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Abstract
In recent years, Speech Emotion Recognition (SER) has received considerable attention in
affective computing field. In this paper, an improved system for SER is proposed. In the
feature extraction step, a hybrid high-dimensional rich feature vector is extracted from both
speech signal and glottal-waveform signal using techniques such as MFCC, PLPC, and
MVDR. The prosodic features derived from fundamental frequency (f0) contour are also
added to this feature vector. The proposed system is based on a holistic approach that employs
a modified quantum-behaved particle swarm optimization (QPSO) algorithm (called pQPSO)
to estimate both the optimal projection matrix for feature-vector dimension reduction and
Gaussian Mixture Model (GMM) classifier parameters. Since the problem parameters are in a
limited range and the standard QPSO algorithm performs a search in an infinite range, in this
paper, the QPSO is modified in such a way that it uses a truncated probability distribution and
makes the search more efficient. The system works in real-time and is evaluated on three
standard emotional speech databases Berlin database of emotional speech (EMO-DB), Surrey
Audio-Visual Expressed Emotion (SAVEE) and Interactive Emotional Dyadic Motion Capture
(IEMOCAP). The proposed method improves the accuracy of the SER system compared to
classical methods such as FA, PCA, PPCA, LDA, standard QPSO, wQPSO, and deep neural
network, and also outperforms many state-of-the-art recent approaches that use the same
datasets.
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1 Introduction

The speech signal is the most important and natural way of communication between humans. In
this communication, the speaker’s emotion plays a determinative role in the transfer of concepts
so that a change in the emotion can lead to different interpretations of speech. Hence, to create a
perfect interaction between man and machine, the speech emotion recognition (SER) has become
one of the attractive subjects for researchers. In any accurate SER system, along with the selection
of important features, an efficient way to reduce the dimension of the data is required. Joint
dimensionality reduction and classifier parameter estimation in SER systems can be considered as
a multi-objective problem, but to the best of our knowledge, this issue has not been addressed in
the literature. In this paper, a new method is proposed to detect speech emotion, using a modified
QPSO algorithm for joint dimensionality reduction-classifier parameter estimation.

At the beginning step of the proposed method, Mel-Frequency Cepstral Coefficient
(MFCC), Perceptual Linear Predictive Cepstral Coefficient (PLPC) and Perceptual Minimum
Variance Distortionless Response (PMVDR), pitch information and their first and second-
order derivatives are extracted from both speech signal and its glottal waveforms as features.
Then, the usual dimensionality reduction algorithms such as Principal Component Analysis
(PCA), Probabilistic Principal Component Analysis (PPCA) and Factor Analysis (FA) are
applied to the extracted feature vectors and form three matrices. These three separated matrices
will be used as the three particles of the initial population of the modified QPSO algorithm.

The modified QPSO algorithm is used to optimize both the projection matrix and the GMM
classifier parameters. After the dimension reduction step, the Gaussian Mixture Model (GMM) is
eventually trained for classifying the emotions. Due to the high correlation between glottal features,
glottal waveform and emotions, and the effect of each person’s emotion and his speech style on the
glottal waveform [45], the glottal waveform-based features have been used in this study.

Most of the parameter estimation algorithms that are used to estimate transformation matrix
may be caught up in local solutions, but the proposed method is a metaheuristic/global optimi-
zation one and therefore, is less probable to get trapped in local solutions. The objective function
of this algorithm is directly the accuracy of the emotion classification on the development data,
which is more effective to find dimensionality reduction parameters compared to methods with
the indirect objective functions. Another advantage of the proposed algorithm is that, in the
standard QPSO, each particle may be generated outside the desired range, which produces invalid
solutions and the elimination or repairing that invalid solutions leads to a reduction of the
convergence rate of the algorithm. To deal with this problem, in the proposed method, the
truncated probability distribution is used to generate new particles in the desired range.

Details of the algorithm implementation and experimental results have been presented in
the following sections. Section 2 explains the literature review. Section 3 describes the SER
systems structure and the modified-QPSO method in detail. Section 4 illustrates the proposed
methodology. In Section 5, the experimental setup required for the proposed strategy has been
introduced, the results of comparative experiments will be presented in Section 6, and finally,
the interpretation of the results will be explained to the reader in Section 7.

2 Literature review

There are many speech emotion recognition researches in recent years that have been
done on emotional feature extraction [8, 24, 34, 35, 42, 63, 69, 78, 83], emotional feature
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dimension reduction [14, 16, 17, 25, 26, 42, 46, 54, 59, 83, 84] and emotional feature
classification [6, 8, 9, 17, 25–27, 42, 51]. Moreover, many global optimization solutions
have been proposed for emotion recognition [1, 10, 18, 22, 44, 70, 76] until now.
Darekar and Dhande [10] has proposed an adaptive learning architecture for the artificial
neural network to learn the multimodal fusion of speech features using a hybrid particle
swarm optimization (PSO) algorithm. A facial expression recognition system using
evolutionary particle swarm optimization-based feature optimization has been introduced
by Mistry et al. [44]. Similarly, in [70], Wang et al. proposed a novel intelligent emotion
recognition system that used stationary wavelet entropy to extract features, and employed
a single hidden layer feedforward neural network as the classifier. Likewise, Albornoz
et al. [1] used an auditory signal representation to obtain a novel bio-inspired set of
features for emotional speech signals. Moreover, Gharavian et al. [18] have employed the
particle swarm optimization to determine the optimum values of chosen parameters of
extracted features. In [22] Yogesh et al. proposed a new particle swarm optimization-
assisted biogeography-based algorithm for feature selection, and finally Yogesh et al.
[76] have employed a biogeography-based optimization, particle swarm optimization and
a proposed BBO_PSO hybrid optimization for feature selection.

The summary of other currently published works on SER systems is illustrated in Table 1.

