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Abstract
Skin lesion recognition is one of the most important tasks in dermoscopic image analysis.
Current Convolutional Neural Network (CNN) algorithms based recognition methods tend
to become a standard methodology to fix a large array of Computer-Aided Diagnosis (CAD)
and interpretation problems. Besides significant practical and theoretical improvements in
their architecture, their effectiveness is built on the existence of the flexible pre-trained
models which generalize well to novel tasks and handle the problem of having small set
of dermoscopic data. However, existing works pay little attention to exploring the benefits
of hierarchical multi-feature fusion for classifying the skin lesions in digital dermoscopic
images. Practically, it has been found that integrating multi-layer features has significant
potential for improving performance of any pattern recognition task. In this paper, we devel-
oped a robust CAD system based on transfer learning and multi-layer feature fusion network
to diagnose complex skin diseases. It is a convenient approach in terms of overfitting preven-
tion, convergence speed and high morphological feature similarity processing. Our research
focuses exclusively on obtaining optimal performance with addressing the various gaps in
the skin pattern recognition area. For validation and comparison purposes, the proposed
approach was evaluated on publicly dermoscopic dataset, and achieved the high recognition
precision compared with fully trained CNNmodels, fine-tuning process, single CNN model
and other related works. Therefore, the study demonstrates that our proposed approach can
dramatically improve the performance of CAD systems which are based on the conven-
tional recognition and classification algorithms for skin lesion recognition in dermoscopic
data.
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1 Introduction

Skin cancer is the most common and prevalent type of cancer over the world [49]. It has
risen dramatically during the last four decades due to weakened immune system, accumu-
lated exposure to ultraviolet radiation, harmful chemical elements and sunlight during the
winter months. More than two million cases of melanoma and basal cell carcinoma are
diagnosed every year [4]. This is over the combined counts of breast cancer, lung cancer
and colon cancers [90]. Owing to increase of incidence of the disease steadily in around the
world, it has been one of the main health problems. Therefore, early automated diagnosis
of skin lesions using dermoscopic digital images is a challenging multi-class classifica-
tion task because of complex morphological structures of some skin patterns. It is very
important in terms of reducing the number of patient deaths. Nevertheless, early diagnosis
requires an accurate and a reliable diagnosis procedure that allows dermatologist to dis-
tinguish benign skin lesions from malignant ones. The suspected skin tissues usually have
morphology characteristics such as asymmetrical characteristic, irregular edge of the lesion,
different color composition and a large diameter [61]. It has been observed that geomet-
rical features (shape and margin) and heterogeneous texture can be effectively used for
classifying the skin structures as Melanoma (MEL), Melanocytic Nevus (NV), Basal Cell
Carcinoma (BCC), Actinic Keratosis (AKIEC), Benign Keratosis (BKL), Dermatofibroma
(DF), or Vascular Lesion (VASC). Visual screening during the diagnosis and analysis of skin
patterns suffers from the resemblance among the abnormal and normal skin tissues, which
can result in incorrect interpretations. Hence, one of the most significant challenges related
to biomedical engineering is to recognize and classify a skin lesion efficiently using dermo-
scopic images. In the past decade, dermoscopy, which is a non-invasive imaging device that
evaluates pigmented skin lesions by acquiring the magnified images of these skin lesions
using polarized light waves, has been used to assist dermatologists in boosting the exami-
nation for suspected skin lesions. It displays deeper details of the skin tissue by removing
the reflection of the normal skin surface [80]. Although dermoscopy enhances the diagnos-
tic performance of skin lesion recognition compared to that carried out by visual screening,
examination through dermoscopy images by dermatologists is subjective and requires addi-
tional time and manual effort which can lead to inaccurate decision-making [51]. Therefore,
automated computerized diagnostic systems for skin lesion recognition and analysis are
highly requisite to aid and assist dermatologists in providing effective diagnosis and fast
interpretation.

Finding a robust and efficient feature representation space without risking to lose use-
ful information is one of the key aspect in inter-class separation, and it heavily brought
significant improvement in several domains [24, 85–87]. Recently, CAD system, which is
developed using deep CNN algorithms and data representation techniques [6], has become
one of the major research subjects in medical imaging and diagnostic radiology. It is widely
considered as one of the most effective process to assist the physicians in order to recog-
nize the suspected tissues at early stages. In fact, it is greatly used as a part of the routine
clinical work for recognition of different types of cancers on medical images at many
screening sites and hospitals. These successes of CAD system are benefited from using
CNN architectures which are becoming the state-of-the-art method for several computer
vision problems including image classification [1], object localization [55] and image seg-
mentation [38]. They are able of generating discriminative features from raw data to form
gradually abstract descriptors, replacing the traditional approach of carefully hand-crafting
features and algorithms. Despite their high performance achievement, deep CNN methods
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are still limited. They usually necessitate datasets comprising tens of thousands of images.
However, when dealing with dermoscopic images, we notice that they suffer from small
number of available samples to build robust deep CNN models. Thus, a common problem
that can arise during the training of a deep CNN is overfitting, which occurs when a network
customizes itself too much to describe the relation between training data and the labels,
and as a consequence, it fits too well to this training set. In this case, the model is able to
memorize the training examples, but leads to poor performance on new ones that it has not
already observed. Current deep CNN based data augmentation methods [30] for skin pat-
terns recognition need some adjustment and tuning a large number of different parameters
to achieve satisfactory performance. As a consequence, the main drawback of data aug-
mentation approach is that it requires extremely long training time and high computational
costs [66, 78].

To overcome these limitations pointed out above, we took advantage of transfer learning
where the network weights are initialized by training with non-medical images and adapted
on dermoscopic dataset. It is the common solution for using deep CNN on small dataset
which helps the network optimization process, resulting in faster convergence of the train-
ing [72]. In general, CNN provides three levels of abstraction in the feature hierarchies [88]:
Low, medium and high levels. It was noticed that the earlier convolutional layers design
low-level features which are more generic features [67]. They try to visualize the difference
between the colors in foreground and background, including boundary of objects [73], tex-
tual difference [71] and structure descriptor [36], which can be useful to many tasks and
domains [2]. By contrast, the medium and high layers [62, 63] become gradually more spe-
cific to the details of the patterns contained in the target dataset [34], and they generate the
high-level features. These high-level features are able to capture the structured information,
less fine-grained spatial details and semantic context in the image [14]. Therefore, inspired
by fine-tuning technique, the significant advantages have become apparent when copying
the first convolutional layers from a pre-trained network to the target network, while other
layers are fine-tuned towards the dermoscopic dataset with completely keeping a balance
between high performance achievement level and low computational times, efforts and com-
plexities [76]. However, this immediately raises some interesting questions. Which layers
are helpful to design low-level features of skin lesions? How many layers to copy and to
fine-tune?

In this paper, we present an empirical investigation of these questions. One of the contri-
butions of our work is to explore the application of CNN based transfer learning technique
in multi-class classification task for skin abnormality recognition. In fact, the abnormal skin
tissues characterized by complex morphological structures like shape with convex outside
borders and undefined edges, margin irregularity and texture heterogeneity. In addition, the
most of skin patterns suffer from semantic feature ambiguity and high inter-class visual
similarities problems. To enable the feasibility of training deeper network with multi-class
classification problem, we adopt convolutional multi-layer feature fusion network which
fuses the features extracted from different pre-trained models. This hierarchical fusion
structure tends to perform well in maximally exploiting the input data and improving classi-
fication accuracy. Despite the popularity of CNNs, there has only been preliminary research
on hierarchical multi-feature fusion network for medical image analysis. Thus, the using
of CNN architectures to this issue for different computer vision techniques such as clas-
sification, detection and segmentation has yet to be fully investigated. Moreover, running
multi-layer features of CNN on dermoscopic images requires more model build time and
memory consuming. Then, how can we alleviate such weaknesses?
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To explore gaps in the topics of fine-tuning method and hierarchical multi-feature
fusion network, this paper makes the following major contributions for skin abnormality
recognition:

1. It designs efficient low-level features which can strongly capture contrast and spatial
information in the dermoscopic image by exploring state-of-the-art of three pre-trained
CNN models: VGG-16 [74], ResNet-18 [39] and DenseNet-121 [41], and proposing
different fine-tuning configurations. The best configurations have been selected and
used as low-level feature extractors.

2. It introduces a new CNN paradigm to generate high-level features, which was called
Convolutional Fusion Unit (CFU), based on merging of convolutional layers in order
to extract the significant discriminative features to make our CAD for classifying der-
moscopic skin abnormalities into MEL, NV, BCC, AKIEC, BKL, DF and VASC more
robust and efficient.

3. It presents a simple but effective CFU configuration for designing three feature descrip-
tors which denoted by VGG-CFU, ResNet-CFU and DenseNet-CFU in order to address
the problem of high inter-class visual similarities between the classes with avoiding
the high cost of memory accessibility, vanishing gradient, decreasing the bias shift,
convergence to local minima and overfitting issue.

4. It proposes a discriminative global dermoscopic feature vector that represents
semantic information benefited from multi-layer feature fusion network to combine
the features from VGG-CFU, ResNet-CFU and DenseNet-CFU feature maps together,
and as a consequence, to formulate a roust CAD system for skin abnormality
recognition.

5. It suggests a network that effectively exploits fine-tuning technique and depth fea-
tures simultaneously to obtain more discriminative global representation and estimate
the probability of each skin pattern class. This network is trained to get optimal
fusion of three complementary discriminative features through VGG-16, ResNet-18
and DenseNet-121 for low level features generation combined with CFU algorithms to
extract high level features in order to ensure maximum information flow between layers
in the network.

