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Abstract
It is a difficult task to accurately segment images with intensity inhomogeneity, because
most of existing algorithms are based upon the assumption of the homogeneity of image
intensity. In this paper, we propose a novel region-based active contour model, referred to
as the K-GLIF, which utilizes both global and local image intensity fittings with kernel
functions. The model consists of an intensity fitting term and a new regularization term.
The intensity fitting term of the level set function is the gradient descent flow that
minimizes the global binary fitting energy functional. The local intensity fitting value
based on the generalized Gaussian kernel function is then incorporated into the global
intensity fitting value to form the weighted intensity fitting value on the two sides of the
contour. Owing to the kernel function, the intensity information in local regions is
extracted to guide the motion of the contour, which enables the model to effectively
segment images with intensity inhomogeneity and smooth noise. A new regularization
term is used to control the smoothness of the level set function and avoid complicated re-
initialization. Experimental results and comparisons with other models of inhomogeneous
images, synthetic images, medical images, multi-object images, natural and infrared
images show that the proposed K-GLIF model improves the quality of image segmentation
in terms of accuracy and robustness of initial contours.
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1 Introduction

Image segmentation has always been a fundamental and important task in the field of
computer vision and image processing. Its goal is to divide the image area into disjoint sub-
regions and the properties of the image are consistent in each sub-region. For traditional
segmentation methods, the difficulty comes from intensity inhomogeneity and low SNR of
images.

The active contour models (ACM) proposed by Kass et al. [10] has been extensively
investigated and successfully used in the image segmentation due to its strong ability to deal
with the local discontinuous edge features. The existing ACMs can be classified into two
types: edge-based models [4, 11, 13, 15] and region-based models [6–9, 12, 14, 16, 19–22, 24,
25]. One of the most popular edge-based models is the geodesic active contour model [4], and
it is sensitive to noise and requires constant re-initialization of the level set function. In order to
overcome the defect that the edge-based models excessively depend upon edge information,
many researchers have proposed the region-based models. Among these models, the Chan-
Vese (CV) [6] is the most representative one. It is based on the assumption that image
intensities are statistically homogeneous in each region and thus it can provide rather good
segmentation results for images with intensity homogeneity. Yu et al. [23] proposed the R-
DRLSE model combining DRLSE [13] and CV models to reduce the iteration numbers and
computation time. However, the phenomenon of intensity inhomogeneity occurs in most of
real-world images.

In order to segment images with intensity inhomogeneity, Li et al. [12] proposed a local
binary fitting model (LBF), which transforms the global binary fitting energy function of the
CV model into the local binary fitting energy function based on the kernel function. However,
the model is more sensitive to the initial contour and different initial contour position will
affect the segmentation result. Wang et al. [19] proposed an energy functional with local and
global intensity fitting energy (LGIF). Wang et al. [20] proposed a local Chan-Vese (LCV)
model which enhances the target and the background of the intensity contrast through the
convolution of the image and the original image to do the difference. Zhang et al. [25] devised
a maximum likelihood energy functional based on distribution of each local region (LSACM,
Locally Statistical Active Contour Model), which combines the bias field, the level set
function, and the piecewise constant function approximating the true image. Wang et al.
[22] proposed to construct a local hybrid image fitting (LHIF) energy function by leveraging
the strength of both LBF and LIF [24] models for accurate image segmentation.

In this paper, we proposed a novel region-based active contour model based on global and
local image intensity fitting with kernel function (K-GLIF) for image segmentation. Firstly, the
intensity fitting term of the level set function is the gradient descent flow that minimizes the
global binary fitting energy functional. Then, the local intensity fitting value based on the
generalized Gaussian kernel function is incorporated into the global intensity fitting value to
form the weighted intensity fitting value on the two sides of the contour. Due to the kernel
function in the new intensity fitting term, the intensity information in local regions is extracted
to guide the motion of the contour, which enables the proposed model to effectively segment
images with inhomogeneous intensity and smooth noise. Finally, the new regularization term
is used to control the smoothness of level set function and avoid complicated re-initialization.
Experimental results and comparisons with other models of inhomogeneous images, synthetic
images, medical images, multi-object images, natural and infrared images are made to show
the advantages of the K-GLIF model in accuracy and robustness to initial contours.
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The rest of the paper is organized as follows: In Section 2, we review some classic
region-based models and analyze their limitations. The K-GLIF model is proposed in
Section 3. Section 4 reports the experimental results on synthetic and real images,
followed by some discussions in Section 5. Finally, the conclusive remark is included in
Section 6.