3 Background

3.1 Speech emotion recognition systems

SER systems indicate systems with a speech signal as input and estimated emotion as the
output. Like many pattern recognition systems, these systems approximately characterize the
emotion of the input signal, based on the signal features and classification.

Generally, a typical SER system consists of four different parts: preprocessing, feature
extraction, dimension reduction (optional) and feature classification (Fig. 1). At first, the
preprocessing of the speech signal before feature extraction has been considered. It is an
important stage of an efficient speech emotion recognition system. Pre-emphasizing,
framing, windowing, and voice activity detection are three common techniques used in
signal preprocessing. The preprocessed signal will be then fed to the feature extraction
module. In this stage, the necessary and emotion-relevant features will be extracted from
the signal. These features can be categorized in three different kinds [8], prosodic
features, such as pitch and energy, spectral features, such as formants, MFCC, and linear
predictive cepstral coefficients (LPCC), and voice quality features. Then a feature vector
corresponding to each frame will be prepared. For reducing the redundancy and dimen-
sionality of the generated feature vector, feature dimensionality reduction is needed. The
dimension reduction module gets the redundant high-dimensional feature vector as input
and reduces the feature vector dimensionality by applying and affixing transformation
(projection) matrix. There are so many feature dimensionality reduction solutions in-
cluding unsupervised dimension reduction methods (such as FA, PPCA, ICA, CCA) and
supervised ones (such as Linear Discriminant Analysis (LDA)). Finally, in the last part of
the system, a classification method like a neural network, support vector machine,
Gaussian mixture model, hidden Markov model, etc. will classify the dimensionality-
reduced features and estimate the emotional class of the input signal.
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Table 1 Currently state of the art works on speech emotion recognition

SER Stages Method Year Reference

Emotional feature
extraction

Utilized inherent long-term properties of acoustic fea-
tures by a modulation filtering approach

2014 [52]

Captured the deviations in features related to the
excitation source component of speech

2015 [30]

Proposed a discriminant analysis based on a deep
neural network to learn discriminative features

2011 [61]

Proposed the pH time-frequency vocal source feature 2014 [79]
Incorporated rhythm and temporal features 2012 [4]
Ranked and selected features by their Fisher

discriminant ratios
2016 [41]

Using prosody, spectral envelope, and voice quality
features

2010 [40]

Using a deep convolutional neural network to extract
spectrograms features

2019 [2]

Using both prosodic and spectral features by Naïve
Bayes Classifier

2017 [33]

Using biologically-inspired auditory attention features 2016 [31]
Proposed a new feature, residual sinusoidal peak

amplitude
2016 [11]

Employed the power-normalized cepstral coefficients
as features

2016 [3]

Using the phase of the pitch harmonic as feature 2017 [12]
Provided deep belief network to yield the higher-level

features from the low-level features
2017 [71]

Proposed new features based on the energy content of
wavelet-based time-frequency analysis

2016 [67]

Provided statistics of pitch and energy as well as
spectral features

2015 [58]

Extracted spectrogram features from the speech and
glottal flow signals

2016 [19]

Applying a deep convolutional neural network to
speech spectrograms

2018 [37]

Proposed the learned deep spectrum features 2018 [82]
Utilized spectral, prosody and voice quality features 2015 [36]
Using low-level descriptors (local features) and statis-

tical functional (global features)
2017 [65]

Emotional feature
dimension reduction

Proposed a multiscale kernel for feature reduction 2015 [73]
Applied a nonlinear dimensionality reduction method 2013 [80]
Applied nuisance attribute projection to project the

emotion vectors to a minimum subspace
2016 [41]

Utilized support vector machine 2016 [56]
Presents a semi-supervised feature selection method 2015 [62]

Emotional feature
classification

Utilized SVM for classification 2017 2016 2014 [74]
[56]
[77]

Using a binary decision tree for classification 2014 [77]
Using two linear and Gaussian radial basis function

kernels with binary tree
2015 [58]

Proposed an ensemble softmax regression model 2017 [63]
Using a deep neural network 2017 [53]
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3.2 The proposed point mass function-weighted QPSO (pQPSO)

Optimization algorithms include all algorithms which try to find a locally- or a globally-best
solution that optimizes a predefined objective function (Fig. 2). In this category, metaheuristic
algorithms including nature-inspired swarm-based optimization, have become increasingly
popular. On the other hand, quantum mechanics-based concepts have been applied to many
metaheuristic optimization algorithms like genetic algorithm and particle swarm optimization
[64]. For example, quantum-behaved particle swarm optimization has fewer parameters to be
adjusted compared to its classic version.

In the classical PSO, each particle has a position and a velocity [64]. However, in the
QPSO algorithm according to the uncertainty principle, the particle position and velocity
cannot be determined simultaneously [49]. Thus it will be computed by a probability
density function, that determines the probability of a particle appearing in a position and
in a time [72],

Point Mass Function-weighted QPSO (called pQPSO) is a modified version of QPSO
which has been proposed by the authors in this paper. In this modified QPSO, mean-best
and global-best positions (particles) in the standard QPSO [72] are replaced by a particle
which is generated based on the concept of the PMF selection (Algorithm 1) according to
their relative competence in the cost function from a set of top K best particles found.

Fig. 1 The hierarchy of a Speech Emotion Recognition (SER) system

Fig. 2 The hierarchy of metaheuristic optimization algorithms

Multimedia Tools and Applications (2020) 79:1261–1289 1265



With this PMF selection, there is a chance that any of the top K best particles, which
have better features or characteristics, may be selected as mean best or global best
solution which reduces the greediness of the QPSO algorithm.

