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Abstract
This paper proposes a novel histogram-based multi-level segmentation scheme of hyper-
spectral images. In the proposed scheme an Improved Particle Swarm Optimization (IPSO)
algorithm is implemented as a nature-inspired evolutionary algorithm to overcome the draw-
back of premature convergence and hence getting stuck in local optima problem of PSO. The
high-dimension of PSO is decomposed into several one-dimensional problems and prema-
ture convergence is removed from each one-dimensional problem. This algorithm is further
extended for replacing the worst particles by the fittest particles, determined by their fitness
values. Multiple optimal threshold values have been evaluated based on fuzzy-entropy aided
with the proposed algorithm. The performance of the IPSO is compared statistically with
other global optimization algorithms namely Cuckoo Search (CS), Differential Evolution
(DE), FireFly (FF), Genetic Algorithm (GA), and PSO. The produced segmented output of
IPSO-fuzzy is then combined with the available ground truth values of image classes to train
a Support Vector Machine (SVM) classifier via the composite kernel approach to improving
the classification accuracy. This hybrid approach (IPSO-SVM) is then applied to popular
hyper-spectral imageries acquired by AVRIS and ROSIS sensors. The final evaluated out-
comes of the proposed scheme are also qualitatively compared to show its effectiveness over
the other state-of-art global optimizers.
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1 Introduction

Image segmentation is a fundamental step for meaningful analyzing and interpretation of
an image. It is considered as a mandatory preprocessing step for extracting objects from
its backgrounds in many computer vision oriented applications. Remote sensing Hyper-
Spectral Imageries (HSI) have got importance as it played an important role to provide
solutions in many applications like soil erosion monitoring, land-cover study, flood mon-
itoring, assessment of forest resources etc. Unlike other spectral imaging, HSI collects
information across the electromagnetic spectrum to obtain the spectrum of each pixel with
the purpose of finding objects. As sensors capture a wide range of wavelengths of con-
tiguous spectral bands so, it may cause a curse of dimensionality problem for effective
segmentation [24]. Effective HSI segmentation still demands a challenging issue for the
researchers. Segmentation denotes to put all homogeneous pixels in clusters concerning to
some common features like color, intensity, and texture so that it can be analyzed properly.
Thresholding approach is broadly accepted to achieve this goal to discriminate the objects
from their background pixels.

In bi-level thresholding, the total image region is subdivided into two homogeneous pixel
regions based on the histogram, minimum-variance, edge-detection etc. The reconstructed
final image is a binary image where all pixels carry higher gray values than a threshold level,
are put into a class whereas pixels having fewer values than a threshold level are put into
another class. Some useful histogram, edge detection, minimum variance, interactive pixel
classification bi-level thresholding techniques are surveyed in the literature [3, 41, 47, 55,
62]. Some global entropy-based bi-level segmentation techniques available in the literature
like [15, 25, 29, 42, 48, 63]. These techniques are effective enough for bi-level threshold-
ing, but not preferred for complex segmentation problems where multiple threshold values
are desired. Adaptive neuro-fuzzy, hierarchical, histogram-based approaches for multilevel
effective color image segmentation schemes are noted in the literature [8, 13, 28]. Multi-
level approaches may still struggle because of its high time and working complexities [4,
27, 45, 61]. Researchers tried to overcome those issues by incorporating various exhaustive
search process techniques to enhance the computational speed like [14, 54, 65] etc. Mul-
tilevel thresholding techniques with entropy maximization or minimization along with any
meta-heuristic technique holds recent research interest [21].

Section 2 presents a literature survey related to meta-heuristic approaches, used to find
multiple threshold values and a brief survey regarding supervised classification. Section 3
formulates the problem using fuzzy entropy for multilevel segmentation. Section 4 solves
the multilevel problem by generating optimal solutions using the proposed Improved Par-
ticle Swarm Optimization (IPSO) technique. Dataset, experimental parameter setup are
covered up in Section 5. The simulated results of the unsupervised segmentation scheme
with its performance evolution along with hybrid classification obtained by different
meta-heuristics are presented in Section 6. Finally, Section 6 draws a conclusion of the
paper.

2 Related works

A meta-heuristic procedure is used to generate a search algorithm to provide the best solu-
tion to an optimization problem with limited computation capacity. As these approaches
provide a better and easy sample set of solutions for a wide variety of complex problems, so
it has been flourishing since almost last decade. These techniques are quite easy to generate
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optimal solutions to NP-hard problems as users don’t need to have detailed knowledge
regarding the selection of the initial population. Some well-known derivative-free optimiz-
ing techniques like Genetic Algorithm (GA) [11, 43], Firefly (FF) [38, 44], Artificial Bee
Colony (ABC) [7, 23, 26], Cuckoo search algorithm [6, 56], Differential Evolution (DE)
[50] based approaches to find optimal solutions of meta-heuristic problems are surveyed in
the literature.