2 Previous works

2.1 The CV model

Let I :Ω→ R be an input image and C be a closed curve. The CVenergy functional is defined
as follows:

ECV c1; c2;Cð Þ ¼ μ⋅length Cð Þ þ v⋅area inside Cð Þð Þ
þ λ1∫inside Cð Þ I xð Þ−c1j j2dxþ λ2∫outside Cð Þ I xð Þ−c2j j2dx ð1Þ

where μ, v ≥ 0, λ1, λ2 > 0. The Euclidean length term is used to regularize the contour, c1 and
c2 are two constants that approximate the image intensities in the interior and exterior of the
curve C, respectively.

Minimizing the above energy functional by variational method [2], and the contour curves
are expressed by level set ϕ, i.e. C = {x ∈Ω|ϕ(x) = 0}, then get the following partial differential
equation:

∂ϕ
∂t

¼ δ ϕð Þ μ⋅div
∇ϕ
∇ϕj j

� �
−v−λ1 I xð Þ−c1ð Þ2 þ λ2 I xð Þ−c2ð Þ2

� �
ð2Þ

It is noted that the constants c1 and c2 represent the global information of internal and external
contours and such image information is not accurate when image intensity is inhomogeneous.

2.2 The LBF model

The local binary fitting (LBF) model is proposed by Li et al. [12] that embedded the local
intensity information. The energy functional of LBF model is defined as follows:

ELBF f 1; f 2;Cð Þ ¼ λ1∬inside Cð ÞKσ x−yð Þ I yð Þ− f 1 xð Þj j2dydx
þ λ2∬outside Cð ÞKσ x−yð Þ I yð Þ− f 2 xð Þj j2dydx; x; y∈Ω

ð3Þ

where λ1, λ2 > 0. Kσ is the Gaussian kernel function with standard deviation σ, f1 and f2 are two
smooth functions that approximate the local image intensity of the interior and exterior of the
evolving curve, respectively. Obviously, such localization property may cause the energy
functional to fall into the local minimums and the segmentation result is vulnerable to contour
initialization.

2.3 The LCV model

Wang et al. [19] proposed a local Chan-Vese (LCV) model which integrated the local
statistical information and global region information into the energy functional. The
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energy functional is composed of three parts: global term EG, local term EL and regular-
ization term ER.

ELCV ¼ α⋅EG þ β⋅EL þ ER ð4Þ
where α and β are constants, the global term EG is from the CV model and the local term
EL is defined as:

EL d1; d2;Cð Þ ¼ λ1∫inside Cð Þ gk I xð Þð Þ−I xð Þ−d1j j2dxþ λ2∫ouside Cð Þ gk I xð Þð Þ−I xð Þ−d2j j2dxð5Þ
where gk is an average filter with k × k size window, d1 and d2 are the intensity averages of
difference image gkI(x) − I(x) in the interior and exterior of the curve C, respectively.

The LCV model does not calculate the convolution during the iteration process compared
to the LBF model and thus is more effective than the LBF model. The technique using global
information can improve the robustness to initial contours. However, the LCV model can be
regarded as the CV model acting on the difference image gk(I(x)) − I(x). As a result, it is
difficult for the LCV model to satisfactorily segment the image with inhomogeneous intensity.