The proposed framework has been validated on the public Human Against Machine
with 10000 training images (HAM10000) dataset [82], which is designed for skin lesion
diagnosis, and has been compared to state-of-the-art skin pattern classification approaches.
The performance evaluation analysis shows the potential clinical value of the proposed
framework. To the best of our knowledge, no prior work exists on skin lesion characteriza-
tion based on convolutional multi-layer feature fusion network and transfer learning that is
investigated here.

The remainder of this paper is organized as follows: In Section 2, we describe the most
important methods applied in dermoscopic images. In Section 3, we detail the proposed
approach. Then, we present the results of experiments realized on HAM10000 dataset in
Section 4 and we discuss in detail the results of our proposed method in Section 5. Finally,
we conclude this paper in Section 6.

2 Related works

In related works, some approaches have been proposed using CNN algorithm, continuous
fine-tuning technique and semantic multi-layer features which are directly related with our
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proposed method. The followings are the relative literature review in these three areas, and
they are summarized in Tables 1 and 2.

2.1 CNN for skin disease recognition

Over the last few years, deep learning techniques have appeared as a strong alternative for
supervised learning with high model performance and the ability to learn hierarchically
discriminative features for the task at hand [94]. These features often outperform classical
hand-crafted features and conventional descriptors [50, 81]. In the context of the dermo-
scopic images, deep CNN has begun to achieve excellent machine learning performance
on patterns recognition, diagnosis and interpretation tasks. Currently, it attracts signifi-
cant interest from many researchers in the field, and many studies have been developed to

Table 1 Overview of the related works focusing on CNN for skin disease recognition, continuous fine-tuning
CNN and hierarchical multi-feature fusion

Main axes Authors Year Methods

CNN for skin Thao et al. [79] 2017 VGG-16

disease recognition Menegola et al. [68] 2017 VGG-16

Yu et al. [100] 2018 ResNet-50+SVM

Zhang et al. [102] 2018 Inception-V3

Dorj et al. [25] 2018 AlexNet+ECOC SVM

Han et al. [37] 2018 ResNet-152

Continuous Yosinski et al. [96] 2014 AlexNet

fine-tuning CNN Azizpour et al. [8] 2015 AlexNet

Chu et al. [19] 2016 AlexNet

Zheng et al. [105] 2016 VGG-19+AlexNet

Castrejon et al. [15] 2016 AlexNet

Wei et al. [89] 2016 DeCAF

Akcay et al. [3] 2016 AlexNet

Chougrad et al. [18] 2018 VGG-16+ResNet-50+Inception-V3

Li et al. [56] 2018 AlexNet+VGG-16+Inception-V3

Bakkouri et al. [10] 2018 AlexNet

Hierarchical Dai et al. [23] 2017 FASON

multi-feature fusion Li et al. [53] 2017 MIFK+PCA+SRKDA

Yu et al. [99] 2017 MLFF

Gogate et al. [31] 2017 DLDMF

Wu et al. [91] 2017 MFE

Ye et al. [95] 2017 3DCNN+GMU

Golrizkhatami et al. [32] 2018 TLF

Banerjee et al. [13] 2018 TL+MF

Huo et al. [42] 2018 FFE

Vu et al. [84] 2018 3DVGG-16

Kuai et al. [48] 2018 SiamFC

Liu et al. [59] 2018 MMC-3DCNN
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Table 2 Summary of related works classified by application domain

Main axes Application area

CNN for skin disease recognition Skin lesion recognition [25, 37, 102]

Melanoma recognition [68, 79, 100]

Continuous fine-tuning CNN Visual recognition [8, 19, 96, 105]

Image retrieval [15, 89, 105]

X-ray baggage classification [3]

Mammographic lesion classification [18]

Endomicroscopic image classification [56]

Melanoma recognition [10]

Hierarchical multi-feature fusion Visual recognition [23, 42]

Visual tracking [48]

Remote sensing classification [53]

Image retrieval [99]

Deception detection [31, 91]

Electrocardiogram classification [32]

Rhabdomysarcoma classification [13]

Glioma classification [95]

Alzheimer’s disease diagnosis [59, 84]

perform skin lesion analysis and help dermatologists give an accurate diagnosis. Inspired
by the layers in the deep networks [39], authors of [100] applied very deep residual neural
network (ResNet-50) to extract discriminative features and support vector machine (SVM)
with a Chi-squared kernel to classify melanoma images. This method was evaluated on the
International Skin Imaging Collaboration (ISIC) 2016 Skin lesion [35] challenge dataset,
and it reached the accuracy of 86.81% and the Mean Average Precision (mAP) of 68.49%.
Authors of [102] presented a computer aided diagnosis system to classify abnormal skin
lesions in dermoscopic image into melanocytic nevus, seborrheic keratosis, basal cell car-
cinoma or psoriasis. The proposed method was evaluated on clinical database originated
from the dermatology department of Peking Union Medical College Hospital, and the fea-
ture extraction and classification were carried out by GoogleNet Inception-V3 based on
domain expert knowledge, achieving an accuracy of 87.25 ± 2.24% in the test dataset with
1067 images. In [25], an error-correcting output coding (ECOC) classifier combined with
SVM for the multi-class classification scenario was introduced. The authors are proposed
pre-trained AlexNet convolutional neural network model [29, 47] as feature extractor, and
they obtained a classification rate of 92.3% for Actinic Keratoses, 91.8% for Basal cell car-
cinoma, 95.1% for Squamous cell carcinoma and 94.2% for Melanoma. In this context, the
similar approach based on the transfer learning technique using ResNet-152 architecture
was suggested by authors of [37] in order to classify 12 skin diseases: basal cell carcinoma,
squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis,
malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma, hemangioma, der-
matofibroma and wart. The proposed method was evaluated on the testing subset of the
Asan, Hallym and Edinburgh datasets, and it reached promising results. VGG-16 architec-
ture with fine-tuning technique was suggested to recognize melanoma abnormality in [79].
The proposed method was evaluated on ISIC 2017 challenge dataset [22, 83], yielding an
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average Receiver Operating Characteristic Area Under Curve (ROC-AUC) rate of 81.6%.
A knowledge transfer based on VGG-16 model for melanoma recognition with deep learn-
ing was proposed by authors of [68]. The sources datasets employed for the transfer were
selected from the retinopathy Kaggle challenge for diabetic retinopathy detection dataset
and the ImageNet large scale visual recognition challenge 2012 dataset. The target images
were obtained from the interactive atlas of dermoscopy and ISIC challenge 2016 dataset,
and the proposed system provided promising results, achieving a ROC-AUC of 80.7% and
84.5% for the two skin-lesion datasets evaluated.
Despite the high achievement of deep CNN based on transfer learning for skin lesion diag-
nosis, it needs some improvement concerning the systematically analysis the factors that
affect the transferability of CNN representation for skin lesion recognition tasks, and the
evaluation the transferability of pre-trained weights from source domain to target one which
reveals their generality or specificity without precisely harming the classification accuracy.
The main weakness with all these previous studies is that they only fine-tuned the final fully
connected layer and froze the previous deep layers. Current paradigms for recognition in
the computer vision community involve fine-tuning a CNN by iteratively freezing the first
layers and adjusting the last ones. However, research on this topic is still relatively scarce in
dermoscopic domain.