Particle Swarm Optimization (PSO) is another popular stochastic global optimization
algorithm of recent category [12, 17, 40, 52]. The algorithm was inspired by the real-life
swarm behaviors and has become an effective tool for multilevel problem optimization. But
the main drawback of this basic PSO is that it may get stuck in sub-optimal solution regions
and the problem may increase further in high-dimensional spaces as its success depends
on the combination of global exploration and local exploitation features during the opti-
mization process. Researchers identified this problem and tried to improve the algorithm.
Cooperative and comprehensive learning- based PSO algorithm surveyed in the literature
[5, 35, 60]. Further literature reveals that effective multi-swarm based PSO algorithm pro-
posed by various researchers like [37, 68]. In the year 2004, Ratnaweera et al. [46] proposed
a self-organizing hierarchical particle swarm optimizer with time-varying acceleration coef-
ficients. They incorporated mutation concept into PSO first and later on social and cognitive
parts of PSO had been updated to generate new velocity of each particle whenever stagnancy
occurred. In the recent year, Nayak et al. [39] proposed a modified PSO aided with extreme
learning machine mechanism for pathological brain detection. Modified PSO successfully
optimized the hidden node parameters and combined MPSO-ELM overcame the drawback
of single SVM or ELM based classifiers. So there is a scope to form an improved PSO algo-
rithm so that premature convergence caused by the curse of dimensionality can be removed
and as well as high complexity and slow rate of convergence problem can also be improved.

2.1 A brief survey of supervised classification

In supervised classification, remote sensing image data are analyzed quantitatively with
the help of its known ground truth values. Challenge is to develop an approach to classify
the spectral domain into regions so that it matches with ground cover classes and hence
increase the accuracy of the technique. One lightweight sparsity-based algorithm, Basic
Thresholding pixel-wise classifier is one of the approaches proposed by [58, 59] increased
the accuracy of classification and reduced computational cost a lot. Some popular multi-
ple learning kernel-based approaches for hyper-spectral data are surveyed in the literature
[9, 10, 53] as well. A simple composite kernel-based approach that controlled the rela-
tive proportion of the spatial and segmented information found in the literature [31]. A
multi-modal logistic regression and Markov random fields based hyper-spectral image seg-
mentation produced effective results proposed by [30]. Some more approaches also exist
in the literature which combined supervised and unsupervised classification to form hybrid
approaches to obtain better accuracy and less computational cost [16, 57]. Mughees et al.
[36] proposed boundary adjustment technique by merging spatial and spectral information
of hyper-spectral data that enhanced the accuracy over the ground truth. Ghamsi et al. [18]
proposed a Majority Voting approach to combine the segmented results of hyper-spectral
images obtained by Fractional-Order Darwinian PSO as an optimization algorithm with
the supervised classification map to generate high accuracy of classified objects. Sarkar et
al. [51] proposed Differential Evolution (DE) based optimized segmentation of land cover
images and then formed one composite kernel by SVM with the known training and test
data to improve the performance of supervised classification. Some current CNN-based
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spatial-spectral classification approaches of hyper-spectral images have been surveyed as
well in the literature. A novel deep pixel-pair method had been proposed to increase the
accuracy over conventional CNN-based approaches [32]. In that approach, center and sur-
rounding pixels had been combined and got trained by CNN and final results determined
by the voting strategy. Li et al. [33] combined composite kernels (spatial+spectral) with
Adaboost framework which later incorporated with weighted Extreme Learning Machine to
increase accuracy in imbalanced large datasets. Zhang et al. [67] proposed a diverse region-
based CNN classification framework to exhibit spatial-spectral context- sensitivity which
resulted accurate pixel classification. To remove the curse of dimensionality and excessive
computation time problem at the time of classifying spectral images, a collaborative classi-
fication framework had been proposed [66]. In that method, deep spectral features of HSI
had been extracted by the trained CNN model and later effective statistical image features
had been learned through contextual vectors which were formed by the combination of the
rich spectral, spatial and statistical information of the images. In the year 2018, Xu et al. [64]
proposed a two-branch CNN to extract spatial-spectral information from multi-band images.
Extracted spatial-spectral information had been combined through a dual-tunnel branch of
cascade network to achieve more accurate classification results. Li et al. [34] presented a
survey paper of dimension reduction of HSI based on discriminant analysis. The approaches
aimed to reduce the dimensionality of highly correlated spectral bands without losing impor-
tant information. Experimental results were compared between four well-known approaches
namely Kernel Discriminant Analysis, Kernel Local Fisher’s Discriminant Analysis, Kernel
Sparse Graph-based Discriminant Analysis, and Kernel Composite Graph-based Discrim-
inant Analysis (KCGDA). In KCGDA, spectral-spatial information were integrated to
achieve the highest accuracy. Motivated by the spectral-spatial classification approaches,
one innovative spectral-spatial approach has been presented here to achieve highest accu-
racy. Though CNN based approaches generated higher accuracies for HSI dataset, but the
computational cost for small datasets like HSI classification may discourage researchers.
So, motivated by the above stated spatial-spectral combination approaches, we have pro-
posed a composite spectral-spatial kernel-based application got trained by the conventional
SVM classifier. The detailed contribution has been discussed next.

2.2 Author’s contribution

The key contribution of our approach is to produce accurate, robust and effective unsu-
pervised segmentation results which will later be given as input to the supervised SVM
classifier for improving the classification accuracy. Fuzzy entropy has been generated for
multi-level segmentation problem. As problem has been extended to convex optimization
search space, so improving the stagnancy caused by PSO has been essentially required.
To remove the stagnancy of the PSO problem, an Improved version of PSO has been pro-
posed which communicates through the introduction of context parameter. Features have
been extracted using Principal Component Analysis (PCA) and then Attribute Profile (APs)
have been formed from each PC to finally form Extended Multi-Attribute Morphological
Profiles (EMAPs) which has been used here as spatial information [31]. Segmentation Map
obtained by multi-level fuzzy entropy and IPSO has been used here as spectral informa-
tion. The combined spatial and spectral kernels have been trained by the SVM classifier to
generate the final results. Step-wise contribution is determined like following:

– First of all the required parameters along with the threshold levels are set for the IPSO
algorithm.
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– Next, composite high-dimensional swarm (formed with the help of threshold level) is
broken into several one-dimensional swarms in search space.