3 Global and local image intensity fitting with kernel function

3.1 The intensity fitting term

Let I :Ω→ R be an input image and C be a closed curve. We define the following data energy
functional:

Edata m1;m2;ϕð Þ ¼ ∫Ω I xð Þ−m1j j2H ϕ xð Þð Þdxþ ∫Ω I xð Þ−m2j j2 1−H ϕ xð Þð Þð Þdx ð6Þ
where m1, m2 are weighted intensity fitting values on the two sides of the contour, H(⋅) is the
Heaviside function, m1 and m2 are defined as follows:

m1 xð Þ ¼ w⋅average I∈ x∈Ω ϕ xð Þ≥0jf gð Þ þ 1−wð Þ f 1 xð Þ
m2 xð Þ ¼ w⋅average I∈ x∈Ω ϕ xð Þ < 0jf gð Þ þ 1−wð Þ f 2 xð Þ

�
ð7Þ

where w is a weighting parameter (0 ≤w ≤ 1). The more inhomogeneous an image is, the
smaller the parameter w should be and larger the proportion of local intensities fitting value is
larger. f1(x), f2(x) are two smooth functions of generalized Gaussian window that approximate
the local image intensities fitting values in the interior and exterior of the contour. The two
smooth functions are defined as follows:

f 1 ¼
Kβ* H ϕð ÞI xð Þ½ �

Kβ*H ϕð Þ
f 2 ¼

Kβ* 1−H ϕð ÞI xð Þ½ �
Kβ* 1−H ϕð Þð Þ

8>><
>>:

ð8Þ

where Kβ is a generalized Gaussian kernel function [17] with scale parameter α and shape
parameter β and is defined by

Kβ xð Þ ¼ β
2αΓ 1=βð Þ exp − xj j=αð Þβ

� �
ð9Þ
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where Γ(⋅) is the Gamma function. The shape parameter β determines the decay rate of the
probability distribution function. Figure 1 illustrates the probability density function of the
generalized Gaussian kernel functions with different shape parameters. The smaller the shape
parameter is, the probability density function decline faster.

3.2 The new regularization term

In order to avoid the re-initialization step, the energy penalty term is proposed in [11] to keep
the level set function as a signed distance function which can be characterized by the following
energy functional:

Rp ϕð Þ ¼ ∫Ωp ∇ϕ xð Þj jð Þdx ð10Þ
where p(s) is the following potential function with minimum point s = 1:

p sð Þ ¼ ∫Ω
1

2
s−1ð Þ2dx ð11Þ

However, the above energy penalty term may have an undesirable side effect on the
level set function when |∇ϕ| is close to 0 and it affects the accuracy of numerical
solution. Li et al. [13] proposed a double-well potential function p1(s) based on
trigonometric function for the distance regularization term and the corresponding
energy functional has two minimum points at s = 0 and s = 1. Wang et al. [21] take
the idea of a few steps by constructing the new double-well potential function based on
polynomial function:

p2 sð Þ ¼
1

2
s2 s−1ð Þ2 þ 1

2
s3 s−1ð Þ3; s≤1

1

2
s−1ð Þ2; s > 1

8><
>: ð12Þ

It has the same property with the double-well potential function p1(s) but has low computation
complexity due to the usage of polynomials. Because the trigonometric function is computed
by Taylor polynomial, the order of new polynomial function is low and is easy to be computed.

Fig. 1 The probability density function of generalized Gaussian distribution
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Furthermore, the polynomial function has the characteristics of simple structure and easy
operation, differentiation and integration.

Then, the new energy penalty term is obtained by follows:

Rp2 ϕð Þ ¼ ∫Ωp2 ∇ϕ xð Þj jð Þdx ð13Þ
where p2(s) is the new double-well potential function in Eq. (12).

The gradient flow of new energy penalty term is as follows:

∂ϕ
∂t

¼ −
∂Rp2

∂ϕ
¼ div dp2 ∇ϕj jð Þ∇ϕ	 


dp2 ¼ p2
0 sð Þ=s

8<
: ð14Þ

To control the smoothness of the zero level set, the following length penalty term is also
included:

L ϕð Þ ¼ ∫Ω ∇H ϕ xð Þð Þj jdx ¼ ∫Ωδ xð Þ ∇ϕ xð Þj jdx ð15Þ
In this way, the new regularize energy term of the proposed method consists of two parts:

ER ϕð Þ ¼ v⋅L ϕð Þ þ P ϕð Þ ¼ v∫Ωδε ∇ϕ xð Þj jdxþ ∫Ωp2 ∇ϕ xð Þj jð Þdx ð16Þ

where v is the parameter to control the penalization term. The v larger is, the larger objects are
detected.