2.2 Continuous fine-tuning CNN

Currently, deep CNNs have shown remarkable abilities in transferring knowledge between
apparently different image classification tasks or even between imaging modalities for the
same task. In most cases, this is done by fine-tuning technique which has been extensively
studied over the past few years, especially in the field of computer vision, with several
interesting findings. The authors of [96] investigated the effects of different fine-tuning
procedures of AlexNet model on the transferability of knowledge, while a procedure is pro-
posed to quantify the generality or specificity of a particular layer. These authors found
that fine-tuning was the optimal technique, with performance slightly improving as more
layers were copied. When layers were frozen, they saw performance degrade as more lay-
ers were copied. However, this work studied a target dataset that was virtually similar to
the source dataset and had a considerably large number of images. The factors that influ-
ence the transferability of knowledge in the fine-tuning of AlexNet are presented by authors
of [8]. These factors include the network’s architecture, the resemblance between source
and target tasks and the training framework. In a similar study, the authors of [19] eval-
uated the performance of fine-tuning methods by systematically explore the design-space
for fine-tuning of AlexNet and give recommendations based on two key characteristics of
the target dataset include visual distance from source dataset and the amount of available
training data. This approach was validated on seven target datasets. Through their analy-
sis, the authors found that as distance increases, fine-tuning improves relative to freezing,
supporting the notion that learned features are less transferable to distant datasets. At one
end, in the low data and low distance setting, freezing outperforms fine-tuning. The authors
of [105] proposed pre-trained VGG-19 and AlexNet models to extract off-the-shelf CNN
features for image search and classification. In this work, the authors evaluated the perfor-
mance of features from different CNN layers. This idea was motivated by observing that
features vary in their receptive field sizes and semantic levels. Their impact on recognition
and search accuracy was measured by testing the seven layers on six datasets. The exper-
imental results showed that features from the bottom layers are generally inferior to those
from the top layers. This is expected because bottom-layer filters are sensitive to low-level
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visual patterns which are generally considered not discriminative enough. A cross-modal
transfer learning was proposed by authors of [15, 89]. The first study is based on AlexNet
pre-trained model while the second one is focused on the pre-trained Deep Convolutional
Activation Features (DeCAF) architecture. They estimate that finding which and how many
layers to transfer depends on the proximity of the two tasks and their modalities. It has been
demonstrated that the earlier layers of the CNN model are specified for modality while the
last layers of the CNN model are fixed for task. The authors of [3] performed fine-tuning
approach based on AlexNet architecture to train over the X-ray baggage dataset. The results
showed that true positives and true negatives have a general trend to decrease as the number
of fine-tuned layers reduces. Likewise, freezing more layers lowers the accuracy of the mod-
els. A result can be reached from these practical experiments that freezing lower layers and
fine-tuning higher achieve promising performance. A number of studies have also utilized
transfer learning techniques in order to adapt well-known networks and classify medical
images. In most of the cases, the network used is the AlexNet, VGG, ResNet or Inception
pretrained on ImageNet. In [18], a CAD system for mammography mass lesion classifica-
tion was proposed. The authors employed three pre-trained models: VGG-16, ResNet-50
and Inception-V3 with fine-tuning of only the last two convolutional blocks. The perfor-
mance was validated on Breast Cancer Data Repository (BCDR), Mammographic Image
Analysis Society (MIAS), Digital Database for Screening Mammography (DDSM) and
INbreast databases. The authors achieved 97.35% accuracy and 0.98 ROC-AUC on the
DDSM database, 95.50% accuracy and 0.97 ROC-AUC on the INbreast database, 96.67%
accuracy and 0.96 ROC-AUC on the BCDR database, and 98.23% accuracy and 0.99
ROC-AUC on the MIAS dataset. In a similar study carried out by the authors of [56], a fine-
tuned technique based on three pre-trained models, AlexNet, VGG-16 and Inception-V3,
was investigated for brain tissue characterization for context aware diagnosis support in
neurosurgical oncology. The authors observed that as they increase the depth of tuning lay-
ers, the features tend to be more low-level. The experimental results indicate that model
tuning of medium depth can generate discriminative features and provide an efficient
representation of Probe-based confocal laser endomicroscopy (pCLE) data. A convolu-
tional neural-adaptive network for melanoma recognition was proposed by authors [10].
The authors tried to adapt the pre-trained low-level weights on dermoscopic dataset using
AlexNet architecture and fine-tuning technique. The images were obtained from ISIC
dataset, and the proposed system provided efficient results, achieving an average ROC-AUC
rate of 96.66%.

Broadly, all these previous studies support the idea that the CNN models are based on a
representation learning perspective. This view assumes that a CNN is built from layers that
learn increasing levels of abstraction which form a hierarchy of concepts. They showed that
the last layers of the network are discriminative feature specific while the earlier layers of
the network are spatial information specific.

2.3 Hierarchical multi-feature fusion

In the past few years, a diversity of studies emphasizes the benefits which arise from multi-
layer feature fusion of CNN. As an example, supplementary advantages have been reported
for content-based image retrieval [98], pixel-level semantic image segmentation [26], pat-
tern recognition [65] and real time object detection [20]. In computer vision and pattern
recognition field, there are several researches that exploite CNN based multi-feature fusion.
The authors of [48] exploited the combination of different layers of fully convolutional
Siamese network, named SiamFC, to constitute the hyper-feature representations of the
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target and train the network in an end-to-end manner to implement efficient and effective
tracking. The evaluation was performed on the OTB100 and TC128 benchmarks, achieving
promising results compared with the state-of-the-art trackers. Deep Effective Fusion Archi-
tecture (FASON) for texture recognition was designed by authors of [23]. They effectively
combined second order information, calculated from a bilinear model, and first order infor-
mation, preserved through their leaking shortcut, in an end-to-end deep network in order to
take advantage of the multiple features from different convolution layers. Additionally, the
full advantage of both the global and local features in CNN was taken in [42]. The authors
combined different levels of features extracted from different convolutional layers of the
CNN architecture using Fused Feature Encoding (FFE) technique to explore richer seman-
tic information within the image. The performance was evaluated on CIFAR-10, Caltech101
and NUS-WIDE databases for optimizing the efficiency of retrieving in high dimensional
features. In [53], the authors presented a feature fusion framework based on Multiscale
Improved Fisher Kernel (MIFK) to integrate multilayer features for remote sensing scene
classification. The classification was carried out by a step-by-step dimensionality reduction
based on Principal Component Analysis (PCA) and Spectral Regression Kernel Discrim-
inant Analysis (SRKDA) strategies. The complementary strengths of Multi-Layer Feature
Fusion (MLFF) for image retrieval were exploited by authors of [99]. They demonstrated
their methods on three well-known benchmarks of image retrieval: Oxford 5K, Holiday and
UKB, yielding competitive performance compared with the state-of-the-art methods. Not
far away, deception detection task has been approached by Deep Learning Driven Mul-
timodal Fusion (DLDMF) in [31]. The authors integrated audio, visual and textual cues
to develop a fully automated multimodal deception detection approach. In a similar study
carried out by authors of [91], three modalities was proposed like vision, audio and text
to extract motion, Mel-Frequency Cepstral Coefficients (MFCCs) and transcript features,
respectively, and improve performance of deception detection system by using Multimodal
Feature Encoding (MFE) approach. As a key enabler to improve diagnosis, multi-layer
feature fusion of CNN has revolutionized the medical imaging research area. Authors of
[32] introduced the combination of hand-crafted and CNN-based features for ECG sig-
nal classification. They employed multi-stage learned features from different layers of a
CNN for Three-Level Fusion (TLF) and they achieved superior classification results com-
pared to other state-of-the-art methods. A radiomics framework based on Transfer Learning
(TL) and Multimodal Fusion (MF) techniques that classifies alveolar from embryonal sub-
types of rhabdomysarcoma was proposed in [13]. It was developed by exploiting a tight
integration of advanced image processing methods and cutting-edge deep learning tech-
niques. The classification rate was improved by performing a fusion of Diffusion-Weighted
MR scans (DWI) and gadolinium chelate-enhanced T1-Weighted MR scans (MRI). The
authors of [95] employed 3-Dimensional Convolutional Neural Network (3DCNN) com-
bined with Gated Multimodal Unit (GMU) for glioma grading. This multimodal MRI
images fusion framework was evaluated on BRATS datasets and achieved efficient results to
distinguish benign gliomas and malignant ones. Moreover, diagnosis of Alzheimer’s disease
has been also approached in [84] where the combination of MRI and Fluorodeoxyglucose
Positron-Emission Tomography (FDG-PET) scans has the potential to capture crucial local
3D amyloid uptake patterns without redundant, noisy information of white matter. The
classification of Alzheimer’s disease was carried out by an adaptive 3-Dimensional VGG-
16 (3DVGG-16) architecture, providing satisfactory performance. Another recent issue to
fence this section has been suggested by authors of [59] where Multi-Modality Cascaded
3-Dimensional Convolutional Neural Networks (MMC-3DCNN) for Alzheimer’s disease
diagnosis was presented. The authors presented a multi-modality classification algorithm
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based on hierarchical CNNs model to learn and combine the multi-level and multi-modality
features of MRI and PET images for Alzheimer’s disease diagnosis.

As a matter of fact, multi-layer feature fusion is a crucial factor to effectively explore the
feature domain and enhance performance on a visual recognition task. However, existing
works do not pay attention to exploring the benefits of multi-layer features for improving
the pattern recognition in dermoscopic image. In view of the scarce existing studies on this
domain, a detailed plan to overcome the problem of semantic feature ambiguity and high
inter-class visual similarities between these seven classes: MEL, NV, BCC, AKIEC, BKL,
DF and VASC will be described in a fair amount of detail.

3 Proposedmethod

Pattern recognition in dermoscopic images based CAD system is a challenging task in skin
lesion diagnosis which plays a vital role to assist dermatologist for efficient diagnosis and
fast interpretation. Until now, the existing CAD methods used to benefit a lot from a sin-
gle feature map representation of dermoscopy image which always fails due to semantic
feature ambiguity and high level similarities between classes for multi-class classification
task. For this reason, they are not that good at the simulation of real skin abnormality
diagnostic and interpretation processes in a large number of categories, adding difficulties
in enhancing the recognition and classification performances. In this paper, we propose a
novel CAD system based on multi-layer feature fusion of CNN. The suggested approach
is efficient for recognition dermoscopic patterns in multi-class classification problem. Our
proposed methodology based CAD system was developed in several stages. First, the rep-
resentative square regions with size of 224 × 224 pixels were selected from the digitized
dermoscopic images and enhanced by the pre-processing techniques. Inspired by transfer
learning, to resolve the challenge of dealing with limited availability of the training dermo-
scopic samples, improve model building time and avoid overfitting, we designed efficient
low-level features which can strongly capture contrast and spatial information in the der-
moscopic image by exploring state-of-the-art of three pre-trained CNN models: VGG-16,
ResNet-18 and DenseNet-121. To generate high-level features, we introduced a new CFU
paradigm based on merging of convolutional layers in order to extract the significant dis-
criminative features. Then, we built three feature descriptors which denoted by VGG-CFU,
ResNet-CFU and DenseNet-CFU. The most significant extracted features benefited from
convolutional multi-layer feature combination through fully connected fusion (FCF1, FCF2
and FCF3) layers. Finally, the dermoscopic patterns were efficiently recognized and classi-
fied by applying the multi-level descriptors on the fused feature maps. An overview of the
proposed approach is given in Fig. 1.

3.1 Pre-processing of dermoscopic data

Pre-processing of the digital dermoscopic data is performed in four stages, including data
size normalization technique, class balancing process, skin hair removal and intensity
correction to facilitate application of the convolutional multi-layer feature fusion algorithm.