– In the proposed approach each swarm communicates with each other by exchang-
ing information to find composite fitness of an entire system with the introduction of
Context Parameter (CP) discussed in detail later.

– Next, each particle’s new velocity is updated based on the Pbest information of any
particle within a swarm to avoid premature convergence. Hence the new position of the
particle is also updated for each generation by the tournament selection procedure.

– Membership function based fuzzy entropy is calculated from image histogram which
helps to find best velocity and position of the particle stated in the above step.

– The segmented output as spectral information and known spatial information (obtained
by the PCA and EMAP [31]) are then combined to form one composite Kernel (CK),
based on the Gaussian radial basis function kernel with SVM is known as (SVM-
CK) [31] is then considered to achieve better classification accuracy shown in the
Fig. 1.

Next section formulates multilevel thresholding problem by the fuzzy entropy based
objective function and is solved by using the proposed IPSO technique to get desired
optimal thresholds.

Hyper-Spectral Image

Feature extraction 

using PCA

Extended Multi-attribute 

Morphological Profile  

formation (EMAP) used as 

spatial kernel [32]

Selection of test and 

training samples

Perform fuzzy based 

segmentation to generate 

segmentation map (SM)

used as spectral kernel

Combining spatial and spectral 

kernels to form stacked and 

cross-information kernels [32]

Train the SVM classifier

Final classification 

Fig. 1 Proposed methodology
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3 Problem formulation

Multilevel thresholding of color image determines two or more optimum thresholds for each
of the three components (red, green, blue) of the image. L*a*b* color space is used for seg-
mentation problem than non-uniform color space like RGB to represent colors clearly. First
of all, the RGB images have been converted to CIE L*a*b* color space using MATLAB. L*
indicates lightness, a* red-green and b* blue-yellow color where each component value lies
between 0 to 255. Let I is an original color image with size M × N and ri be the histogram
of the image which is the combination of three components to store the color information
i.e. ri = (L∗

i ; a∗
i ; b∗

i ) for i = (1, 2, ..L) where L∗
i , a∗

i , b∗
i denote ith intensity value of the

channels. L denotes the number of levels (0-256).

3.1 Multi-level fuzzy entropy

Traditional classical set (S) states that a collection of elements will either belong to or not
belong to set S. But a fuzzy set is known as the extension of a classical set where an element
can belong to partially also. Consider a fuzzy set F and can be defined as

F = {(y, μF (y)) | y ∈ Y } (1)

where 0 ≤ μF (y) ≤ 1 and μF (y) is called the membership function, which finds the
closeness of x to F.

In this paper we have chosen trapezoidal membership function of a fuzzy set to calculate
the membership of k segmented regions, μ1, μ2, ....μk by using 2 × (k − 1) unknown fuzzy
parameters. Parameters are chosen as a1, b1..., ak − 1, bk − 1, where 0 ≤ a1 ≤ b1 ≤ ... ≤
ak−1 ≤ bk−1 ≤ L − 1 displayed in the Fig. 2. Hence following membership function can
be defined for k-level thresholding:

μ1(n) =
⎧
⎨

⎩

1n ≤ a1
n−b1
a1−b1

a1 ≤ n ≤ b1

0n > b1

(2)

μk−1(n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0n ≤ ak−2
n−ak−2

bk−2−ak−2
ak−2 < n ≤ bk−2

1bk−2 < n ≤ ak−2
n−bk−1

ak−1−bk−1
ak−1 < n ≤ bk−1

0n > bk−1

(3)

μk(n) =
⎧
⎨

⎩

1n ≤ ak−1
n−ak

bk−ak
ak−1 < n ≤ bk−1

1n > bk−1

(4)

The maximum fuzzy entropy for each of k-level segmentation can be expressed as:

H1 = −
L−1∑

i=0

ri∗μ1(i)
R1

∗ ln(
ri∗μ1(i)

R1
),

H2 = −
L−1∑

i=0

ri∗μ2(i)
R2

∗ ln(
ri∗μ2(i)

R2
),

·
Hk = −

L−1∑

i=0

ri∗μk(i)
Rk

∗ ln(
ri∗μk(i)

Rk
),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)
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Fig. 2 Fuzzy membership function for k-level thresholding

where, R1 = ∑L−1
i=0 ri ∗ μ1(i), R2 = ∑L−1

i=0 ri ∗ μ2(i), ...., Rk = ∑L−1
i=0 ri ∗ μk(i) Next,

the optimum value of parameters can be achieved by maximizing the total entropy described
in the following equation:

ψ(a1, b1, ...ak−1, bk−1) = max([H1(t) + H2(t)] + .. + Hk(t)]) (6)

For easy computation, two dummy thresholds are t0 = 0 and tk = L − 1 are introduced
with t0 < t1 < ... < tk−1 < tk . The computational complexity for this multilevel problem is
very expensive and high O(Lk−1). It is also noted that growth of complexity is proportional
to the increase of levels [20]. So, IPSO as a global optimization technique is proposed to
optimize the (6) by reducing the time complexity and hence produce best optimal solutions
in exhaustive search space. Multiple (k − 1) number of thresholds using fuzzy parameters
can be obtained by the following formula:

t1 = (a1 + b1)

2
, t2 = (a2 + b2)

2
, .., tk−1 = (ak−1 + bk−1)

2
(7)

