the best model.
Changed the number of convolution layers, the number of filters and so on. Table 3 exhibits
the comparison of PSNR for ×2, ×3, ×4, respectively. The italic indicates the best performance
and the bold shows the second best. It is obviously that the proposed algorithm has the best
performance for these datasets. Dense connections make the feature maps learning increased
lead to some slightly bigger time consumption than FSRCNN. While the image quality is
improved, also increases the test time. Comprehensive consideration of both accuracy and
time, our model has the best performance. The implementation of each algorithm uses different
platforms and libraries, it is unfair to simply calculate the training and testing time. Compre-
hensive overall performance is needed to judge the quality of a model. We keep the other
settings the same as the benchmark model.

The restoration of buildings is a very representative work in super resolution. In Figs. 7, 8,
and 9, DCDRN restored a more pronounced edge profile with the buildings. Because of the
dense connections, its features learn repetitively and guarantee quality of high resolution
image. And feature maps are concatenating twice to ensure that the residual learning is fully
performed, it obtains more contextual information and more conducive to the restoration of
images in DCDRN. The performance can be observed by connecting the features of all layers
indicate there are complementary information between SR different levels of feature mapping
and have strong similarities. Finally, our method is the clearest for the outline recovery of bird
and green peppers showed in Figs. 10 and 11. Through these images, the edges of other
methods are blurred proved our method recovers better high resolution images.

As expected, our network achieved better results than other networks after employing dense
connections and dimension reduction which shows the combination of shallow features and
deep features improve SR reconstruction performance significantly.

Test Scale Factor 2 Test Scale Factor 3 Test Scale Factor 4

Fig. 6 Steps (k) vs Performance (PSNR (dB))
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5 Conclusion and future works

The accurate super-resolution method based on convolution neural network proposed in this
paper makes use of the dense connections and 1x1CNNs structure. The network for feature
extraction is optimized structurally and both local and global features are merged through
dense connections and transmitted to the reconstructed part of the network.

In the reconstructed network, the architecture of the 1 × 1 CNNs enables the model to
obtain better reconstruction capabilities, and the amount of calculation is smaller than others.
In addition, the needless preprocessed images and handled the original size of the image

Table 3 PSNR for scale factor with ×2, ×3 and ×4 on datasets Set5, Set14, bsd100. Italic indicates the best
performance and bold indicates the second

Dataset Scale Bicubic
PSNR

A+
PSNR/time

RFL
PSNR/time

selfEX
PSNR/time

SRCNN
PSNR/time

FSRCNN
PSNR/time

Ours
PSNR/time

Set5 ×2
×3
×4

33.66
30.39
28.42

36.54/0.58
32.58/0.32
30.28/0.24

36.54/0.63
32.43/0.49
30.14/0.38

36.49/45.78
32.58/33.44
30.31/29.18

36.66/2.19
32.75/2.23
30.48/2.19

37.00/0.068
33.16/0.027
30.71/0.015

37.65/0.097
33.56/0.143
31.11/0.145

Set14 ×2
×3
×4

30.24
27.55
26.00

32.26/0.86
29.13/0.56
27.32/0.38

32.26/1.13
29.05/0.85
27.24/0.65

32.22/105.00
29.16/74.69
27.40/65.08

32.42/4.32
29.28/4.40
27.49/4.39

32.63/0.160
29.43/0.061
27.59/0.029

33.07/0.156
29.83/0.136
27.91/0.122

bsd100 ×2
×3
×4

29.56
27.21
25.96

31.21/0.59
28.29/0.33
26.82/0.26

31.16/0.80
28.22/0.62
26.75/0.48

31.18/60.09
28.29/40.01
26.84/33.57

31.36/2.51
28.41/2.58
26.90/2.51

31.80/0.098
28.60/0.035
26.98/0.019

31.95/0.078
28.83/0.060
27.31/0.052

Original(PSNR) Bicubic( 26.23 ) A+[22] ( 27.10 ) RFL[37]( 27.35 )

selfEX[23]( 27.81 ) SRCNN[2]( 27.75 ) FSRCNN[9]( 27.80 ) DCDRN( 28.74 )

Fig. 7 Super-resolution results of “ img_045 ” (bsd100) with scale factor ×2. For the outline of the building, our
method is more accurate and we can see the structure between the glasses more clearly
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Original(PSNR) Bicubic( 24.27 ) A+[22]( 26.01 ) RFL[37]( 26.95 )

selfEX[23]( 27.81 ) SRCNN[2]( 27.77 ) FSRCNN[9]( 27.89 ) DCDRN( 28.33 ) 

Fig. 8 Super-resolution results of “ img_095 ” (bsd100) with scale factor ×3. Our method restored better details.
Better reconstruct the outline of the windows, you can clearly see the structure between the wall and the windows

Original(PSNR) Bicubic( 25.23 ) A+[22] ( 31.10 ) RFL[37]( 31.15 )

selfEX[23]( 31.10 ) SRCNN[2]( 31.03 ) FSRCNN[9]( 31.52 ) DCDRN( 32.42 ) 

Fig. 9 Super-resolution results of “ img_021 ” (bsd100) with scale factor ×2. Our method recovers sharp lines
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directly. With these conditions, the proposed model achieves better performance with less
calculation. After numerous experiments and failures, the model has finally put forward.
Another noteworthy aspect of this study is uses an integrated learning network. We combine
the two hierarchical structure networks. Deep learning itself has a good ability to solve
complex problems. Classic ensemble learning achieves better results with less computation

Original(PSNR) Bicubic( 31.89 ) A+[22] ( 35.89 ) RFL[37]( 32.15 )     

selfEX[23] ( 35.20 ) SRCNN[2] ( 35.47 ) FSRCNN[9] ( 36.27 ) DCDRN( 36.51 )

Fig. 10 Super-resolution results of “ img_002 ” (Set5) with scale factor ×3. The veins in the image are sharpest in
our results

Original(PSNR) Bicubic( 27.56 ) A+[22]( 29.32 ) RFL[37]( 29.75 )

selfEX[23]( 29.86 ) SRCNN[2]( 30.78 ) FSRCNN[9]( 32.14 ) DCDRN( 33.59 )

Fig. 11 Super-resolution results of “ img_0012 ” (Set14) with scale factor ×4. For the edge of green pepper, our
method is best
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even if the problem is non-negligible. Besides, the integrated model makes parallelization
easier and faster. Gradient clipping is used to ensure the training stability. Our method greatly
outperforms existing methods on the baseline image. We believe that the proposed DCDRN is
easily applied to other image recovery problems such as denoising and defogging.
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