3.1.1 Image size normalization

As it can be seen in Fig. 2, the dermoscopic HAM10000 dataset contains images of high
resolutions. The resolutions of all dermoscopic images are 600 × 450 pixels, which require
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Continuous fine-tuning

DenseNet blocks
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Fig. 1 Overview of the integrated workflow. The outline of our CAD system is composed of four stages: pre-
processing, fine-tuning, CFU building, and hierarchical multi-feature fusion. The goal of the pre-processing
stage is to facilitate the training of deep neural networks on dermoscopic data. The fine-tuning stage aims
to select the first n frozen blocks to design low-level features with keeping the balance of high performance
level and low computational cost. CFU is implemented to capture high-level features. The hierarchical multi-
feature fusion stage is designed to handle the problem of high morphological feature similarity between
classes

high cost of computation. It is necessary to rescale the input images for deep learning net-
work. As directly resizing image may distort the morphological features such as the shapes
and forms of dermoscopic patterns, we first extracted the region of interest using square
cropping from the center of original image and proportionally resized the area to an appro-
priate resolution. The square cropping is carried out using the determinant of the Hessian for
multi-scale blob-like structure detection as [11] pointed out. The down-sampling operation
is performed using pyramidal REDUCE decomposition as mentioned in [9]. This pyramid
data structure operation involves filtering and down-sampling an image to get a new image
at to lower resolution. Therefore, it produces a sequence of copies an original image in
which both sample density and resolution are decreased in regular steps. Then, each level in

a b c d

Fig. 2 Examples of four dermoscopic cases enhanced by the pre-processing algorithms. a-b-d represent
square region extraction with size of 224 × 224 and hair artifact removal from melanocytic nevus structures
with intensity correction. c represents constract enhancement of dermatofibroma tissue and pattern extraction
centered in square window with down-sampling to 224 × 224 pixels
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the pyramid has a smaller size than the previous level. The final image is down-sampled to
224 × 224 pixels.

3.1.2 Class balancing

As the dermoscopic image volumes of different categories vary widely, data augmentation
processing is needed to balance the image volumes of different classes [93]. In this paper, we
balance the training set by augmenting the data for the minority classes, applying geometric
transformation techniques. A geometric operation transforms pixel (x1,y1) value in an input
image to another location (x2,y2) in an output image. Three processing techniques were
adopted: rotation, translation and reflection [11]. These transformations can be described
by the first order polynomial which is defined as follows:[

x2
y2

]
= R ×

[
x1
y1

]
+ T (1)

Translation can be calculated by specifying values for the T matrix, while rotation and
reflection are defined by assigning values to variables in the R matrix. Each training image
is randomly rotated by 10 selected angles θ in the interval 0 ≤ θ ≤ 360. For each rotation,
it is mirrored and translated by four values of horizontal and vertical pixel displacements.
Finally, after data preparation process, the number of dermoscopic images is expanded at
least by 20 times. The experiments show that our proposed framework is invariant to these
transformations.

3.1.3 Hair artifact removal and contrast enhancement

Currently, the CAD system, which is developed using image processing and deep CNN
algorithms, is widely considered as one of the most effective process to assist the derma-
tologists in order to recognize the skin lesion at early stages. It plays an important role
in the improvement of visual quality for computer vision and medical pattern recogni-
tion. However, dermoscopic image is usually characterized by hair-like regions within skin
lesions. In addition of noising by hair artifact, the most of these images are suffer from
low tissue brightness and background luminance which can result from many situations,
including incompetence of operator expertise and inefficiency of the image capture device.
The enhancing methodology, which is used, should have the efficiencies in both skin hair
inpainting and contrast enhancement. To reduce the effects of hair artifact, we employed a
computerized method described in [52]. It consists of three parts; the first deals with the
identification of hair location using morphological closing operation, while the second part
concerns the replacement of identified hair pixels with neighboring non-hair pixels and
finally, the smoothing of the final result with an adaptive median filter. To boost image
quality for better human visual perception, a technique must be applied which creates a bal-
ance between high levels of visual quality and low computational complexity. It is based on
local adaptive bi-histogram equalization [77] to preserve and enhance dermoscopic image
brightness.

3.2 Low-level feature designing

As it was previously mentioned, feature construction is carried out in two main stages: low
and high level feature extraction. In this section, we are interested in designing a novel
architecture that uses an existing pre-trained CNNmodels to generate the low-level features.
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Inspired by transfer learning, we are concerned with evaluating our continuous fine-tuning
system which aims to resolve the challenge of dealing with limited data and reduce the time
required for training a CNN by gradually adapting pre-trained weights and excluding them
from the back-propagation process. This proposition is motivated by the observation that the
earlier convolutional layers, which are the low layers, design more generic features such as
the orientation of edges, the color blotches and the simple blob-like image structures, which
can be useful to many tasks and domains. By contrast, the deeper layers, which include
the medium and high layers [62, 63], become gradually more specific to the details of the
patterns contained in the dermoscopic dataset which tend to be readily recognizable [43].
Besides being able to capture universal features, some researchers noticed the fact that in
most of the deep architectures, the first few convolutional layers require most of the efforts,
time and a very large amount of the training data to start build a model [40, 104]. To support
this explanation, three models trained on ImageNet dataset using VGG-16 [74], ResNet-18
[39] and DenseNet-121 [41] architectures have been proposed as the source of low-level
feature extractors. We chose these models due to their performance on a difficult 1000 non
medical classes for classification task, considering that the activities of the neurons in their
hidden earlier layers could work as low-level feature extractor for a variety of dermoscopic
pattern recognition task. As [39, 41, 74] pointed out, the VGG-16 architecture consists of 16
learnable weight layers: 13 convolutional layers and 3 fully connected layers. The second
architecture is ResNet-18 which is composed of 18 weights layers: 17 convolutional layers
and one fully connected layer. And finally, the third architecture is DenseNet-121 includes
120 convolutional layers and only one fully connected layer. All the networks take 224×224
pixels RGB image as the input, use Linear Rectified Units (ReLU) as activation function,
and are trained using stochastic gradient descent (SGD).

The objective of this continuous fine-tuning system is not only to search the accurate ear-
lier convolutional layers which are capable to design the low-level features, but also to study
the effectiveness of these three pre-trained models (VGG-16, ResNet-18 and DenseNet-121)
and adjust the hyper-parameters for all these pre-trained networks to obtain the optimal per-
formance in dermoscopic pattern recognition. More formally, we cluster the convolutional
layers into 5 groups which are separated by pooling layers for VGG-16 and DenseNet-121,
and residual block for ResNet-18. In the rest of our analysis, we denote the convolu-
tional layer groups as block1, block2, block3, block4 and block5. Our proposed continuous
fine-tuning method was evaluated in six iterations which denoted by Leveln, where n ∈
{0,1,2,3,4,5}. With fine-tuning, the first n blocks from a pre-trained network are copied to
the target network and we leave them frozen, while other 5-n blocks are updated and trained
towards the dermoscopic dataset. More specifically, as shown in Fig. 3, firstly, the entire
model is trainable (Level0). At Level1, the first block is frozen, and the rest of the model
is continued to train. At Level2, the first and second blocks are frozen, and so on. In other
words, we transmit the frozen weights to lower blocks of target domain model and update
the weights of the higher blocks of the network by continuing the back-propagation pro-
cess. This process of continuous fine-tuning system was applied on each pre-trained model:
VGG-16, ResNet-18 and DenseNet-121 which denoted by VGGn, ResNetn, DenseNetn,
respectively.

We begin building our models to learn weights for dermoscopic domain with a classifica-
tion function which is the softmax classifier addressed for minimizing error in this domain.
Therefore, we replace the classification function and optimize the network again to mini-
mize error in dermoscopic domain. Under this setting, we are adapting the weights of the
network from the broad domain to the particular one. The softmax function in the original
pre-trained models extracts the probability of 1000 categories of the ImageNet dataset. To
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Fig. 3 The Flow chart of the frozen block searching strategy from three pre-trained models: VGG-16,
ResNet-18 and DenseNet-121 to extract low-level features. This is motivated by the observation that the first
blocks of pre-trained networks tends to have general features comprised of edges and blobs, while the last
blocks are thought to be specific to the training data. Thus, at each Leveln, three pre-trained models (VGGn,
ResNetn and DenseNetn) were evaluated using the most reliable evaluation metrics, where n is the number
of first frozen blocks

start the continuous fine-tuning process, we replace this softmax function by a new one with
random initialization values to compute the probability of 7 classes of the dermoscopic data.
Precisely, the new replaced softmax layer employed the back-propagation algorithm to train
their weights generated from scratch with data from the skin lesion recognition task, which
has seven classes: MEL, NV, BCC, AKIEC, BKL, DF and VASC. In order to start the back-
propagation algorithm for fine-tuning, we should bear in mind that choosing a convenient
learning rate for SGD optimization is essential for effective learning. If the learning rate is
too small, the optimization process through SGD is too far to sufficiently detect the param-
eter space and can highly diverge from the original values. On the other hand, a large value
for learning rates can lead to exploding gradients which prevents the convergence during
learning due to numerical issues. Based on this evaluation, it is mainly significant to set the
learning rates of each step of Leveln (freezing or fine-tuning) appropriately. The freezing
action needs a very small constant learning rate because we want to keep the parameters of
the pre-trained model to transfer that knowledge into the dermoscopic domain. However,
notice that the learning rate is not set to zero in the freezing step; they will be optimized
again at a slower pace. The fine-tuning stage needs a relatively variable small learning rate
because during a weights updating point, the learning rate can be efficiently reduced after a
few epochs without hinder convergence.