4 Overview of particle swarm optimization (PSO) algorithm

In PSO algorithm, particles (multiple solutions) are put into multidimensional spaces and
the fitness of each particle is evaluated in each iteration. Here the new velocity, as well as
new position of a particle, is calculated on the based on its present velocity and position at
the start of a new iteration. The distance between particle’s present and the best position
called as pb whereas the distance between the present position of a particle and the position
of the best particle among the total swarms is called as the gb. Assume it is required to solve
a D-dimensional optimization problem by minimizing the objective function f (x) given as

minf (s), s = [s1, s2, ....sD] (8)
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where D denotes the number of parameters to be optimized. Here in basic PSO algorithm,
a swarm of P “particles” is flown in a D-dimensional search space in a random manner
to find the optimum solution of a fitness function. Let Sa = (S1

a , S2
a , ....SD

a ) represents
the position, Va = (V 1

a , V 2
a , ....V D

a ) the velocity and pba = (pb1
a, pb2

a, ....pbD
a ) the best

previous position obtained so far for every ith particle which consists of the lowest fitness
values. Similarly, the best position noted for each iteration in the entire search space is
denoted by gb = (gb1, gb2, ....gbD). The velocity V d

a of each particle in dth dimension for
each iteration is determined by the following equation:

V d
a = w ∗ V d

a + cx ∗ r1d
a ∗ (pbd

a − Sd
a ) + cy ∗ r2d

a ∗ (gbd − Sd
a )

V d
a = sign(V d

a ) ∗ min(abs(V d
a ), V d

max) (9)

The additive influence of V d
i found in the previous iteration known as “momentum” compo-

nent, individual weighting distance of particles from Pbd
a known as a cognitive component

and its distance from gbd known as social component, cx and cy are the acceleration
coefficients, r1, r2 are the random numbers randomly generated from 0 to 1, w is the inertia
weight contains a high value at initial then gradually decreases according to the following
equation:

w = winitial − θIW × it (10)

Set the initial parameters of thresholds k, population (Np), winitial, acceleration coefficients 

cx, cy, random nos. r1, r2 , maxgen , iterations.

Create and initialize of P particles of D-one dimensional swarms with their corresponding 

S, V, pb, and gb of the population.

Compute and update pb and gb information of individual particle based on their Context 

Parameter (CP).

Calculate new velocity of the particle based on the selection probability (f) value as per 

Eq. (12)

Calculate final position of particle based on absolute particle velocity shown in the Fig. 4

Select the best particle by replacing the worst particles based on the fitness value obtained 

by the fuzzy entropy-based objective function given in Eq. (6).

Is termination criterion met?

Save the best threshold values lie between [0-255]

Fig. 3 Block-diagram of the proposed IPSO algorithm
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winitial is the inertia weight at the starting condition, it is the present iteration count, θIW

is the slope of inertia weight variation. The formula to get the best position of a particle in
PSO is:

Sd
i = Sd

i + V d
a (11)

However, PSO algorithm suffers from two basic problems like “curse of dimensionality”
and a tendency of premature convergence which is quite common in several optimization
algorithms. This type of problem leads particle’s motion to get stuck and hence algorithm
get prone to local optima convergence. As a result of that, some particles will gain low
fitness values although their dimension values lie very close to the global optimal solu-
tion. Cooperation operation can remove this problem by acquiring information from “best”
dimensions and preventing useful information from being unnecessarily discarded.

4.1 Motivation for improved PSO

“Curse of dimensionality” problem can be resolved by dividing a composite high-
dimensional swarm into several one-dimensional swarms, which will cooperate with each
other dynamically by exchanging the information to form composite fitness of an entire
system. High-dimensional space can be divided into several one-dimensional spaces, so
cooperation between each one-dimension can help to save the most useful information to

Algorithm 1 Pseudo code of the proposed improved PSO (IPSO) technique.

1 BEGIN
2 DEFINE
3 Create and initialize P particles for each of the D one-dimensional swarms with their

corresponding S, V and pb and the gb of the population

4 REPEAT:
5 FOR b=1 to D

6 IF ( swarm got stagnated for last few iterations)

7 Find ”best” particles and worst particles in the swarm on the

basis of their fitness values

8 Destroy those worst particles and replace them by clones of ”best”

particles

9 ENDIF
10 FOR i=1 to P

11 IF then
12 IF then
13 ENDIF
14 ENDIF
15 Now calculate new velocity of particle in the following manner

16 Where f will be selected

according to Step 1- Step 4 mentioned in the algorithm

17 Previous equation reduces to

18 Calculate final position of particle:

19 END FOR
20 END FOR
21 UNTIL termination condition meets

22 END
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accelerate convergence. Further premature convergence, caused by traditional PSO algo-
rithm may be overcome by modifying the new velocity of each particle based on its pb
information of within the swarm. In the next subsection, the detailed Improved Particle
Swarm Optimization (IPSO) is proposed to overcome both the problems like “curse of
dimensionality” and the tendency of premature convergence at a time. Figure 3 describes
the block-diagram of the algorithm where as Algorithm 1 illustrates the detail working of
the algorithm with code snippet.