3.3 Level set evolution equation

Now, the overall energy functional of the proposed method is defined as follows:

Enew m1;m2;ϕð Þ ¼ Edata m1;m2;ϕð Þ þ ER ϕð Þ
¼ ∫Ω I xð Þ−m1j j2H ϕ xð Þð Þdxþ ∫Ω I xð Þ−m2j j2 1−H ϕ xð Þð Þð Þdx
þ v∫Ωδε ∇ϕ xð Þj jdxþ ∫Ωp2 ∇ϕ xð Þj jð Þdx

ð17Þ

In the above equation, the regularized versions of Heaviside function and Dirac function are
utilized as follow:

Hε xð Þ ¼ 1

2
1þ 2

π
arctan

x
ε

� �� �

δε xð Þ ¼ 1

π
⋅

ε
ε2 þ x2

8>><
>>:

ð18Þ

Minimizing the overall energy function with respect to ϕ to get the corresponding gradient
descent flow by the variation level set method [2]:

∂ϕ
∂t

¼ −δε ϕð Þ I xð Þ−m1 xð Þ2
� �

− I xð Þ−m2 xð Þ2
� �h i

þ v⋅δε ϕð Þ⋅div ∇ϕ
∇ϕj j

� �
þ div dp2 ∇ϕj jð Þ∇ϕ	 
 ð19Þ

where δε(ϕ) is the regularized Dirac function defined in Eq. (18).
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3.4 Description of algorithm steps

The main steps of the proposed algorithm are summarized as follows:

Step 1: Set the initial contour C and the default parameters.
Step 2: Set the parameters v, w and the number of iteration n.

Fig. 2 Segmentation results on inhomogeneous images using the K-GLIF model. The upper row: the initial
contours. The lower row: the segmentation results of the proposed method

Fig. 3 Segmentation results on a synthetic image. The upper row: the initial contours. The middle row: the
segmentation results of LBF model. The lower row: the segmentation results of the proposed method
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Step 3: Calculate the object and the background weighted intensity fitting values of the
original image.

Step 4: Evolve level set function ϕ according to the Eq. (19).
Step 5: Judge whether evolution is stationary. If yes, extract the zero level set from the final

level set function ϕn + 1; Otherwise, go to Step 3.

4 Experimental results and analysis

In this section, we apply the proposed K-GLIF model to inhomogeneous images, synthetic
images, medical images, multi-object images, natural and infrared images from different
modalities, and use the same parameters setting of Δt = 0.1, h = 1, ε = 1, α = 40 and β = 0.4
for all the experiments. The parameters of v, w and n can be adjusted according to specific
images. The computation is performed in Matlab 2014a on a computer with 3.30GHz Intel
Core i5 CPU and 4GB RAM.

4.1 Inhomogeneous images segmentation

Four images with inhomogeneous intensity are used to validate the performance of the K-
GLIF model. The upper row of Fig. 2 shows the initial contour (red curve) of the four images.
The lower row of Fig. 2 demonstrates the segmentation results (green curve) using the K-GLIF
model. It can be seen that the proposed method can effectively segment images with inhomo-
geneous intensity. The parameters are taken as w = 0.01, v = 0.002 × 2552 for the first image
and w = 0.01, v = 0.001 × 2552 for the other three images.