In the standard QPSO algorithm, new particles may be created in an invalid range and
represent invalid solutions; therefore, in the proposed QPSO algorithm, in each iteration, the
truncated Laplace distribution (TLD) is used to ensure that the particle values are within the
corresponding valid range. Moreover, an adaptive algorithm is proposed for calculating the
contraction-expansion coefficient which controls the algorithm convergence speed in each
iteration, whose value is calculated proportionally to the error reduction rate in the previous
iteration.

For more details on the modified QPSO algorithm, the reader can refer to [47].

Algorithm 1 Generating random m using PMF p mð Þ ¼ ∑
K

j¼1
wjδ m−Bj:

� �

1: Input: ,

2: Output: 
3:

4:         

5:

6:

7:

8:

9:

10:

11:

for do

end for
Generate a uniform random number 

for do
if then

end if
12: end for

In the following sections, the whole proposed methodology and details of SER will be
explained.

4 Proposed Methodology

The whole process of the proposed methodology has been illustrated in Fig. 3. At first, silence
intervals have been detected and removed in the preprocessing stage. Then the feature vector has
been extracted from the input speech signal. Then the optimal dimension reduction matrix
(projection matrix/affine transformation) parameters has been estimated using the pQPSO algo-
rithm, and feature dimension reduction using the obtained optimal dimension reduction matrix
has been done on both training and test feature vectors. Finally, the GMMmodel has been trained
on the reduced-dimension train feature vectors and estimates the class of the test speech signal.

It is worth noting that all the SER systems need an emotional database for evaluating their
performance (more details are in Section 5). The whole emotional database should be
partitioned to the training, development and testing sets.

As it was mentioned previously, the first important part of an SER system is feature
extraction. In this study since the silence intervals of the input signals do not have important
effects on the expressed emotion, before the feature extraction stage; they have been detected
and removed using the voice activity detection program of COVAREP toolbox [13]. After the
preprocessing stage, the input wave signals are ready for feature extraction. The other steps of
the solution will be described in the following sections and to be illustrated in details at Fig. 4
and Algorithm (2),
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Algorithm 2 Whole flowchart of the proposed algorithm (equivalent to Fig. 4)

1:

2:
Input: training ( ), development ( ), test ( ) speech signals and their glottal waveforms

Output: FinalPerformance

3:

4: % Creating train, dev and text feature vectors

5:   for do
6:

7:

8:

9:

10:

11:

from train file 

from dev. file 

}  from test file 

12:

13:
end for
% Learning Optimal Dimension Reduction matrix using Modified QPSO according to Algorithm3.

14:

15:
Modified-QPSO-based dimension reduction ( , ) % Algorithm3

% Reduce dimension of training and development features
16:

17:

18:

19:

( - )

train a final GMM model ( )

( - ) 

FinalPerformance = GMM-based-Classification( , )

4.1 Emotional speech feature extraction

In the context of SER systems, it is not clear yet which features most efficiently characterize
various speech emotions. However, commonly frame-by-frame or short-term features extracted in
the speech emotion recognition literatures includeMFCC, Linear Predictive Cepstral Coefficients
(LPCC), PLPC, etc. In this work, the Mel-Frequency Cepstral Coefficients (MFCC), Perceptual
Linear Prediction Cepstral Coefficients (PLPC), Perceptual Minimum-Variance Distortionless
Response Cepstral Coefficients (PMVDR), pitch (F0) and their first- and second-order derivatives
have been extracted as a feature vector for the input speech signal and also for its glottal waveform
signal frame by frame (Fig. 4). Since these features are derived by different methods, they can

Fig. 3 The whole process flow of the proposed methodology
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describe a speech signal from different aspects. All of these features were concatenated together to
build a whole feature vector. In this work, MFCC and PLPC features have been extracted by Dan
Ellis’s toolbox [23], PMVDR was extracted using the algorithm in [75] and the pitch features
were extracted using COVAREP toolbox [13]. All feature extraction levels have been carried out
particularly on both input speech signal and its glottal waveform. To extract the glottal waveform
signal from the speech waveform, the COVAREP toolbox [13] has been utilized again. Interest-
ingly, experiments show that when there is a mismatch between training and testing data, the first
and second-order derivatives help cope with this mismatch and improve performance in noisy
environments [28, 68] so that the first and second-order derivatives can also be added to the
feature vector. After all the features have been extracted from both speech and glottal waveform, a
feature matrix, whose rows are frames and whose columns are of different feature vector
elements, will be obtained for the next stages.

4.2 Dimension reduction

Dimension reduction aim is to reduce feature-space dimensionality to select more informative
features and to reduce redundancy. Since more overlap among the features of various classes
causes more performance degradation of speech emotion recognition system, dimension
reduction refers to all strategies and solutions detecting a linear or nonlinear mapping between
the original feature space and reduced-dimensionality space while decreasing intra-class
variance and increasing inter-class distance. Therefore, if x is the input to the dimension
reduction module, the output is as follows,

x
0 ¼ P x−μð Þ ð1Þ

P is the dimension reduction matrix (projection matrix), and μ is the feature mean vector.
The main aim of the modified QPSO-based dimension reduction box of Fig. 4, is to

Fig. 4 Detail of the process flow of the proposed methodology (corresponding to Algorithm (2))
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optimize the dimension reduction matrix P and to find a good dimensionality-reduced
feature set for classification (More information on different dimensionality reduction
techniques are available in [15]).

4.2.1 Classical methods

There are many classical dimension reduction methods. Principal component analysis
(PCA) is the most famous linear method for dimensionality reduction, creating a
linear mapping between original features and lower-dimension features so that the
variance of the low-dimensional features can be maximized [15]. If any feature vector
has one or more missing values, the probabilistic principal component analysis
(PPCA) is used to estimate the linear mapping. On the other hand, the factor analysis
(FA) is another dimension reduction method based on the explorative analysis. It
groups similar variables without distinguishing between independent and dependent
variables [8].