4.2 Proposed improved particle swarm optimization (IPSO)

In this proposed approach, a D-dimensional problem is decomposed into D-one dimensional
swarms where each swarm consists of S particles. A final global solution is evaluated by
aggregating all the gb solutions achieved from each individual swarm. The fitness evaluation
of particles is done based on the introduction of a new parameter called Context parameter
(denoted by CP) that will be used to exchange information among all the individual swarms.
The size of Context Parameter (CP) for a D-dimensional problem is equal to D-dimension
itself. Here, when a bth swarm is active, then the CP is formed by remaining (D − 1)

swarm’s gb values. Then the bth row of the CP is filled by each particle of bth swarm
one by one. Each such CP is calculated for finding its composite fitness. So the pb value
(Pb.pba) for the ath particle and the gb solution (Pb.gb) for bth swarm are determined in
that manner so that they not only depend on the performance of the bth swarm alone. Now
the velocity and position of each particle in the bth swarm (denoted by Pb.Sa and Pb.Va)
are updated based on these pb and gb solutions. Lastly the bth entry of the CP is filled by
the newly calculated Pb.gb and this process is continued for each bth swarm, till all the
relevant context parameters are filled one by one. So, in brief, it can be concluded that the
total search space is divided into D subspaces for D individual swarms and these swarms
communicate with each other through their corresponding CP to determine their individual
Pb.pba and Pb.gb. The final context vector is calculated by concatenating all the evaluated
Pb.gb determined across all the swarms.

However, this above mentioned technique may still be get trapped in suboptimal loca-
tions within search space, where all individual solutions may fail to produce a better solution
every time. To overcome this problem, we propose some modifications to the above-
mentioned approach to determine new velocities and positions of each particle in each
individual swarm in subspaces. So, the created problem of stagnation because of premature
convergence is seriously taken care off, by permitting each particle to adjust its velocity (so,
the position also), based on the pb information of any particle within the swarm. This helps
to discourage premature convergence within the swarm strongly.

Now to select the particle, whose pb can be used to find the new velocity of any given
particle within a given one-dimensional swarm is shown in the Algorithm 2. Hence, the new
velocity update relation for each particle in a given swarm is demonstrated as

Pb.Va ← w ∗ Pb.Va + c′
a ∗ randa ∗ (Pb.pbfa − Pb.Sa) (12)

where fa decides which particle’s pb should be followed by this ath particle. It is defined
in the Steps 1-4 in the Algorithm 2.
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Algorithm 2 Algorithm for ”Best” particle selection.

1 Generate a random number in the range [0,1]. If it is higher than ”selection probability”

(f) then particle will learn from its own pb, otherwise it will learn from another

particle’s pb and will follow the tournament selection procedure, shown in steps 2-4.

2 Putting the current particle aside, choose two particles randomly from the population.

3 Now compare the fitness values of these two particle’s pb and choose the particle

With higher fitness.

4 The particle found with better fitness is chosen and its pb is used to evaluate the

velocity of the current particle under consideration.

4.3 “Best” particles cloning and “Worst” particle destruction

This module is employed to each one-dimensional local swarm for further improvement
of this optimization strategy. As the local swarms may get be stagnated for the last few
iterations because of almost insignificant improvements in the fitness values of the gb par-
ticle for the given swarm, then particles are needed to sort according to their pb values.
Assume Preplace are the number of particles identified based on their lowest fitness values,
corresponding to their pb positions (called “Worst” particles), to be replaced. Similarly,
Preplace number of particles are also being identified in this swarm, based on their highest
fitness values, corresponding to their pb positions (called as “Best” particles). These parti-
cles will be used to replace the worst particles identified so far. Now a superior swarm will
be formed to obtain better optimization performance in the search space. At the end of this
approach, it can be found that each swarm contains Preplace number of positions where two
particles are present simultaneously. So these particles are “cloned” to each other and this
process is repeated for each one-dimensional swarm. We have considered 50% of the par-
ticles (Preplace = P/2) are declared as “Worst” whereas remaining 50% are designated as
“Best” particles.

Our goal is to maximize the optimum k-dimensional vector [t0, t1, t2, ....tk] by the pro-
posed IPSO algorithm. But PSO is usually designed to solve minimization problem, so we
solve the formulated problem of (6) by constructing fitness function as the reciprocal of
it and then maximize ψ(a1, b1, ...ak−1, bk−1). Now the computational complexity of the
fuzzy entropy based IPSO algorithm is calculated as O(Np ∗ 2(k − 1) ∗ G), where Np
is the maximum populations, D denotes dimensionally which is equal to the number of
threshold levels (in this case 2 ∗ (k − 1), 2 unknown fuzzy parameters), G is the maxi-
mum iteration. It is clearly seen the complexity of the multilevel problem has been reduced
effectively in the exhaustive search space because of applying the meta-heuristic optimiza-
tion algorithm.

5 Experimental setup

5.1 Datasets

Three well-known publicly available datasets namely Indian Pines, Pavia University and
Salinas are used for our experiments. Indian Pines image taken over the agricultural Indian
Pine test site of North-western Indiana in June 1992, by the Airborne Visible/Infrared

Multimedia Tools and Applications (2019) 78:34027–34063 34037



Color Class 

No

Name of the class Train 

Samples

Test 

samples

1 Alfalfa 10 36

2 Corn-no till 143 1285

3 Corn –min till 83 747

4 Corn 24 213

5 Grass/Pasture 49 434

6 Grass/Trees 73 657

7 Grass/Pasture-mowed 10 18

8 Hay-windrowed 48 430

9 Oats 10 10

10 Soybeans-no till 98 874

11 Soybeans-min till 246 2209

12 Soybeans-clean till 60 533

13 Wheat 121 184

14 Woods 127 1138

15 Buildings-grass-tree-
drives

39 547

16 Stone-steel towers 10 83

Fig. 4 Each class and its corresponding number of training and test samples of Indian Pines dataset

Imaging Spectrometer (AVIRIS) sensor mounted from an aircraft flown at 65,000 ft alti-
tude. The image has 220 bands of size 145 × 145 with a spatial resolution of 20 m per pixel
and a spectral coverage ranging from 0.4 to 2.5 μm. 20 water absorption bands no. 104–
108, 150–163, and 220 were removed before experiments and therefore 200 out of 220 will
be used for evaluation.