3.3 High-level feature designing

As was mentioned earlier, in this section, our study focuses exclusively on high-level feature
generation. We are concerned with learning more complex discriminative representations
from dermoscopic data using a novel CNN architecture called CFU. The proposed CFU
gives the efficient performance in dermoscopic abnormality recognition task. In addition,
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the experiments, which will be shown and explained in a fair amount of detail in Section 4,
show that the high-level discriminative features can be learned from CFU than from VGG-
16, ResNet-18 and DenseNet-121. The proposed CFU takes advantage of using the Leaky
Linear Rectified Units (LReLU) instead of ReLU for non-linearity activation function [64],
Adaptive Moment Estimation (Adam) instead of SGD for network optimization [45], and
robust fusion layer instead of conventional layer for discriminative feature designing [17].
It is not only can extract hidden features, but forms a hierarchical representation and a high-
level abstraction of the dermoscopic abnormality by using a multi-layer neural network.
They perform dramatically better than traditional CNN. Our proposed CFU consists of con-
volution layers, non-linear, local response normalization, fusion layers, pooling layers and
concatenation layer (See Fig. 4).

In each convolutional layer (C), first, the output of previous layers is convolved with
multiple learned weight matrices. Then, the result is processed by a non-linear operation
to generate the layer output. The linear operation in the (i + 1)th convolution layer, whose
input is denoted by Ci (output of the ith layer) comprises of a two-dimensional convolution
as shown in (2):

Ci+1(m, n) = LReLU(Ci(m, n) × Wi + bi) (2)
Where Wi denotes the learned weight matrix and bi denotes bias or offset of the ith convo-
lution layer, and LReLU is an activation function. The LReLU function is as shown below;
it gives an output a if a is positive and 0.01 × a otherwise:

LReLU(a) =
{

a a ≥ 0
0.01 × a otherwise

(3)
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Fig. 4 The flow chart of the proposed CFU architecture for high-level feature designing task. Our architec-
ture is built from four convolutional blocks (conv blocks), each group consists of convolutional layer (Blue
rectangle), LReLU activation function (Red rectangle), and LRN layer (Orange rectangle). The diagram is
composed of two fusion layers (FL) which are the element wise layers (Brown rectangle) and one concatena-
tion layer (Black rectangle). A green rectangle represents downsampling layer (AP andMP). Note that the last
layer concatenates the feature maps from four pooling paths with the same shape (width, height and depth)
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Local Response Normalization (LRN) performs competition between neurons at the same
location, but in different activation maps. It is useful when using neurons with unbounded
activation function such as LReLU, because it allows the amplification of excited neuron
with high-frequency and big response, while dampening the neurons that are quite large in
a local neighborhood. It is a type of regularizer unit that encourages the competition for big
activities among nearby groups of neurons. Denoting by Ci(m,n) the activity of a neuron
computed by applying weight Wi at position (m,n) and the LReLU non-linearity, The LRN
is expressed as follow:

LRNi(m, n) = Ci(m, n)/

⎛
⎝λ1 + λ2 ×

min(T −1,i+ z
2 )∑

j=max(0,i− z
2 )

(Cj(m, n))2

⎞
⎠

λ3

(4)

Where Ci(m,n) represents the ith convolutional layer output after applying LReLU function
at the position of (m,n) in the feature map, T is total number of weights, z represents the size
of the normalization neighborhood and the constants (λ1, λ2 and λ3) are hyper-parameters.

Our CFU is performed by inserting the fusion layers (FL) which enable automatic hier-
archical feature fusing at every local response normalization layers. The FL is expressed as
follow:

FLi(m, n) = ϕ1 × LRNi(m, n) � ϕ2 × LRNi+1(m, n) (5)

Where � is element-wise product, ϕ1 and ϕ2 are two weights. Each element of LRNi and
LRNi+1 is multiplied by ϕ1 and ϕ2, respectively.

Pooling operation is important module and significant layer in the CNN architecture. It
can be performed as small and square regions to reduce matrix size without losing important
features and requiring large amount of resources. When the pooling operation works as the
stacked layer in CNN, the most common advantage is that pooling operation decreases the
spatial resolution of feature map and, as a result, it decreases the precise position of each of
the irrelevant features that can not detect and identify the pattern. In other words, pooling
layer forms the feature maps more relevant and achieves the translational invariance in CNN
architecture. In this paper, we used two styles to do downsampling operation: Max-Pooling
(MP) and Average Pooling (AP) [103]. More formally, the features of pooling region are
arranged in chronological order and denoted as X = [x1, x2, ...xk], where x1 is the first
element extracted from the given pooling region and k is its size. The MP and AP are
expressed as:

MP = max(X) (6)

AP = 1

k
×

k∑
i=1

xi (7)

Our CFU configurations are quite different from the VGG-16, ResNet-18 and DenseNet-
121. Rather than using a stack of consecutive convolutional layers in each block, ReLU as
activation function, and SGD as algorithm optimizer, we use one convolutional layer per
block with relatively deeper depth throughout the whole net to reduce the computational
cost, introducing fusion blocks to maintain the information flow and ensure that no feature
is lost along the network. Moreover, we used LReLU activation function to fix vanishing
gradient problem [64, 101], and Adam optimization algorithm to improve the backpropa-
gation algorithm with avoiding local minima and slow convergence speeds [45, 46]. Our
CFU model consists of four convolutional blocks (conv block1, conv block2, conv block3
and conv block4). In each convolutional block, a convolutional layer, LReLU activation
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function, and LRN layer are involved. Besides of conv blocks, it is composed of two fusion
layers (FL) which take as input previous LRN ones. Pooling layer is used after each conv
block and fusion layer; the first and second conv blocks are interspersed with Average
Pooling (AP) and the rest are followed by Max Pooling (MP) layers. The last layer concate-
nates and fuses the output from all previous layers. The arrangement and description of all
CFU layers is shown in Fig. 4. All convolutional layers (C) built by same square filter size
(f), depth (d), stride (s) and padding (d). Spatial pooling layers were carried out by same
m × m pixel window and stride m for MP layers and a × a pixel window and stride a for
AP ones. The CFU layers are randomly initialized using Xavier weight initialization algo-
rithm [58] and trained towards the dermoscopic dataset. The Table 3 shows the parameters
specification of the proposed CFU architecture.

3.4 Multi-layer feature fusion

Starting from the idea that different feature representations of the dermoscopic image could
bring different information [5], we study the effects of the fusing dermoscopic features
extracted from three CNN models. Unlike the previous methods that either simply trained
features from a single feature vector using conventional CNN architecture [7], in this work,
we propose a convolutional multi-layer fusion network to formulate a roust CAD system
for skin abnormalities recognition. This technique is employed to select most discrimi-
native feature descriptors from the outputs of the three VGGn-CFU, ResNetn-CFU and
DenseNetn-CFU models. As it can be seen in Fig. 1, these models produce three fea-
ture representations which are combined through the first fully connected fusion (FCF1)
layer, generating a highly concentrated dermoscopic representation and resulting in an acti-
vation volume with size of 3 × 4096 features. This fusion layer is followed by second
fully connected fusion (FCF2) layer. Then, the output features are fed into the third fully
connected fusion (FCF3) layer, which outputs a 7-dimensional probability vector. Finally,
a softmax layer is used to train all the parameters of convolutional multi-layer fusion
network based on the back-propagation algorithm. It is a linear classifier that uses the
cross-entropy function and considered as maximum likelihood estimation method which
calculates the sample’s log-likelihood (8) through training phase using Adam algorithm.
Learning of the convolutional multi-layer fusion network is based on measuring a loss
function that indicates the error of learned network parameters. The learning objective is
to compute the parameters to minimize the loss function. It should minimize the negative
log-likelihood of the correct class. The cross-entropy for a single data point is defined as
below:

H = −
k∑

i=1

Ti × log(Si) (8)

Table 3 Parameters setting of the
CFU layers Layers Specifications

C f = 3, d = 512, s = 1, p = 1

LRN z = 5, λ1 = 2, λ2 = 10−5, λ3 = 0.75

FL ϕ1 = 0.5, ϕ2= 0.2

MP m = 2

AP a = 4
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Where k is the number of classes, Ti represents the target class probability and Si is the
softmax score for the predicted class probability. Si for i = [1, ..., k] and Y = [y1, ..., yk] is
expressed as follow:

Si = eyi/

k∑
j=1

eyj (9)

Where Y is the output of last fully connected layer before activation takes place, e is the
exponential function, yi refers to each element in the input vector Y. eyi is normalized by
dividing by the sum of all exponential elements of vector Y.

The loss function is defined by computing the cross-entropy over an entire dataset. Then,
it is done by taking the average of Hi set:

L = 1

N
×

N∑
i=1

Hi (10)

Where N is the number of training data.
To help our models generalize better in these circumstances, prevent overfitting, and

provide a way of approximately combining exponentially many different neural network
architectures efficiently, we introduce dropout layer after FCF1 and FCF2. It consists of
randomly setting the output hidden neuron to zero with probability ρ=0.5, and then its
weights will not get updated [12]. The neurons which are dropped out do not participate
in the forward and back-propagation processes. At test stage, we multiply all the output
neurons by ρ=0.5, which is a suitable probability value to obtain the wide vision of the
predictive network outputs generated by the exponentially many different networks sharing
the same parameter value. Moreover, we used L2 regularization [54] for driving the weights
to decay towards smaller values and penalize large ones. It is the most common types of
weight penalty which can prevent overfitting in our network by updating the loss function
as follow:

L = 1

N
×

N∑
i=1

Hi + ε ×
∑

i

∑
j

W 2
ij (11)

Where ε is the regularization hyper-parameter and W is the weight matrix. In this paper, we
used ε=0.05 as it gave the best results and penalized 5% of the current weight value.