In this research, dimension reduction matrices determined by these three famous
dimension reduction solutions (i.e. PCA, PPCA and FA) will be members of the initial
population of the modified-QPSO algorithm explained below. Another dimension reduc-
tion technique trying to find a discriminative dimension reduction matrix is linear
discriminant analysis (LDA). However, one of the limitations of classical LDA is that
the dimensionality of reduced-dimension features cannot be greater than the number of
classes minus one.

4.2.2 Modified-QPSO-based strategy for dimension reduction

In this paper, a new strategy based on the QPSO algorithm has been proposed to find an
optimal dimension reduction matrix. The flowchart of the proposed modified-QPSO-
based dimension reduction method is illustrated in Fig. 5, and its learning scheme is
summarized in Algorithm (2) and Algorithm (3). In this section, the newly-proposed
pQPSO algorithm has been employed; however, other revisions of the QPSO algorithm
have been employed as well and their experimental results for comparisons are presented
in Section 5.

Fig. 5 The whole process flow of the pQPSO algorithm for learning an optimal dimension reduction matrix
(corresponding to Algorithm (3))
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Algorithm 3 Modified-QPSO-Based Strategy for learning optimal dimension reduction
matrix (Equivalent to Fig. 5)

1: Input: , , and classical dimension reduction matrices ( )

2: Output: Optimal Dimension Reduction Matrix ( )

3:

4:

5:         

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

% Create an initial population of particles
=Dimension Reduction Matrix found by PCA Method (Initialize First Particle)
=Dimension Reduction Matrix found by PPCA Method (Initialize Second Particle)
=Dimension Reduction Matrix found by FA Method (Initialize Third Particle)

Initialize Particles Randomly (Initialize All Other Particles (Matrices) Randomly)
for do

for do

( - )

( - )

train a temporary GMM model ( )

ClassificationAccuracy( , { )

16:

17:

18:

19:

20:

end for
Positions Using pQPSO equations

end for
% 

= (Global Best particle of the Population)

Conventionally, there are training and development sets for training the pQPSO algorithm
and for cross-validating its functionality, respectively. The pQPSO is trained on the training
set, a part of the speech emotion database, and is cross-validated on both training and
development sets. Finally, the evaluation is performed by a cost function.

As it is explained previously, the pQPSO algorithm aims to find an optimal dimension
reduction matrix. The value of each pQPSO particle is a matrix that will be the optimal
dimension reduction matrix after being optimized and after the last iteration of the pQPSO
algorithm. The initial values for three pQPSO particles are dimension reduction matrices
obtained by PCA, PPCA and FA methods. The other particles will be initialized randomly.
After initialization, the Householder transformation [60] will be applied to each particle
(matrix) to be orthogonalized and the cost function for each particle will be computed as
follows.

The cost function module for each input particle finds the reduced-dimension version of
both training and development feature vectors by applying that dimension reduction matrix
(particle) to the feature vectors (Fig. 5 and Algorithm 3). Then, a GMM model with 128
components on the reduced-dimension training features is trained and the trained GMM is
used for classifying both training and development reduced-dimension features. The correct
classification rate is the fitness value for that particle. The other stages of the pQPSO algorithm
were explained previously in Section 2.

4.3 Feature classification

After the pQPSO optimization has finished, it returns the global best particle as the optimal
dimension reduction matrix (Fig. 4). The optimal dimension reduction matrix will be applied
to training, development and test feature vector sets to reduce their dimensions. Finally, a
GMMmodel with 128 components will be trained on both training and development reduced-
dimension feature sets and will be utilized to classify it. Eventually, the final recognition rate
on the test set illustrates the performance of the proposed algorithm.

Multimedia Tools and Applications (2020) 79:1261–12891270



5 Experimental setup

In these experiments, two different database-division strategies will be used. One
of them is used for speaker-independent experiments and another one will be used
for speaker-dependent experiments. Also, two different folding strategies for ex-
periment results have been applied. In the first folding strategy (three-folds fold-
ing), the database was split into three various folds in which the training,
development and testing data sets were completely distinct. Table 2 illustrates
how the EMO-DB database is divided into train, development and test sets in
both speaker-independent and speaker-dependent cases. In each fold, the test set
contains both male and female speakers. However, in the second folding strategy
(LOSO-folding), test-runs are carried out in Leave-One-Speaker-Out (LOSO) cross-
validation manner just to deal with the speaker-independent case, as required by
most applications. In the first folding strategy (three-folds folding), the test set
includes both genders, but in the second one (LOSO folding) the test set includes
only one speaker (one gender).

To validate the performance of the proposed strategy, some experiments have been setup on
the following databases.

5.1 EMO-DB

The Berlin Database of Emotional Speech (EMO-DB) [5] is a German database that
consists of 10 actors (five men and five women) who speak 49, 58, 43, 38, 55, 61, 69, 56
and 71 utterances, respectively. In the EMO-DB, assigned indices to these 10 actors
(speakers) are 3, 8, 9, 10, 11, 12, 13, 14, 15, 16. It is one of the most popular databases
used in SER systems. Each actor produces 10 routine German sentences (five short and
five long utterances) in seven different emotions. The EMO-DB contains 535 distinct
sentences including anger (127), fear (69), boredom (81), disgust (46), joy (71), neutral
(79) and sadness (62) sentences.

5.2 SAVEE

Surrey Audio-Visual Expressed Emotion (SAVEE) Database [21] consists of emotional
speech British English voices from 4 male actors. It includes 480 utterances (120
utterances per actor) of 7 different emotions i.e., anger (a), disgust (d), fear (f), happiness
(h), sadness (sa), surprise (su) and neutral (n).