4.2 The robustness of the initial contour

Figure 3 illustrates the segmentation results of the K-GLIF model from different initial
contours on a synthetic image. The upper row includes different four different initial contours
(red curve) of the images, the middle row demonstrates the segmentation results using the LBF
model from the four initial contours, and the lower row is the segmentation results by the
proposed K-GLIF model. It can be observed that the LBF fails to segment the synthetic image
for different initial contours while the proposed K-GLIF model can overcome the weak
boundaries and extract the objects of interest with different initial contours on the synthetic
image. Moreover, starting from the four initial contours, the proposed K-GLIF model gives
almost same segmentation results and thus it is robust to initial contours. The parameters
setting of the K-GLIF model are w = 0.01, v = 0.002 × 2552 and that of the LBF model are
λ1 = λ2 = 1, v = 0.001 × 2552 and σ = 3.

4.3 Medical images segmentation

The non-linearity of intensity distribution often occurs in medical images, such as the five
images shown in Fig. 4. The first column shows initial contours in medical images, the middle

Fig. 4 Segmentation results on medical images using LSACM and the K-GLIF model. The first column: the
initial contours. The middle column: the segmentation results of LSACM. The last column: the segmentation
results of K-GLIF model

b
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column demonstrates the segmentation results using the LSACM, and the last column shows
the segmentation using the K-GLIF model. In the brain MR image, the segmentation result
using LSACM is very smooth, resulting in the loss of the edge information of the brain whiter
matter, the K-GLIF model captures more details in edge-region and detects the contour of
brain. The object of medical images in second and third row is obvious, it can be seen from
segmentation results that the proposed model is more accurate than LSACM, and the seg-
mentation curve is closer to the real object contour. The fourth and fifth row are two blood
vessel images with intensity inhomogeneity. We can observe that the segmentation curve of K-
GLIF model is smoother than that of LSACM, and there is no phenomenon that background is
mis-divided into object. In the experiment, we use the parameters w = 0.5, v = 0.05 × 2552 for
the first three images in the K-GLIF model and w = 0.1, v = 0.01 × 2552 for the other images in
the K-GLIF model, the LSACM use the optimal parameter σ = 2.5 for the forth image and σ =
6 for the other images.

In addition, the iteration numbers and computation time of LSACM and K-GLIF model in
experiment are given in Table 1 for five medical images displayed in Fig. 4. Our model
requires less iteration numbers and computation time than LSACM. Considering both accu-
racy and computation efficiency, the K-GLIF model has better segmentation performances
than LSACM.

4.4 Multi-object images segmentation

Besides the segmentation of images with inhomogeneous intensity and noisy images, multi-
object segmentation is also a great difficulty for the level set method. By utilizing both local
and global information, the K-GLIF model provides some effectiveness on multi-object
images segmentation and it obtains higher accuracy than other models. In Fig. 5a, the intensity
of some objects is higher than the background intensity and that of others objects is lower than
the background intensity. The initial contour in original image is shown in Fig. 5b. Figure 5c
and e are the segmentation results of the CV model and the LCV model. It can be seen that the
two low intensity circles are missed. Figure 5d is the result of the LBF where the result is of
slight over-segmentation. Figure 5f is the result of the proposed K-GLIF model, where all the
six circles are successfully segmented. The K-GLIF model use the parameters setting w = 0.05
and v = 0.003 × 2552, and the parameters in the CV model and the LCV model are λ1 = λ2 = 1
and v = 0.003 × 2552, which are tuned to achieve the best results. The parameters setting of the
LBF model are λ1 = λ2 = 1, v = 0.003 × 2552 and σ = 3.

In Fig. 6, we further illustrate of the segmentation effect of the CV, LBF, LCVand K-GLIF
models for multiple small objects with slight inhomogeneous intensity. The initial contour in
original image is shown in Fig. 6b and c–f are segmentation results. It can be seen that the CV
fails to detect edge objects at the bottom of the image, the result of the LBF model contains