The University of Pavia image holding an urban area surrounding the University of Pavia
was captured by the Reflective Optics System Imaging Spectrometer (ROSIS-03) optical

Color Class Class 

name

Train 

samples

Test 

samples

1 Asphalt 332 6299

2 Meadows 933 17716

3 Gravel 105 1994

4 Trees 154 2910

5 Metal 

Sheets

68 1277

6 Bare Soil 252 4777

7 Bitumen 67 1263

8 Bricks 185 3497

9 Shadows 48 899

Fig. 5 Each class and its corresponding number of training and test samples of Pavia University dataset
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Color Class 

No

Class name Train 

Samples

Test 

Samples

1 Weeds 1 101 1908

2 Weeds 2 187 3539

3 Fallow plow 99 1877

4 Fallow smooth 70 1324

5 Stubble 134 2544

6 Celery 198 3761

7 Grapes untrained 179 3500

8 Soil 564 10707

9 Corn 311 5892

10 Soybean-no till 164 3114

11 Lettuce 4 wk 54 1014

12 Lettuce 5 wk 97 1830

13 Lettuce 6 wk 46 870

14 Lettuce 7 wk 54 1016

15 Vinyard 

untrained

364 6904

16 Vinyard trellis 91 1716

Fig. 6 Each class and its corresponding number of training and te st samples of Salinas dataset

sensor. The image contains 115 bands and spatial dimensions 610 ×340 with a spatial reso-
lution of 1.3 m per pixel and a spectral coverage of 0.43 to 0.86 μm. 12 most noisy channels
were removed and 103 bands are considered in our experiments.

The Salinas image was also captured by the AVIRIS sensor over Salinas Valley, CA,
USA, and with a spatial resolution of 3.7 m per pixel and a spectral coverage of 0.4 to 2.5
μm. The image has 224 bands of size 512 × 217. Like other images 20 water absorption
noise bands no. 108–112, 154–167, and 224 were discarded for better experiments. Indian
Pines and Salinas images have 16 different classes whereas Pavia image carries 9 classes
(Figs. 4, 5 and 6). The brief description of each dataset is given in the Table 1.

5.2 Parameters setup

Simulations of the proposed scheme are evaluated in MATLAB R2015a in a workstation
with Intel coreT M i3 3.2 GHz processor. Parameters setup of the proposed algorithm along
with different optimization approaches like CS [1], DE [49], FF [44], GA [20], PSO [2]

Table 1 Description of datasets

Datasets Size Spatial Spectral Classes Sensor Bands

resolution coverage

Indian Pines 145×145×220 20 m 0.4-2.5μm 16 AVIRIS 200

Salinas 512×217×224 3.7 m 0.4-2.5μm 16 AVIRIS 204

Pavia University 610×340×115 1.5 m 0.43-0.86μm 9 ROSIS 103
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Table 2 Parameters and its
values of used different
algorithms in our experiment

Algorithms Parameters Values

IPSO

D 2∗(k-1)

Population (Np) 10 ∗ D

winitial 1.2

cx 1.5

cy 1.5

r1 [0-1]

r2 [0-1]

Max generation 100

Iteration D×1000

CS Mutation probability 0.25

Scale factor 1.5

DE Scaling Factor 0.5

Max generation 100

Iteration D×1000

FF Randomization parameter(α) 0.5

Light absorption coefficient at the source (γ ) 1.0

Inertial attractiveness (β0) 0.2

GA Crossover probability 0.9

Mutation probability 0.001

Encoding Binary

PSO wmin,wmax 0.4, 0.1

C1, C2 2

listed in the Table 2. All the tested algorithms run for 100 independent times where each
run was carried out for the D × 1000 (D denoted the dimension of search space) number
of fitness evaluations. The dimension of the search space is calculated by the input seg-
mentation level (k) which varies for multilevel problems. Segmentation levels are set from
10 to 14 to avoid under segmentation problem. Performance of the meta-heuristics in terms
of quantitative measurements are tested by evaluating the best-mean fitness values (fmean),
standard deviations (fstd ), and computation time (T) whereas the quality of segmentation

are evaluated by the known metrics like Peak Signal to Noise Ratio (PSNR), Structure
similarity Index Measurement (SSIM).

6 Results and discussion

6.1 Unsupervised segmentation results

Computation speed, best-mean fitness value, and stability of the different optimization
algorithms for segmentation level 10,12, and 14 of three specified images are compared and
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Table 3 Performance
comparison of evolutionary
algorithms for the Indiana Pines
dataset

L Algo T (in sec) fmean fstd PSNR SSIM

10 IPSO 31.206 36.207 0.612 20.431 0.935

CS 31.442 35.901 0.734 18.8035 0.910

DE 31.387 35.729 0.701 18.1220 0.888

FF 31.309 35.577 0.692 19.591 0.906

GA 31.222 34.932 0.616 18.533 0.896

PSO 31.541 34.260 0.616 18.754 0.929

12 IPSO 38.822 40.202 0.585 22.952 0.943

CS 38.840 39.625 0.641 19.913 0.918

DE 38.845 39.407 0.637 20.321 0.907

FF 38.837 38.892 0.642 21.951 0.927

GA 38.835 38.079 0.607 22.596 0.910

PSO 38.836 37.335 0.589 19.489 0.922

14 IPSO 40.334 44.619 0.310 22.377 0.951

CS 40.402 44.427 0.565 19.732 0.898

DE 40.417 43.627 0.577 19.305 0.808

FF 40.372 43.554 0.316 19.738 0.915

GA 40.355 42.932 0.316 21.169 0.947

PSO 40.406 41.904 0.566 19.561 0.907

Table 4 Performance
comparison of evolutionary
algorithms for the Pavia
University dataset