4 Experiment analysis and evaluation

At this stage, the experimental results and their interpretation for multi-layer feature
fusion network based on continuous fine-tuning technique, which were pointed out in the
Section 3 to this paper, are shown and explained precisely and in exquisite detail. To
classify dermoscopic patterns into MEL, NV, BCC, AKIEC, BKL, DF and VASC, we
fuse and concatenate three discriminative representations: VGGn-CFU, ResNetn-CFU and
DenseNetn-CFU, where the low-level features were confirmed and validated according to
the number of the frozen blocks n. We demonstrate the robustness of the methodology on
HAM10000 dataset. In order to prove the efficiency of our proposed strategy, statistical
measurements and qualitative evaluation are carried out. Our approach was compared with
the most recent existing methods for skin lesion recognition. All these methods were imple-
mented, tested on same dataset (HAM10000) and evaluated by same metrics (Accuracy,
sensitivity, specificity, precision, F1-score and ROC-AUC).
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4.1 Acquisition images

In our experiments, we evaluated the performance of our proposed system on HAM10000
dataset which is the official ISIC 2018 challenge dataset hosted by the annual MICCAI con-
ference in Granada, Spain, but is also available to research groups who do not participate in
the challenge [82]. This dataset was collected over a period of 20 years from two different
sites, the department of dermatology at the medical university of Vienna, Austria and the
skin cancer practice of Cliff Rosendahl in Queensland, Australia. It includes seven generic
classes: MEL, NV, BCC, AKIEC, BKL, DF and VASC. The dataset consists of 10015 der-
moscopic images with size of 600 × 450 showing skin lesions which have been diagnosed
based on expert consensus, serial imaging and histopathology. The dermoscopic images
from this database can be used for the research, development and comparison of various
algorithms for identifying skin cancer. According of data percentage shown in Table 4, the
distribution is completely imbalanced and most of the samples are melanocytic nevus, has
6705 images while the smallest category is dermatofibroma, it only has 115 images. To
address this problem, we have selected 2000 images from NV class, and then we applied
the geometric transformation techniques described in Section 3.1.2 that could augment the
MEL by 44.35%, BCC by 74.3%, AKIEC by 83.65%, BKL by 45.05%, DF by 94.25% and
VASC by 92.9%. The typical data set proportions are 60% for training, 20% for valida-
tion and 20% for testing [70, 92]. Dermoscopic data distribution for each class after class
balancing is shown in Table 5.

4.2 Experimental environment

Training and testing of our proposed method is performed using GPU programming to
achieve higher time efficiency over CPU. It has been developed using caffe deep learning
framework [44] with python wrapper and Compute Unified Device Architecture (CUDA)
enabled parallel computing platform to access the computational resources of Graphics Pro-
cessing Unit (GPU) [21]. Conversion of image datasets into LMDB, computations of image
means and learning pre-trained weights from VGG-16, ResNet-18 and DenseNet-121 mod-
els are performed using the modules in caffe framework. We used Deep Learning GPU
Training System (DIGITS). It is a web server providing a suitable and robust web inter-
face for training and visualizing the features in the convolutional layers based on caffe. The
available hardware, used for training, is a PC with a Core i7 CPU, 8 GB RAM and a single
NVIDIA GeForce GTX 1060 with 6 GB memory. Training dermoscopic images using the
convolutional multi-layer feature fusion algorithm took about 9 hours and 27 minutes. For
testing, on average, it takes 4.02 seconds in GPU and 7.45 seconds in CPU per image.

Table 4 Number and percentage
of dermoscopic images per class
of the HAM10000 dataset

Pattern Count Percentage

MEL 1113 11.11%

NV 6705 66.95%

BCC 514 05.13%

AKIEC 327 03.27%

BKL 1099 10.97%

DF 115 01.15%

VASC 142 01.42%
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Table 5 Detailed description of the representative skin pattern categories divided into training, validation
and testing subsets after class balancing process

MEL NV BCC AKIEC BKL DF VASC Total

Train 1200 1200 1200 1200 1200 1200 1200 8400

Validation 400 400 400 400 400 400 400 2800

Test 400 400 400 400 400 400 400 2800

Total 2000 2000 2000 2000 2000 2000 2000 14000

4.3 Network configuration

The performance of a deep CNN model depends critically on its structure and the network
configuration [60]. In this paper, there still remain a number of network hyper-parameters
to be defined. Many of these hyper-parameters were chosen by experimenting until the
network began to train effectively. The low-level of our system, which consists of frozen
layers, was built using small learning rate α = 10−5, while the high-level of our proposed
architecture was trained using Adam algorithm [45] with learning rate α = 10−3, first
moment-decay β1 = 0.9 and second moment-decay β2 = 0.999 using Xavier algorithm for
weight initialization and LReLU activation function inserted after each convolutional layer,
where the softmax activation function was combined with the cross-entropy for training the
network. The optimization ran for 100 epochs with mini batch size 32. The network was
regularized using the dropout technique with factor ρ = 0.5 and L2 regularization with
ε = 0.05 to prevent the overfitting issues.

4.4 Evaluationmetrics

The evaluation of the performance of our proposed system was carried out using three quan-
titative methods including confusion matrix, Receiver Operating Characteristic (ROC) and
Precision-Recall (PR) curves.

The confusion matrix is a statistical process that is employed to evaluate the effective-
ness and robustness of our classification system. It contains information about actual and
predicted classifications done by a learning model. Calculating a confusion matrix can give
us a better idea of what our classifier is getting right and what types of errors it is mak-
ing. Performance of such systems is commonly evaluated using the data in the matrix. It
produces four outcomes: True Positive (TP), False Positive (FP), True Negative (TN) and
False Negative (FN), where TP is correct positive prediction, FP presents incorrect positive
prediction, TN gives correct negative prediction and FN determines incorrect negative pre-
diction. To compare the performances of our proposed method, we calculate six assessment
metrics: accuracy (Acc), sensitivity (Sen), specificity (Spe), error (Err), precision (Pre) and
F1-Score (FSc) which can be defined by:

Acc = T P + T N

T P + T N + FP + FN
(12)

Sen = T P

T P + FN
(13)

Spe = T N

T N + FP
(14)
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Err = FP + FN

T P + T N + FP + FN
(15)

Pre = T P

T P + FP
(16)

FSc = 2 × Pre × Sen

P re + Sen
(17)

Where:

– Acc is the proportion of the total number of predictions that were correct.
– Sen is the proportion of positive cases that were correctly identified.
– Spe is the proportion of negative cases that were correctly identified.
– Err is the proportion of the total number of predictions that were incorrect.
– Pre is the proportion of correctly predicted Positive divided by total predicted Positive.
– FSc is a harmonic mean of sensitivity and precision.

The second method for evaluating our proposed system is ROC curve, which is created by
plotting the sensitivity as the y coordinate against the 100-specificity as the x axis, is a prac-
tical process and reliable method of reporting the performance of the clinical prediction
tests, and is widely used in medical field to validate the robustness of a CAD system for
abnormal pattern recognition and classification. With regard to our study, ROC plays a vital
role in measuring performance of a diagnostic system for medical interpretation and com-
paring different dermoscopic researches when each study is carried out on the same case and
dataset. It is often exploited in binary classification tasks to evaluate and measure the effec-
tiveness of a classifier. For extending ROC curve to multi-class and multi-output problem,
an average ROC process generated from ROC curves of multiple classes has attracted the
attention of many researchers. In this study, we implemented a new technique for averag-
ing ROC curves suggested by authors of [16] based on non-parametric method. The metric
ROC-AUC, which is the area between the curve and the x coordinate (100-specificity), is
employed to summarize the performance of dermoscopic image analysis systems and used
to compare our proposed system with the existing techniques.

To facilitate class-wise visual interpretation, we used PR curve, which is defined as a
plot of precision versus recall, to typically illustrate the performance differences between
seven dermoscopic categories: MEL, NV, BCC, AKIEC, BKL, DF and VASC. Similar to
ROC-AUC, the Precision-Recall Area Under Curve (PR-AUC) is calculated to report the
performance of an algorithm on a given dataset. In this study, PR-AUC is used to evalu-
ate class-wise performance and reveal the robustness of the proposed system to maximize
the inter-class variability. In our experiments, we take the average PR curves and the corre-
sponding PR-AUCs of all plots as the final results for measuring the overall classification
performance across all classes using micro-averaging method [75].

4.5 Quantitative evaluation

As described in Section 3.2, low-level features were processed simultaneously in three par-
allel paths of the CNN as a function of the number of frozen blocks n; VGGn, ResNetn and
DenseNetn. The performance of the different level on the test dataset is shown in Table 6.
From these results, it can be seen that the best configuration of fine-tuning process for
the VGG-16 and ResNet-18 achieved when n=4 with freezing the weights of the first four
blocks (Level4), yielding classification accuracy of 87.23% with ROC-AUC of 88.71% for
VGG-16 and classification accuracy of 89.45% with ROC-AUC of 87.82% for ResNet-18.
For the DenseNet-121, the fine-tuning with freezing the weights of the first three blocks
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Table 6 Quantitative result of different fine-tuning levels on testing subset in terms of accuracy and ROC-
AUC metrics exploring transferability of VGG-16, ResNet-18 and DenseNet-121 pre-trained models

Leveln VGGn ResNetn DenseNetn

Acc. % ROC-AUC % Acc. % ROC-AUC % Acc. % ROC-AUC %

Level0 79.52 81.42 80.17 80.96 81.60 83.27

Level1 83.07 84.28 83.62 82.40 86.13 85.98

Level2 85.31 86.66 85.11 86.34 86.44 87.32

Level3 86.70 85.84 87.58 86.41 90.37 92.52

Level4 87.23 88.71 89.45 87.82 86.97 86.02

Level5 87.06 85.98 86.69 86.21 85.11 84.70

(Level3) is the best with 90.37% classification accuracy and 92.52% ROC-AUC rate on the
test set.