Table 1 Iterations and CPU time(s) by LSACM and K-GLIF model for medical images

Model Image1
174 × 238
Iter time

Image2
252 × 185
Iter time

Image3
225 × 228
Iter time

Image4
111 × 110
Iter time

Image5
103 × 131
Iter time

LSACM 100 32.4 100 25.1 200 87.2 720 28.0 300 27.5
K-GLIF 100 3.7 100 3.5 40 1.4 600 9.2 160 2.3
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redundant contours. The result of the LCV model is similar to that of CV model, where the
edge objects at the top of the image and the right of the image are not closed and the bottom of
objects are not fully segmented. Differently, the K-GLIF model can overcome the above

Fig. 5 Segmentation results on multi-object image using CV, LBF, LCV and the K-GLIF models. a original
image b initial contour c CV model d LBF model e LCV model f K-GLIF model

Fig. 6 Segmentation results on multi-object image using CV, LBF, LCV and the K-GLIF models. a original
image b initial contour c CV model d LBF model e LCV model f K-GLIF model
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phenomenon and accurately extracts all small objects in the image. In the experiment, we use
the parameters w = 0.1 and v = 0.001 × 2552 in the K-GLIF model. The CV and LCV models
use the optimal parameters λ1 = λ2 = 1, v = 0.001 × 2552. The LBF model uses the parameters
λ1 = λ2 = 1, v = 0.001 × 2552 and σ = 3.

4.5 Natural images segmentation

We compared our model with the CV, LBF and LCV models based on Berkeley Segmentation
Dataset (BSD300) [1]. The BSD300 consists of a number of natural images. More than 120
images are selected from dataset in the experimental, and the segmentation results of 5 natural
images (Image ID: 86016, 135,069,163,014, 42,049, 317,080) are shown in Fig. 7. The
original images and ground truth are shown in Fig. 7a–b and the segmentation results of

Fig. 7 Segmentation results on natural images using CV, LBF, LCVand the K-GLIF models. a original image b
ground truth c CV model d LBF model e LCV model f K-GLIF model

Multimedia Tools and Applications (2019) 78:33659–3367733670



CV, LBF, LCVand the K-GLIF are shown in Fig. 7c–f. It can be seen that the proposed model
has more closer segmentation results than other models.

4.6 Infrared images segmentation

In order to verify the superiority of the K-GLIF model, a comparison is performed between it
and the other three models: the CV, LBF model and LCV models. Infrared images of size
320 × 240 are derived from the OTCBVS Benchmark Dataset [18]. In experiments, the CVand
LCV models use the optimal parameters: λ1 = λ2 = 1, v = 0.01 × 2552. The LBF model uses the

Fig. 9 The comparison of infrared data2 segmentation. a original image b initial contour c CV model d LBF
model e LCV model f K-GLIF model

Fig. 8 The comparison of infrared data1 segmentation. a original image b initial contour c CV model d LBF
model e LCV model f K-GLIF model
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optimal parameters: λ1 = λ2 = 1, v = 0.001 × 2552 and σ = 3. The K-GLIF model use the
parameters w = 0.6, v = 0.06 × 2552 for the infrared data1 and w = 0.5, v = 0.5 × 2552 for the
infrared data2 and data3.

In the infrared data1 and data2, the object and background are relatively complex, and some
pixels in background are similar to that in object in intensity, as shown in Figs. 8a and 9a. The
initial contours in the original images are shown in Figs. 8b and 9b. It can be seen that only the
K-GLIF model can successfully extract the object and the object’s edges in the segmentation
results using the K-GLIF model are smoother and more accurate, as shown in Figs. 8f and 9f.
The other models fail to give satisfactory results.

In the infrared data3, the background is complex and there is obvious interference, as
shown in Fig. 10a. It is difficult for both the CV model and the LCV model to separate the
object from the background due to strong interference, as shown in Fig. 10c and e. The result
of the LBF model is also unsatisfactory, as shown in Fig. 10d. Differently, the K-GLIF model
gives a satisfactory result without misclassification and over-segmentation, as shown in
Fig. 10f.