L Algo T (in sec) fmean fstd PSNR SSIM

10 IPSO 31.934 38.436 0.481 20.308 0.842

CS 33.018 38.151 0.663 20.123 0.833

DE 33.106 36.871 0.664 18.107 0.804

FF 33.102 37.769 0.665 16.308 0.630

GA 33.189 37.162 0.547 18.663 0.768

PSO 33.221 36.392 0.489 17.440 0.697

12 IPSO 38.275 42.969 0.682 20.903 0.859

CS 42.948 42.536 0.700 17.965 0.849

DE 42.966 41.806 0.709 18.972 0.832

FF 42.987 41.694 0.631 20.816 0.826

GA 42.806 40.761 0.690 17.308 0.730

PSO 42.584 40.135 0.690 17.875 0.729

14 IPSO 44.880 47.009 0.424 20.352 0.880

CS 49.786 46.096 0.489 19.645 0.805

DE 49.815 45.446 0.487 19.684 0.795

FF 49.880 45.193 0.491 18.541 0.774

GA 49.752 44.551 0.560 20.216 0.826

PSO 49.805 43.484 0.637 20.101 0.832
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Table 5 Performance
comparison of evolutionary
algorithms for the Salinas dataset

L Algo T (in sec) fmean fstd PSNR SSIM

10 IPSO 31.879 31.384 0.734 22.496 0.929

CS 32.320 30.821 0.836 21.087 0.861

DE 32.385 30.710 0.846 21.087 0.861

FF 32.410 30.523 0.848 20.889 0.859

GA 32.219 29.991 0.793 21.005 0.865

PSO 32.322 29.368 0.748 21.894 0.885

12 IPSO 36.855 34.377 0.658 24.202 0.938

CS 37.387 34.078 0.748 23.753 0.904

DE 37.398 33.556 0.747 23.865 0.900

FF 37.421 33.497 0.728 23.952 0.912

GA 37.310 32.818 0.665 20.889 0.859

PSO 37.372 32.354 0.674 22.339 0.874

14 IPSO 43.402 38.422 0.751 25.944 0.949

CS 45.144 37.689 0.761 22.795 0.902

DE 45.162 37.578 0.760 22.501 0.867

FF 45.237 36.964 0.825 23.154 0.928

GA 45.132 36.451 0.774 23.952 0.912

PSO 45.393 35.586 0.765 22.987 0.889

values are noted in the Tables 3, 4, and 5. The best values are marked as bold in these tables
and results infer that the proposed algorithm produces best values for all the datasets in
terms of time, fitness values and standard deviations. It is also to be noted that the compu-
tational complexity of IPSO is lesser compared to others even increasing levels (k). As the
multilevel problem is treated as a maximization problem, so best mean fitness values sug-
gest better working of the algorithm along with less standard deviations indicate robustness
and stability of the algorithm. Further, convergence plots are generated for different datasets
for 10, 12 and 14 levels. IPSO algorithm for Indian Pines image has converged at 11000
iterations whereas CS, DE, FF, GA, and PSO have started to converge at 13000, 14100,
14500, 16000, and 18500 iterations for level 10 segmentation, IPSO converged at 14000
and 15500 for level 12 and 14 segmentations where others not only struggled to converge
fast but also produce less fitness values, hence trapped in premature convergence problem
shown in the Fig. 7. Similarly, the fast convergence rate can be noticed for the Pavia and
Salinas datasets in the Figs. 8 and 9. These figures state that proposed IPSO along with CS
can only overcome the challenge to be get trapped in local optima problem where remain-
ing can’t. The segmented 10, 12, and 14 level images obtained by the various optimization
algorithms along with false-color images of Indian Pines, Pavia, and Salinas are listed in the
Figures 10, 11, and 12 respectively. Quality of the reconstructed images for different lev-
els are judged by the PSNR and SSIM values mentioned at the right corner of the Tables 3,
4, and 5. PSNR and SSIM values for color images are calculated by the given following
equation:
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Fig. 7 Level wise comparison of convergence plots between evolutionary algorithms for “Indian Pines”
dataset

Peak Signal to noise ratio:

PSNR = 10 × log10

(
2552

RMSE

)

(dB)

where RMSE = 1

R × C

R∑

i

C∑

j

{I (i, j) − I ′(i, j)}2 (13)

where I and I ′ are the original and segmented images and R × C is the size of the image
and RMSE stands for root mean square error. Structural Similarity Index:

SSIM(x, y) = (2μIμI ′ + C1)(2σII ′ + C2)

(μ2
I + μ2

I ′ + C1)(σ
2
I + σ 2

I ′ + C2)

f or an RGB image, SSIM =
∑

c

SSIM(xc, yc) (14)
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Fig. 8 Level wise comparison of convergence plots between evolutionary algorithms for “Pavia University”
dataset

where μI and μI ′ are the mean values of the original image I and segmented image I’, σI

and σI ′ are the standard deviation of the original image I and segmented image I’, σII ′ is
the cross correlation and C1 and C2 are constants, c indicates color.