As mentioned in Section 3.4, the proposed multi-layer feature fusion network has three
CNN models; VGGn-CFU, ResNetn-CFU and DenseNetn-CFU. By comparing the results
in Table 6, the experiments suggest that four blocks from each VGG-16 and ResNet-18
models and three blocks from DenseNet-121 can design low-level features of these three
models: VGG4-CFU, ResNet4-CFU and DenseNet3-CFU. As shown in Fig. 5, we evalu-
ated the training quality of our proposed framework using training and validation subsets.
These curves show the predictive generalization performance of our proposed model as a
function of the number of epochs. At epoch 54, the training and validation curves are iden-
tical which reach same accuracy and loss values. Hence, this model can typically predict
new dermoscopic pattern without suffering from overfitting. The experimental evaluation as
shown in Tables 7 and 8 demonstrates that the multi-layer feature fusion network achieved
the promising performance on testing dataset, yielding an average accuracy of 98.09% with
sensitivity of 93.35%, specificity of 98.88%, precision of 93.36%, F1-Score of 93.35% and
error of 1.90%. From Fig. 6, the average ROC shows the best performance of our proposed
method in terms of ROC-AUC rate with 96.51%.

As illustrated in figures (Figs. 7, 8, 9, 10, 11, 12 and 13) and listed in Table 9, the class-
wise performance was evaluated using PR curve and the corresponding PR-AUC metric.
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Fig. 5 Learning curves of the proposed model. The comparison of the performance on training and validation
dermoscopic data over the varying number of epochs show that at epoch 54, the training and validation curves
converge at similar values, and they show a very small gap between training and validating loss rates
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Table 7 Confusion matrix of
skin abnormality classification
given by our proposed method on
testing subset

Classes TP TN FP FN

MEL 376 2369 31 24

NV 372 2369 31 28

BCC 375 2367 33 25

AKIEC 369 2372 28 31

BKL 371 2376 24 29

DF 377 2380 20 23

VASC 374 2381 19 26

The reported system has an overall PR-AUC of 95.73% on testing dataset. During diagnosis
procedure, recognition of AKIEC, NV and BCC is the most challenging and very tedious
task. From the results summarized in Table 9, the proposed system achieved the PR-AUCs
of 92.38%, 92.65% and 93.14% for recognition of AKIEC, NV and BCC, respectively.
When the proposed system was tested against MEL, BKL, VASC and DF abnormalities, the
results were notable with significant improvements in terms of PR-AUC, yielding 94.27%,
94.62%, 95.04% and 95.91% for MEL, BKL, VASC and DF recognition, respectively.

4.6 Qualitative evaluation

The measurement of the effectiveness of our proposed multi-layer feature fusion network
was confirmed by comparing the performance of three CNN medels; VGG-16, ResNet-18
and DenseNet-121. Based on the summary results discussed in Section 4.5, it is clear that
the fine-tuning technique combined with hierarchical multi-feature fusion network achieved
a promissing performance. To evaluate the visual results, we displayed in Fig. 14 the qual-
itative recognition results of the most classified skin patterns as MEL, NV, BCC, AKIEC,
BKL, DF and VASC with softmax probability of 100%. It is remarkable, that the network
learned typical textural filters in different CNN model. Hence, we can conclude that these
three cooperative CNN models (VGG4-CFU, ResNet4-CFU, and DenseNet3-CFU) are per-
forming better in recognizing and classifying all dermoscopic patterns as MEL, NV, BCC,
AKIEC, BKL, DF and VASC than the existing other methods. As was mentioned earlier
(Table 8), our proposed study achieved an average of 1.90% in terms of classification error
rate. The most common dermoscopic pattern classification error was misclassifying a BCC
as MEL (Fig. 15a), a NV as AKIEC tissue (Fig. 15b). In addition, most of AKIEC (Figs. 15c

Table 8 Validity assessment
measures for seven classes given
by our proposed method on
testing subset

Classes Acc. % Sen. % Spe. % Err. % Pre. % FSc. %

MEL 98.03 94.00 98.70 01.97 92.38 93.18

NV 97.89 93.00 98.70 02.11 92.30 92.64

BCC 97.92 93.75 98.62 02.08 91.91 92.82

AKIEC 97.89 92.25 98.83 02.11 92.94 92.59

BKL 98.10 92.75 99.00 01.90 93.92 93.33

DF 98.46 94.25 99.16 01.54 94.96 94.60

VASC 98.39 93.50 99.20 01.61 95.16 94.32

Average 98.09 93.35 98.88 01.90 93.36 93.35
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Fig. 6 The average ROC curve of the CAD system for seven classes on the testing dataset. For predicting the
seven skin lesion categories, the proposed model had a ROC-AUC of 96.51%

Fig. 7 The precision-recall curve of melanoma abnormality compared with micro-average precision-recall
curve of our proposed model. For predicting the melanoma class, the proposed model had a PR-AUC of
94.27%

Fig. 8 The precision-recall curve of melanocytic nevus abnormality compared with micro-average precision-
recall curve of our proposed model. For predicting the melanocytic nevus class, the proposed model had a
PR-AUC of 92.65%
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Fig. 9 The precision-recall curve of basal cell carcinoma abnormality compared with micro-average
precision-recall curve of our proposed model. For predicting the basal cell carcinoma class, the proposed
model had a PR-AUC of 93.14%

and d) are confused with the BKL structure. These confusions occur due to similar morpho-
logical features, the image acquisition systems which captured some dermoscopic patterns
with small scale and weakly contrasted texture and the insufficiency of these patterns in
our training set. Figure 15 shows the most dermoscopic abnormalities misclassified by our
proposed approach.

4.7 Comparison with the state of the art

As shown in Table 10, we make a comparison between the proposed CAD system and exist-
ing state-of-the-art in order to evaluate and confirm the quality of this study. Based on the
summary and comparison of the dermoscopic research results discussed in Section 2, it is
difficult to evaluate the CAD system and ensure its quality that achieves high effectiveness
in terms of medical diagnosis, because the dataset and quantitative evaluation methods are
not standardized. As a result, we should assure that for a dependable comparison and reliable

Fig. 10 The precision-recall curve of actinic keratosis abnormality compared with micro-average precision-
recall curve of our proposed model. For predicting the actinic keratosis class, the proposed model had a
PR-AUC of 92.38%
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Fig. 11 The precision-recall curve of benign keratosis abnormality compared with micro-average precision-
recall curve of our proposed model. For predicting the benign keratosis class, the proposed model had a
PR-AUC of 94.62%

clinical research, it would be necessary to use the same database (HAM10000) and the same
metrics (Accuracy, Sensitivity, Specificity, Precision, F1-score and ROC-AUC) for validat-
ing the performance of our methodology. However, research on this dermoscopic dataset
(HAM10000) is still relatively scarce. To overcome this limitation, we tried to implement
some existing algorithms used for skin lesion recognition and test them on our dermoscopic
dataset. Then, the [10, 25, 28, 37, 57, 97] were implemented and tested on HAM10000
dataset. The visual comparison given in Table 10 demonstrates that our best performing net-
work outperforms the pre-trained AlexNet with an error-correcting output coding classifier
combined with support vector machine [25], convolutional neural-adaptive networks [10],
pre-trained GoogleNet inception-V3 [28], pre-trained very deep residual networks with 152
layers [37], lesion feature network [57] and pre-trained VGG-16 [97].

Fig. 12 The precision-recall curve of dermatofibroma abnormality compared with micro-average precision-
recall curve of our proposed model. For predicting the dermatofibroma class, the proposed model had a
PR-AUC of 95.91%
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Fig. 13 The precision-recall curve of vascular lesion abnormality compared with micro-average precision-
recall curve of our proposed model. For predicting the vascular lesion class, the proposed model had a
PR-AUC of 95.04%

5 Discussion

Pattern recognition in dermoscopic image is an area of great research interest due to its
importance in skin cancer prevention, as well as in the early diagnosis. Therefore, several
automatic diagnosis systems have been proposed using models with a single CNN stream to
generate discriminative features for skin lesion classification. As mentioned in Section 2.3,
current studies in pattern recognition research field reported that multiple descriptor fusion
performed better than single feature map for multi-class classification problem. However,
research on multi-feature fusion topic for dermoscopic pattern recognition is still relatively
scarce. In addition, dermoscopic imaging field suffers from limited small number of avail-
able samples to build an efficient deep CNN models. Thus, one of the major challenges in
building deep CNN architecture using dermoscopic data appears from the limited number of
training images to create CNN models without occurring overfitting. This paper presented
several gaps in dermoscopic domain as well a robust system for investigating them. The pro-
posed approach was evaluated on HAM10000 dataset [82] which includes seven skin lesion
categories: MEL, NV, BCC, AKIEC, BKL, DF and VASC. Among several evaluation pro-
cedures, the randomly splitting dataset into 60% for training, 20% for validation and 20%
for testing [54, 70] is the most commonly used in the literature to evaluate the results of skin

Table 9 System performance in
PR-AUC for each dermoscopic
class

Classes PR-AUC %

MEL 94.27

NV 92.65

BCC 93.14

AKIEC 92.38

BKL 94.62

DF 95.91

VASC 95.04

Micro-average 95.73
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Fig. 14 An illustrative example showing the most classified skin lesions with softmax probability of 100%.
a Melanoma. b Melanocytic nevus. c Basal cell carcinoma. d Actinic keratosis. e Benign keratosis. f
Dermatofibroma. g Vascular lesion

lesion classification, since it avoids overfitting while testing the capacity of the classifier to
generalize.