Fig. 10 The comparison of infrared data3 segmentation. a original image b initial contour c CV model d LBF
model e LCV model f K-GLIF model

Fig. 11 The schematic diagram of evaluation measure
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Finally, the two measures, F-measure (FM) and Localization-error (LE) [3, 5] are used to
evaluate the segmentation results of different models on the three infrared images. As shown in
Fig. 11, which segmentation results FP given by the different model and standard results FN
given by the ground truth. FM and LE are given by:

FM ¼ 2TP= 2TP þ FPþ FNð Þ ð20Þ

LE ¼ FN þ FPð Þ= TP þ TN þ FPþ TNð Þ ð21Þ
A higher FM score means that a model is more accurate. Meanwhile, a small LE score means
that the localization error is small and the segmentation result is better. Scores in Tables 2 and 3
show that the K-GLIF model obtains competitive performance in comparison with the other
three models.

5 Discussion

5.1 The parameters w and v

In this paper, the parameter w is weighting parameter (0 ≤ w ≤ 1), which controls the
proportion of the global intensity fitting term and the local intensity fitting term. When
the intensity of the image is inhomogeneous, the local intensity fitting should play a
leading role, in order to obtain satisfactory segmentation result, we can use relatively
smaller w as the weight of local intensity. Thus, the image evolution energy can accurately
drive the evolution curve to capture the local information, and finally converge to object
boundary. For the image with minor inhomogeneity, we should choose larger w as the
weight global parameter, the global energy allows the curve to rapidly evolve to the area
near the object, and not be affected by the location of initial contour, then the local energy
is able to attract the curve to the edge of the object. The length controlling parameter v is
formatted by v = λ × 2552, λ ∈ (0, 1). When v is large, large-size objects are detected; when
v is small, then small-size objects are detected.

Table 2 FM scores of four models

Infrared data CV LCV LBF K-GLIF

1 0.3052 0.2948 0.2995 0.9256
2 0.6385 0.7934 0.4617 0.9504
3 0.0446 0.0519 0.3259 0.9855

Table 3 LE scores of four models

Infrared data CV LCV LBF K-GLIF

1 0.3782 0.3976 0.2368 0.0127
2 0.0799 0.0354 0.1215 0.0088
3 0.5232 0.5228 0.0497 0.0004
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5.2 Effect of the new regularization term

The regularization term defined in Eq. (16) is necessary in the K-GLIF model, which
contains the energy penalty term about level set function and the length penalty term.
Without the penalty term, the level set function grows to very large values (positive or
negative) on the interior and exterior of zero level set. The function will lose the
character of the signed distance function, which results errors in the computation for
the numerical solution to the evolution equation and eventually affect the accuracy of
final segmentation results. We use the new double-well potential function based on
polynomial function to avoid the re-initialization of the level set function in the paper.
The new double-well potential function not only avoids side effects that occur in the
traditional function, but also offers appealing theoretical and numerical property of the
level set evolution.

Double-well function p2(s), the first derivative p
0
2 sð Þ and function dp2(s) are plotted in

Fig. 12, we can observe that dp2(s) satisfies the following relationship lim
s→0

dp2 sð Þ ¼ lim
s→∞

dp2 sð Þ
¼ 1 and |dp2(s)| < 1.

If |∇ϕ| > 1, dp2(|∇ϕ|) is positive and diffusion is forward so as to decrease the |∇ϕ|.
If |∇ϕ| < 0.5, dp2(|∇ϕ|) is positive and diffusion is forward so as to decrease the |∇ϕ| down to

zero.
If 0.5 < |∇ϕ| < 1, dp2(|∇ϕ|) is negative and diffusion is backward so as to increase the |∇ϕ|.

6 Conclusions

In this paper, a new region-based active contour model based on kernel function for
image segmentation is proposed. Due to the generalized Gaussian kernel function in the
weighted intensity fitting term, the intensity information in local regions is extracted to
guide the motion of the contour, which enables the proposed method to effectively
segment images with inhomogeneous intensity and smooth noise. The experiments on
synthetic images, medical images, multi-object images, natural and infrared images have
demonstrated that the K-GLIF model can provide desirable segmentation results and
allow for more flexible localizations of initial contour in comparison with the CV, LCV,
LSACM and LBF models.
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