6.2 Hybrid classification results

In our experiment, 10% data of Indian pines are chosen as training samples and remaining
90% from ground-truth pixels are used as test samples for supervised classification. 16
classes and its corresponding training and test samples of Indian Pines data are shown in
the Fig. 4. For both Pavia and Salinas data, 5% ground-truth pixels are chosen as training
data and remaining 95% work as a test data shown in the Figs. 5 and 6. Now, level-wise
segmentation results are mapped with the EMAP data to form a multiple learning kernel
which is used to train SVM classifier. The following four accuracy metrics are considered
for checking the classification accuracy:
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Fig. 9 Level wise comparison of convergence plots between evolutionary algorithms for “Salinas” dataset

Overall accuracy (OA) OA calculates out of all the classes how much proportion of classes
are mapped properly. It is measured in percentage and provides easiest accuracy information
to users. It is calculated like following:

No. of correctly classif ied classes

T otal no. of classes
× 100 (15)

Kappa index (KI) KI is measured by a statistical test to evaluate the accuracy. It is per-
formed based on assigning some random values and checked how classification works better
than random. Outcomes lie between -1 to +1 which indicate accurate classification. Matlab
function can evaluate KI effectively.

Mean accuracy (MA) This accuracy calculates the ratio of correctly classified pixels to the
total number of pixels in each class. MA score is measured with the help of ground truth
values as per the following equation:

MA = T P

T P + FN
(16)
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Fig. 10 Indian Pines image with 10,12,14 level segmented images by evolutionary algorithms using fuzzy entropy

where TP is the number of true positives and FN is the number of false negatives in the
classes. MA is the average Accuracy of all classes in that particular image.
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Fig. 11 Pavia University image with 10,12,14 level segmented images by evolutionary algorithms using
fuzzy entropy
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Fig. 12 Salinas image with 10,12,14 level segmented images by evolutionary algorithms using fuzzy entropy
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Fig. 13 Ground truth image, Training data, SVM classified output, SVM with 10,12 and 14 level classified
output (SVMCK) using chosen meta-heuristic algorithms of Indian Pines dataset

Intersection over union (IoU) IoU also known as the Jaccard similarity coefficient and is
often used in statistical accuracy measurement. Like MA, IoU is also computed with the
ground truth images as per the below equation:

T P

T P + FP + FN
(17)

where TP, FP, and FN describes true positive, false positive, and false negative predictions of
images respectively. Mean IoU is the average IoU score of all classes in the particular image.
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Fig. 14 Ground truth image, Training data, SVM classified output, SVM with 10,12 and 14 level classified
output (SVMCK) using chosen meta-heuristic algorithms of Pavia University dataset
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Fig. 15 Ground truth image, Training data, SVM classified output, SVMCK 10,12 and 14 level classified
output using chosen meta-heuristic algorithms of Salinas dataset
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Fig. 16 Comparison with CNN-based approaches over 50% training data of Pavia dataset

Table 6 displays the comparative results of traditional SVM and different meta-heuristic
algorithms based SVMCK results for levels 10,12 and 14 of Indian Pines data. It is observed
that the results produced by SVMCK with optimization algorithms are better than tradi-
tional SVM. Similarly, composite kernel-based classification results of Pavia and Salina
datasets are shown in the Tables 7 and 8 respectively. All these results conclude that the
composition of spatial and spectral information based kernel has produced more accurate
and better classification than conventional SVM. All the accuracy parameters which have
produced the best values for the proposed algorithm for every level of segmentation have
been marked as bold. Finally, the outcomes of there datasets along with their ground-truth
and training data are displayed in the Figs. 13, 14, and 15. The results are further com-
pared with some current proposed CNN-based approaches like Deep Pixel Pair (DPP) [32],
Extreme Learning Machines (ELM) [33], Diverse-Region based CNN [67], Collaborative
Classification [66], Two-branch CNN [64], Kernel Composite Grapg Discriminant Analy-
sis (KCGDA) [34], region-based fast R-CNN [19], and Mask R-CNN [22]. The parameters
of the R-CNN based approaches have been set by the guidelines given in the manuscript
[19]. As CNN performs better with large data, so above-stated approaches are tested along
with the proposed approach on Pavia and Salinas dataset. To compare the outcome of the
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Fig. 17 Comparison with CNN-based approaches over 50% training data of Salinas dataset

proposed algorithm with CNN-based approaches, 50% data instead of 5% have been trained
and tested for both the dataset. The outcomes of the proposed technique has been passed by
the morphological filter for comparing with CNN-based approaches. The detailed outcome
of the proposed approach along with the mentioned CNN-based approaches for Pavia and
Salinas dataset have been shown in the Figs. 16 and 17 respectively. Results of the accuracy
parameters like OA, KI, MA, IoU are shown along with the individual accuracy of various
classes in the Tables 9 and 10. Best values produced by the proposed algorithm are marked
as bold and it is observed that the outcomes of the proposed scheme are marginal better as
compared to the CNN-based approaches.
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7 Conclusion and future work

An improved PSO based multi-level image thresholding scheme has been proposed. Among
different entropies, membership function-based fuzzy entropy has been chosen as an objec-
tive function because of its easiness and effectiveness over color images to calculate
threshold values. IPSO has successfully overcome the challenges of premature convergence
compared to other known popular optimization algorithms. The composite-kernel based
approach has generated better classification outcomes with respect to the accuracy parame-
ters. The approach has been further compared with some CNN-based approaches and results
infer that the values are closely following to them. This proposed approach can be applied to
different types of machine-learning based classification fields like Optical Character Recog-
nition, object identification in multiple frames of video surveillance problems etc. Like
CNN, this approach can be applied on some larger dataset like ImageNet, COCO (Common
Objects in Context) to recognize objects. Further, some parameters can be modified of the
proposed IPSO to form kernel so that accuracy can reach to the higher side.
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