5.3 IEMOCAP

Interactive Emotional Dyadic Motion Capture (IEMOCAP) database [7] which was
collected in 5 sessions, contains 12 h of video each of which has one female and one
male speaker in both scripted and improvised scenarios. The audio files consist of
10,039 utterances produced by the English native speakers. There are nine different
emotions; however, for our experiments, only improvised utterances with majority
agreement including only four emotions, angry, happy, neutral and sad, where we
merge excitement and happiness emotions were considered. This experimental condi-
tion was considered by many researchers [19, 36, 37, 53, 56, 65].
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5.4 Number of cepstral coefficients

One of the important factors influencing system performance is the suitable number of cepstral
coefficients (in MFCC, PLPC, and PMVDR features). As it was mentioned previously, there is
no any comprehensive research on the best cepstral coefficients number yet [27]. However, in
this study, an approximately suitable number of cepstral coefficient is proposed. The results are
illustrated in Table 3.

In addition to the cepstral coefficients number, classical dimension reduction methods, i.e.
PCA, PPCA, and FA, can have a different number of principal components/factors. For
determining both cepstral numbers and number of principal components/factors, some exper-
iments have been carried out by conventional dimension reduction methods such as PCA,
PPCA, FA, and LDA in the same conditions in both folding strategies mentioned previously.
The speech emotion recognition rate for each dimension reduction method is illustrated in
Fig. 6 (a to d), and the average values have been presented in Fig. 6 (e). As is shown, the high
number of cepstral coefficients and principal components does not improve the performance.
Here, a relative good number of cepstral coefficients and relative good number of reduced
features are equal to 7 and 20, respectively, which are achieving 69.11% for average recog-
nition rate of PCA, PPCA and FA solutions in the three-fold folding case and 77.08% for
average recognition rate of PCA, PPCA and FA solutions in the LOSO folding case of EMO-
DB.

5.5 pQPSO initial population

As it was mentioned previously, the pQPSO algorithm aims to find an optimal dimension
reduction matrix to reduce the dimensionality of the feature vectors. In this experiment, the
initial population of the pQPSO has 40 different particles or dimension reduction matrices. In
each iteration, these particles will be improved and better-fitted on the development set. The
values of three members of the initial population are three dimension reduction matrices
derived from the classical solutions PCA, PPCA, and FA, and the values of remaining
members will be generated randomly. The PCA, PPCA and FA dimension reduction matrices
in the initial population have been computed considering the previously-optimized number of
cepstral coefficients and reduced-dimensionality features.

6 Results and analysis

Here the results of the proposed method in various experiments with the best-selected
conditions explained in Section 5, will be explained.

Table 3 Feature extraction related parameters used in the experiments. First row: The number of cepstral
coefficients. Second row: The dimensionality of total feature vector (after adding first- and second-order and
concatenating all feature types (Fig. 4). Third row: The dimensionality of the final feature vector after dimension
reduction using PCA, PPCA, and FA

Number of cepstral coefficients (in MFCC, PLPC & PMVDR) 7 7 7 7 13 20

The dimensionality of the total feature vector before dimension reduction 213 213 213 213 393 603
The dimensionality of the total feature vector after dimension reduction 9 20 30 40 18 24
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6.1 First classification results

In this section, the speaker-independent (SI) and speaker-dependent (SD) scenarios were
selected for experiments. At first, the classical dimension reduction algorithms such as PCA,
PPCA, FA, and LDA were executed separately on the train+development sets and each
dimension reduction matrix was computed. These dimension reduction matrices have been
applied to the test set to compute the reduced-dimension features and measure the emotion
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Fig. 6 The figure indicates the relation between speech emotion recognition rate and (d1, d2) pair (d1 = number of
cepstral coefficients, d2 = feature dimensionality after dimension reduction) for different conventional dimension
reduction methods (a to d) and their recognition rate averages (e). The best performance is achieved by (7,20)
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recognition rate. After that, the computed dimension reduction matrices (from PCA, PPCA,
and FA) were used as three different initial particles of the pQPSO algorithm and the pQPSO
was run on the train and development sets as explained previously. Figure 7 illustrates the best-
particle cost function values during training for 100 consecutive iterations (generations). Then,
the best particle whose value or position is the best dimension reduction matrix has been
applied to the test set for computing reduced-dimension features and measuring GMM-based
correct classification rate.

Also, for comparing the results, the same experiments have been carried out on a deep
neural network (DNN) with five hidden layers and [100,150,100 80,100] neurons in each
hidden layer trained using DeeBNet toolbox [32] and on recent works [52, 74]. The average
recognition rates for the three-folds folding case are illustrated in Table 4. As it is shown in
both SD and SI cases, the pQPSO algorithm significantly outperforms classical solutions
(supervised and unsupervised), DNN and recently-introduced methods [52, 74] in the same
conditions. In Table 4, it can be seen that the performance of the proposed method in the
speaker-independent case (68.89%) is better than that of the state-of-the-art results compared
to 57.67% of [52] and 30.67% of [74]. Also, the method in speaker-dependent case (77.67%)
performs better compared to 37.67% of [74] and 66.00% of [52] in term of accuracy, and the

Table 4 Three-folds folding case: Speaker-independent and speaker-dependent emotion recognition rate for the
proposed pQPSO compared to classical and recently-used methods

Three-folds Classification

Method Speaker-Independent (WAR) Speaker-Dependent (WAR)

PCA 63.67% 73.00%
PPCA 63.67% 74.00%
FA 66.00% 74.33%
DNN 66.67% 77.00%
Yang et al., 2017 [74] 30.67% 37.67%
LDA 49.00% 63.67%
Pohjalainen et al., 2014 [52] 57.67% 66.00%
pQPSO (proposed) 68.89% 77.67%

Fig. 7 The best-particle cost function value in terms of recognition error rate during pQPSO iterations
(generations) on EMO-DB
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best, compared to deep neural network classifier with accuracy rates, 66.67% and 77.00% in SI
and SD cases, respectively.