Motivated by the outstanding performance of transfer learning in visual pattern recogni-
tion area, fine-tuning is proposed to solve the data deficiency problem in dermoscopic object
recognition. As [3, 10, 15, 56, 89, 105] pointed out, lower layers in the convolutional neural
network learn fundamental features which are common in many objects, while higher lay-
ers learn semantic features which are specific to the target task. Therefore, a good transfer
learning scheme should preserve the ability of learning common features and tune the high
features to the target object categories. To achieve this goal, we carried out extensive exper-
iments to explorer the right choice of frozen blocks by continuous fine-tuning technique
using three pre-trained CNNmodels; VGG-16 [74], ResNet-18 [39] and DenseNet-121 [41]

Fig. 15 The most skin abnormalities misclassified by the proposed approach and confused with other
dermoscopic patterns. a Basal cell carcinoma. bMelanocytic nevus. c–d Actinic keratosis
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Table 10 Comparison between the proposed method and other algorithms using the HAM10000 dataset

Methods Acc. % Sen. % Spe. % Pre. % FSc. % ROC-AUC %

Method [28] 91.56 87.26 92.48 92.52 89.81 91.83

Method [25] 83.91 81.47 84.20 81.76 81.61 81.55

Method [10] 84.28 79.34 84.79 84.01 81.60 83.62

Method [37] 86.77 84.91 86.67 85.37 85.13 85.47

Method [57] 83.71 78.15 86.41 80.46 79.28 83.03

Method [97] 87.06 85.75 86.32 86.32 86.03 85.98

Ours 98.09 93.35 98.88 93.36 93.35 96.51

which can be considered the most efficient architectures owing to their high performance
achievement on different datasets for object recognition tasks. We based our experiments
on these three pre-trained models because they are deep enough that we can investigate the
impact of the proposed method on the dermoscopic pattern recognition task, and they are
also shallow enough that we can conduct experiments quickly. To decide the best transfer
scheme, we do extensive experiments by retraining different blocks in order. Firstly, the
whole network is trained on HAM10000, and then different retraining scheme is carried
out (Fig. 3). For example, retraining the last block, the last two, the last three and so on.
Details about the results are given in Table 6. The best performance was achieved when
n=4 for VGG-16 and ResNet-18 with freezing the first four blocks, and n=3 for DenseNet-
121. As we are practically choosing the best-performing blocks to design low-level features
when presenting the fine-tuning results, we are fixing the same convolutional fusion unit
denoted by CFU for all selected blocks to generate high-level features. To make our work
more robust and efficient, we proposed multi-layer feature fusion network, which consists of
three parallel CNN paths; VGG4-CFU, ResNet4-CFU and DenseNet3-CFU. By comparing
the results in Tables 6 and 8, the proposed fusion technique increases the accuracy at least
by 7.87% comparing the results of the best configuration of fine-tuning without fusion. Our
results using fusion were also compared with the previous works in Table 10, it is remark-
able that our proposed system achieved the promising results with an average accuracy of
98.09%, sensitivity of 93.35%, specificity of 98.88%, precision of 93.36%, F1-Score of
93.35%, ROC-AUC of 96.51% and PR-AUC of 95.73%.

From the analysis of the results, it is evident that our proposed algorithm is more robust
as compared to fine-tuning configurations and state of the art works mentioned in Tables 6
and 10, respectively. All the previous works used SGD as optimization algorithm, which
is very slow, and causes convergence to the local minima rather than the global minima
[46]. In addition, the ReLU was used as activation function, which replaces the negative
component by zero, occurring the bias shift of the outputs and the death of some neurons,
which leads to the impeding learning, vanishing gradient and oscillation problem in opti-
mization algorithms [101]. In our study, we solved these issues by using Adam optimization
algorithm [45] to train CFU architecture, which combines the advantages of two recently
popular methods; AdaGrad [27] and RMSProp [69]. So, Adam is a good alternative to SGD
since it can handle sparse gradients on noisy problems and alleviate the convergence to
local minima with little memory consuming. To overcome the limitations of ReLU, LReLU
[64] is proposed as activation function that can avoid the zero gradients in negative part
and the bias shift of the ReLU function. In order to address the problem of overfitting, we
used three techniques; inserting a dropout [12] layer after each FCF layer with a probabil-
ity of 0.5, using L2 regularization [54] with factor ε=0.05, and using the pre-trained blocks
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from three models (VGG-16, ResNet-18 and DenseNet-121) as hierarchical low-level fea-
ture extractors of the proposed system. Additionally, the hyper-parameters setting also play
a substantial role in the final performance of the systems. In this work, the hyper-parameters
were experimentally chosen until the network began to converge effectively. From the prac-
tical point of views [23, 42, 53, 84, 95], the best way to alleviate the problem of semantic
feature ambiguity and high inter-class visual similarities between the classes is to employ
hierarchical multi-feature fusion technique to ensure maximum information flow between
layers in the network. The misclassification of some skin abnormalities occur due to similar
morphological appearances (Fig. 15). Another issue that needs to be taken into account is
the technological limitations of the image acquisition systems. Better performance may be
achieved with higher resolutions which may capture skin features better, such as asymmet-
rical characteristic, irregular edge of the lesion, different color composition and diameter
size, which play a key role in the classification of dermoscopic patterns [61].

The computational time is one of the most essential factors of deep CNN. Consequently,
we have always tried to insert after each convolutional block and fusion layer a down-
sampling layer [33]. The max pooling layer reduces the dimension of the features with
completely keeping a balance between high performance achievement and low computa-
tional times. The model build time for the proposed strategy is evaluated by using NVIDIA
DIGITS system based on caffe framework [92] for rapidly training the highly accurate
deep CNN and a single NVIDIA GeForce GTX 1060 with 6 GB memory. Our experi-
ments demonstrate that the proposed system took around 9 hours and 27 minutes. For each
dermoscopic image, the test takes, on average, 4.02 seconds in GPU and 7.45 seconds in
CPU.

To the best of our knowledge, this is the first study that implements a very deep hierarchi-
cal multi-feature fusion network for the automated recognition system of MEL, NV, BCC,
AKIEC, BKL, DF and VASC dermoscopic patterns. Based on the results, the summary of
proposed algorithm can be drawn as:

– It can be argued that the proposed algorithm is significantly robust, reliable and efficient
comparing to other state of the art classification algorithms.

– The proposed algorithm overcomes many problems that confronted most of previous
algorithms such as vanishing gradient, requirement of too much memory, decreasing
the bias shift, convergence to local minima and overfitting issue.

– The computational cost of our algorithm is lower than other algorithms that used CNN.
– The proposed CAD system can serve as a complete expert tool to help clinicians in

confirming their diagnosis and analysis.

Finally, this computational method based on transfer learning and fusion technique can
perform better and more effectively in recognizing skin lesions in dermoscopic images.
In addition, such method may fix and control the various gaps in the skin pattern recog-
nition area, starting from image size normalization, class balancing, hair artifact removal,
contrast enhancement and ending with the complex skin lesion classification, which con-
vert CAD systems into more complete expert systems for diagnosing such lesions based on
dermoscopic images.

6 Conclusion

In this study, we proposed a novel CAD system to classify skin pattern as MEL, NV, BCC,
AKIEC, BKL, DF or VASC. Firstly, by integrating continuous fine-tuning CNN models:
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VGG-16, ResNet-18 and DenseNet-121, the right frozen blocks were chosen to design
efficient low-level features which not only reduce the computational cost with consider-
ing high performance achievement, but also robustly deal with limited availability of the
training dermoscopic samples and overfitting problem. Then, CFU architecture was imple-
mented to generate high-level features and overcome the limitation of VGG-16, ResNet-18
and DenseNet-121. It takes advantage of using the LReLU activation function that can
avoid the zero gradients in negative part and the bias shift, Adam optimization algorithm
to handle sparse gradients on noisy problems and the convergence to local minima with
little memory consuming, and fusion layers to extract the latent feature representations.
Finally, the high inter-class visual similarity problem was alleviated by fusing the three
high-level semantic feature maps (VGG4-CFU, ResNet4-CFU, and DenseNet3-CFU). The
experimental results show that our proposed method outperforms the most representative
state-of-the-art strategies in dermoscopic pattern recognition.

The proposed system is completely automatic, which provides a complete functionality
from data pre-processing to the skin abnormality diagnosis, fast and easy for configuration,
which requires minimum interaction from the dermatologists for use in clinical applications
and making the final decision for the further treatment.

Using insufficient data with small scale is a major problem in dermoscopic abnormal-
ity recognition which may increase the classification error and harm the performance of the
CAD system. Therefore, as a future research issue, we plan to collect and construct new bal-
anced dermoscopic data including more challenging images, improve the proposed method
by taking into consideration multi-scale analysis of skin pattern in order to boost class-wise
performance, and evaluate our approach on more datasets.
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