In this comparison, as illustrated in Fig. 8, the recognition rate of the pQPSO in different
iterations were significantly improved in both speaker-dependent and speaker-independent
cases. Again, it is clear that for the same amount of training speech, a system trained on many
speakers and tested on new speakers (i.e. speaker-independent recognition) has worse perfor-
mance compared to the system trained on the speaker using it, namely speaker-dependent [20].
It should be noted that in this analysis the best results for SI and SD cases (73.45% and
78.49%, respectively), as illustrated in Fig. 8, are yielded after 100 iterations carried out on the
first fold of the three-fold classification.

6.2 Second classification results

For another experiment, since LOSO folding strategy along with weighted average recall
(WAR) is much more popular than speaker-dependent one and many new state of the art works
evaluate their results according to it, then the algorithm accuracy and performance will be
measured as follows.

Since the pQPSO initial random population makes different results for each execution, then
all the executions have been repeated 10 times with 10 different random number generator
(RNG) seeds, and the results for 10 runs are averaged. Also, WAR which is the average
recognition rate of individual classes weighted by the class prior probability [81], has been
adopted as recognition accuracy as follows,

Recalli ¼ TPi

TPi þ FNi
ð2Þ

Weighti ¼
TPi þ FNi

N
ð3Þ

WAR ¼ ∑
M

i¼1
Weighti � Recalli ð4Þ

where M is the emotions’ number, TPi and FNi are the numbers of true positive and false
negative instances respectively for emotion i and N is the total number of instances from all
emotions.

Because of the popularity of the LOSO folding strategy, the performance of the
proposed method was measured only based on LOSO for EMO-DB, SAVEE, and
IEMOCAP databases. In this manner, we took the test sets corresponding to each speaker.
The training sets have been composed of 80% of the remaining speakers’ utterances and
the validation sets have been composed of another 20%. Therefore, we choose the 10-fold
cross-validation strategy related to ten different speakers in EMO-DB and IEMOCAP
databases and four-fold cross-validation strategy for SAVEE database to average over all
possible choices of the test set.

A summary of the classification accuracy on EMO-DB, SAVEE, and IEMOCAP has been
illustrated in Tables 5, 6 and 7 and Figs. 9, 10 and 11, respectively. According to Table 5, the
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accuracy on EMO-DB in LOSO case increases significantly to 82.82%, obviously outperforms
the previous works, 59.66% by [74], 68.49% by [52], and obtaining a 16.66%, 16.39% and
14.37% absolute improvement over the PCA, PPCA and FA methods, and also outperforms
the recently-published state of the art works (Table 5).

Accuracies on SAVEE and IEMOCAP for the LOSO scheme are demonstrated in Tables 6
and 7 respectively. The tables compare results for several baseline methods and many recently-
published works. The results show that accuracy on SAVEE improved by 9% over PCA,
PPCA and FA cases and accuracy on IEMOCAP approximately improved by 20% over
competing methods. Interestingly, the relative improvement in the results obtained with the
proposed system on IEOMCAP is better than that on EMO-DB and SAVEE compared to the
state of the art works.

Table 5 LOSO folding case: emotion recognition rate for the proposed pQPSO compared to classical and
recently-published methods on EMO-DB

Method WAR Method WAR

Yang et al., 2017 [74] 59.66% Bashirpour et al., 2016 [3] 76.60%
PCA 66.16% Luengo et al., 2010 [40] 78.30%
PPCA 66.43% Zao et al., 2014 [79] 80.10%
LDA 67.36% Bhargava et al., 2012 [4] 80.60%
DNN 68.26% Badshah et al., 2019 [2] 80.79%
FA 68.45% Zhang et al., 2013 [80] 80.85%
Pohjalainen et al., 2014 [52] 68.49% Sun et al., 2015 [62] 81.50%
Sidorov et al., 2016 [57] 72.00% Xu et al., 2015 [73] 81.80%
Yüncü et al., 2014 [77] 72.30% Mak et al., 2016 [41] 81.86%
Khan et al., 2017 [33] 72.34% Stuhlsatz et al., 2011 [61] 81.90%
Sinith et al., 2015 [58] 73.75% Wen et al., 2017 [71] 82.32%
Deb et al., 2017 [12] 73.90% Lotfidereshgi et al., 2017 [39] 82.35%
Deb et al., 2016 [11] 74.40% Sun et al., 2017 [63] 82.40%
Kadiri et al., 2015 [30] 75.22% Kalinli et al., 2016 [31] 82.70%
Shirani et al., 2016 [56] 76.12% pQPSO (proposed) 82.82%

10
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30
itera�ons

50
itera�ons

100
itera�ons

speaker independent 68.84% 69.01% 70.01% 72.66% 73.45%
speaker dependent 71.44% 75.84% 76.12% 77.39% 78.49%
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Fig. 8 Speaker-dependent and speaker-independent emotion recognition rate for pQPSO in different iterations
(generations) for the first fold of the three-fold classification case
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6.3 Comparison between different versions of QPSO method

To prove the supremacy of the proposed pQPSO algorithm, another experiment has been done.
We have compared the proposed pQPSO with both standard QPSO [64] and a modified
version of QPSO named wQPSO [72]. These algorithms have been executed in the same
conditions for both three-folds and LOSO folding cases. The comparison between different
folding strategies for 100 iterations running is illustrated in Table 8. The results show that the
proposed pQPSO algorithm can achieve the best accuracy, 68.89%, and 77.67%, compared to
63.22% and 72.33% by wQPSO, and 67.78% and 75% by standard QPSO in both speaker-
dependent and speaker-independent cases of three-folds folding for EMO-DB. Also, the
proposed pQPSO can achieve the best accuracy, 82.82% compared to 81.69% and 79.91%
by wQPSO and standard QPSO in LOSO folding case for EMO-DB and 58.96% and 59.58%
by wQPSO and standard QPSO for SAVEE and 71.7% and 72.52% by wQPSO and standard
QPSO respectively for IEMOCAP database.

Table 7 LOSO folding case: emo-
tion recognition rate for the pro-
posed pQPSO compared to classical
and recently-published methods on
IEMOCAP

Method WAR

Ghosh et al., 2016 [19] 52.82%
PPCA 53.72%
PCA 54.12%
LDA 54.22%
DNN 61.59%
FA 61.64%
Li et al., 2015 [36] 63.20%
Tzinis et al., 2017 [65] 64.16%
Shirani et al., 2016 [56] 65.20%
Satt et al., 2017 [53] 68.80%
Li et al., 2018 [37] 71.75%
pQPSO (proposed) 74.80%

Table 6 LOSO folding case: emotion recognition rate for the proposed pQPSO compared to classical and
recently-published methods on SAVEE

Method WAR

Papakostas et al., 2014 [50] 44.00%
Liu et al., 2018 [38] 44.18%
Noroozi et al., 2017 [48] 45.51%
Vasquez-Correa et al., 2016 [67] 47.30%
LDA 50.49%
DNN 51.01%
FA 51.25%
PPCA 51.46%
Sun et al., 2017 [63] 51.46%
PCA 51.47%
Wen et al., 2017 [71] 53.60%
Tzinis et al., 2018 [66] 54.00%
Sinith et al., 2015 [58] 57.50%
Sun et al., 2015 [62] 58.76%
pQPSO (proposed) 60.79%
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Fig. 10 LOSO folding case: emotion recognition rate compared to classical and recently-published methods on
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Fig. 9 LOSO folding case: emotion recognition rate compared to classical and recently-published methods on
EMO-DB
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6.4 Per emotion performance

To illustrate the proposed algorithm performance and further investigate the recognition
accuracy on each emotion separately, the confusion matrix corresponding to the LOSO folding
strategy of EMO-DB, SAVEE, and IEMOCAP, have been illustrated in Figs. 12, 13, 14, 15,
16, 17, 18, 19 and 20 for pQPSO, wQPSO and standard QPSO methods. Figures 12, 13, 14,
15, 16 and 17 shows that for the case of EMO-DB and SAVEE datasets, Banger^ is identified
with the highest accuracy in all pQPSO, wQPSO and standard QPSO cases. However, Figs. 18,
19 and 20 indicates that Bneutral^ emotion is distinguished with the highest accuracy for
IEMOCAP and pQPSO, wQPSO and standard QPSO algorithms.

6.5 Computational complexity

The proposed pQPSO method, like many metaheuristic algorithms, suffers from high compu-
tational complexity and low convergence speed in its iterative process, especially in high-
dimensional spaces. It needs many iterations to converge to the optimum and also like PSO, it
may be trapped in a local optimum.

Table 9 shows the computational complexity in terms of the real-time factor (RTF)
which is meant to show the corresponding classification time of the proposed pQPSO
algorithm in the test stage for three different databases and also the time needed to train
the whole databases. The RTF (CPU Time divided by Audio Time) is a measuring factor

Table 8 Three-folds and LOSO folding: emotion recognition rate for standard QPSO and wQPSO compared to
the proposed pQPSO

Three-folds folding (WAR on EMO-DB) LOSO folding (WAR)

Method Speaker-Independent Speaker-Dependent EMO-DB SAVEE IEMOCAP

Standard QPSO [64] 67.78% 75.00% 79.91% 59.58% 72.52%
wQPSO [72] 63.22% 72.33% 81.69% 58.96% 71.70%
pQPSO (proposed) 68.89% 77.67% 82.82% 60.79% 74.80%
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Fig. 11 LOSO folding case: emotion recognition rate compared to classical and recently-published methods on
IEMOCAP

Multimedia Tools and Applications (2020) 79:1261–12891280



for the speed of an SER system. When the RTF factor is smaller than one, the system
will be real-time. It calculates the computational complexity of the emotion classification
using the following equation,

RTF ¼ Time elapsed to classify an input signal
Duration of the input signal

ð5Þ

All the experiments have been done on a system with Intel Core i3–4160 CPU at 3.60GHz
and 8 GB RAM.
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Fear 63.76 0 10.14 2.89 11.59 5.79 5.79

Disgust 2.17 91.30 2.17 0 0 2.17 2.17

Joy 5.63 1.4 60.56 0 0 0 32.39

Bore 0 2.46 0 77.77 12.34 7.4 0

Neutral 0 1.26 0 7.59 91.13 0 0

Sadness 0 0 0 11.29 0 88.70 0

Anger 2.36 0 4.72 0 0 0 92.91

Fig. 13 Confusion matrix of wQPSO on EMO-DB
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Fear 66.66 0 7.24 2.89 10.14 04.34 08.69

Disgust 0 89.13 2.17 2.17 2.17 0 4.34

Joy 4.22 1.40 59.15 0 0 0 35.21

Bore 1.23 6.17 0 70.37 13.58 8.64 0

Neutral 0 2.53 0 8.86 87.34 1.26 0

Sadness 0 0 0 9.67 1.61 88.7 0

Anger 1.57 0 4.72 0 1.57 0 92.12

Fig. 12 Confusion matrix of standard QPSO on EMO-DB
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By the results, it can be concluded that due to a large number of experiments and low
convergence of the proposed method, the training time is high; however, the low value of RTF
in testing time indicates that the proposed algorithm response time is smaller than signal
duration and then it is fast enough for real-time applications.

7 Discussion

The results of the proposed method show that the selection of simple features and
effective dimensionality reduction method improves speech recognition accuracy. Also,
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a 80 6.66 5 1.66 3.33 1.66 1.66

d 16.66 51.66 0 8.33 15 5 3.33

f 16.66 5 35 8.33 1.66 1.66 31.66

h 20 3.33 3.33 46.66 0 6.66 20

n 7.5 15 0.83 0.83 68.33 7.5 0

sa 11.66 11.66 1.66 8.33 13.33 48.33 5

su 1.66 5 8.33 5 1.66 0 78.33

Fig. 15 Confusion matrix of standard QPSO on SAVEE
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Fear 72.46 1.44 4.34 0 10.14 4.34 7.24

Disgust 4.34 89.13 0 0 0 2.17 4.34

Joy 5.04 10.01 63.38 0 1.4 0 20.16

Bore 0 4.93 0 80.24 9.87 4.93 0

Neutral 1.26 2.53 0 5.06 91.13 0 0

Sadness 0 0 0 8.06 3.22 88.7 0

Anger 0.78 0 6.29 0 0 0 92.91

Fig. 14 Confusion matrix of pQPSO on EMO-DB
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the presence of first and second-order derivatives of extracted features from speech and
glottal signals eliminates existing incompatibilities between training and test data [28,
68]. Likewise, the strong correlation between glottal waveform features and the speaking
style of an individual led to the use of features extracted from glottal waveform signals
[45], which resulted in a more accurate speech emotions recognition system. Further-
more, the definition of the objective function in the proposed method, based on the
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h 28.33 6.67 3.33 50 5 0 6.67

n 7.5 19.17 0.83 0 67.5 4.17 0.83

sa 10 25 3.33 0 18.33 41.67 1.67

su 16.67 1.67 10 0 1.67 1.67 68.33

Fig. 17 Confusion matrix of pQPSO on SAVEE
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d 15 61.66 0 5 16.66 1.66 0

f 13.33 8.33 33.33 5 5 3.33 31.66
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n 5.83 17.5 0.83 0 70 5 0.83

sa 18.33 18.33 1.66 5 10 43.33 3.33
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Fig. 16 Confusion matrix of wQPSO on SAVEE
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accuracy of emotion classification in the development set, improves the results on the
test set. Another advantage of the proposed method is the simultaneous estimation of the
projection matrix and GMM parameters.

Despite the strengths of the proposed algorithm, the pQPSO has an iterative process, and
consumes a large amount of memory, like other iterative algorithms, with high complexity and
low convergence speed. In the training phase, parallel computers or GPUs can be used to solve
this problem. Although the proposed algorithm has a high learning time, its response time is
less than the signal duration, in other words, it is fast enough for real-time processing and can
be useful in real-time applications.

This paper aims to provide a simple and general framework for the better recognition
of speech emotions with a few parameters. However, there is still a lot of open issues in
speech emotion recognition to be investigated in future researches. Combining more
features like predictor features [55] and performing cross-corpus emotion recognition
experiments on IEMOCAP, EMO-DB and SAVEE datasets are considered in future
studies. Also, MiGSA, a new simulated annealing algorithm [43] is another proposed
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Anger 70.08 3.93 12.15 13.83

Happiness 7.27 65.98 11.47 15.25

Neutral 5.14 6.28 82.35 6.21

Sadness 3.75 10.86 18.39 66.97

Fig. 19 Confusion matrix of wQPSO on IEMOCAP
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Anger 69.37 7.52 11.64 11.45

Happiness 6.273 67.44 12.2 14.08

Neutral 4.95 5.93 84.06 5.04

Sadness 3.27 10.6 18.45 67.67

Fig. 18 Confusion matrix of standard QPSO on IEMOCAP
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optimization algorithm by the authors which will be a research direction for future work
instead of the pQPSO algorithm for transformation matrix estimation. In the classifica-
tion stage of the system, it seems that employing dynamic acoustic models like hidden
Markov models or time-inhomogeneous hidden Bernoulli models [29] will be more
suitable than static acoustic models like Gaussian mixture models for speech emotion
recognition task.

8 Conclusion

In this paper, a modified version of the QPSO algorithm called pQPSO is proposed to solve the
dimensionality reduction problem in speech recognition systems. The dimensionality of
extracted feature vectors of speech and glottal signals, prosodic features and their first and
second-order derivatives are reduced by the use of the transformation matrix estimated by the
pQPSO algorithm. Also, a proper number of cepstral coefficients and principal components
have been estimated experimentally for further investigations. The results of applying our
method on large emotional datasets such as EMO-DB, SAVEE, and IEMOCAP show that in
terms of accuracy, the proposed pQPSO algorithm outperforms standard QPSO algorithms,
wQPSO, classical dimensionality reduction methods, deep neural networks, and the state-of-
the-art methods on the same datasets. In addition to optimizing the GMM parameters and the
transformation matrix for dimensionality reduction, other applications of the pQPSO algorithm
include optimizing the MFCC filter bank parameters, optimizing the classifier parameters, and
finding more features related to emotion.

Table 9 The computational complexity of the proposed pQPSO

Dataset Training time Emotion classification RTF (xRT)

EMO-DB 27,860 s 0.6061
SAVEE 7296 s 0.3961
IEMOCAP 140,290 s 0.5761

Predicted Class

Anger Happiness Neutral Sadness

A
ct

u
al

 C
la

ss
Anger 70.40 4.97 12.71 11.92

Happiness 4.13 74.20 12.88 8.79

Neutral 5.14 6.07 84.39 4.40

Sadness 6.24 13.21 19.25 61.30

Fig. 20 Confusion matrix of pQPSO on IEMOCAP
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Despite these applications of the pQPSO, high memory consumption and high computa-
tional complexity are the limitations of the proposed method to be investigated in future
studies. Also, the authors are currently working on powerful classifiers such as the deep
extreme learning machines and elliptical basis function networks, and plan to extend the
proposed method to these classifiers.

Acknowledgments We hereby express our gratitude to Abbas Neekabadi for providing us with some source
codes.
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