
Developing pervasive games in interactive spaces:
the JUGUEMOS toolkit

Clara Bonillo1 & Javier Marco2 & Eva Cerezo3

Received: 19 October 2018 /Revised: 11 May 2019 /Accepted: 10 July 2019

# Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The progress in the development of pervasive games is slowing down because of the multiple
challenges that these games brings to developers, due to the great variety of interaction
paradigms that this kind of games involve and the difficulties of developing applications
where so many innovative technologies converge. In this article we present JUGUEMOS, a
toolkit aimed at developers to help them in the creation of pervasive games for Interactive
Spaces. The toolkit addresses three challenges that arise when developing pervasive games:
the integration of heterogeneous devices, the management of multiple displays and the
facilitation of the game coding. The toolkit is based on the TUIML modeling language that
allows defining games easily, reducing the impact of the coding between iterations. The toolkit
also makes use of the OSC Protocol to interconnect the different devices. Detailed descriptions
of the toolkit design decisions, architecture and implementation are presented, together with
three different case studies carried out in order to explore the toolkit expressivity, its capability
to support collaborative multidisciplinary experiences, and its potential to support interactive
experiences outside our Interactive Space. We hope this work would contribute to the spread of
pervasive games in interactive spaces.

Keywords Pervasive games . Interactive spaces . Toolkits . TUIML

1 Introduction

Computer games have some advantages that have make them more popular than traditional
games. They intrinsically motivate players by bringing them more fantasy, challenge and

Multimedia Tools and Applications
https://doi.org/10.1007/s11042-019-07983-6

* Clara Bonillo
clarabf@unizar.es

Javier Marco
jmarco@esda.es

Eva Cerezo
ecerezo@unizar.es

Extended author information available on the last page of the article

(2019) 78:32261–32305

Published online: 31 July 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-019-07983-6&domain=pdf
http://orcid.org/0000-0003-0523-3025
mailto:clarabf@unizar.es


curiosity, which area three main elements contributing the fun in games [25]. However,
computer games have often decreased physical activity and social interactions. In the last
years, real world is coming back to computer entertainment, with a new gaming genre:
Pervasive games. Pervasive games are no longer confined to the virtual domain but integrate
physical and social aspects of real world [22]. Usually, the idea in Pervasive Games is that they
overcome the limitations of traditional games in the spatial, temporal or social dimensions
[28]. However, the term has several definitions that set the focus in different issues related to
the games. Last years, the focus has been put in the context, and they are defined as a new
gaming experience where the dynamics of the game evolutions by means of the information
provided by the context where it is played [1]. Nevertheless, and even though the ambiguity of
the term and its use to refer to very different types of games, there are three common
characteristics shared by all of them: (1) the mixing of real and virtual world, (2) the support
of natural styles of interactions (voice, tangibles, gestures), and (3) their strong social
component.

Moreover, a characteristic of this kind of games is that the technologies involved on them
have to be seamlessly integrated on the game environment, which is augmented to enable
players to interact with the game by physical manipulation of conventional toys, to provide
them with useful information via displays or to immerse them in the game world. However,
this process of augmentation is not an easy task, since it requires the involved technology to be
as “hidden” as possible for the user, in order to not interfere with the game process and to keep
the original characteristics of traditional games [48].

Interactive Spaces [14] are a natural place to deploy Pervasive Games, as they both share
their Ubiquitous Computing nature. Interactive Spaces (IS) are Distributed User Interfaces
supporting several ways of interactions in digitally augmented rooms that combine:

– Multiple interaction techniques: a panoply of related interaction paradigms such as
Physical Computing, Context-Aware Computing, Mixed Reality, Wearables and Tangible
User Interfaces can be combined and converge in an IS, allowing multiple users to
interact, at the same time or in a distributed way, with the different devices involved in
the IS.

– An heterogeneous multidisplay output ecosystem: in an IS, providing feedback to let users
know what is happening in the environment can be done by different ways: projection
walls, screens, and mobiles that can show visual and audio information to the users, haptic
technologies that recreate the sense of touch by applying physical reactions to the users
such as vibrations or movements, systems that are able to change the users’ taste
perception, or even based olfactory devices that display different smells to the users
depending on the goal of the application displayed in the IS [49].

Initially, ISs have been applied to explore new possibilities of collaborative work and meeting
rooms [3, 21] but more recently they have being considered as the ideal environment for the
creation of games [11]. As we will see in the state of the art section, during the last years we are
seeing an increasing number of projects and prototypes of pervasive games in ISs. Existing
systems have greatly contributed to the pervasive games research by emphasizing different
natures of ubiquitous interaction. The key to bridge the gap between the design and develop-
ment of pervasive games is to be able to quickly prototype and tweak game rules as well as the
involved user interfaces and interaction devices [44]. However, the number and heterogeneity
of display devices that can be found in an IS are raising the multiples challenges that the design

Multimedia Tools and Applications (2019) 78:32261–3230532262



and prototyping of pervasive games involve. Besides, the novelty of the ubiquitous technol-
ogies suppose an added complexity to the design and development process, since they have
begun to be used just recently and they still lack of stability and homogeneity. Therefore, there
is a need of frameworks or toolkits that facilitate, on the one hand, the communication with so
many varied input devices and that, on the other hand, put the focus on the prototyping of
pervasive games for ISs. Also, as stated by Myers et al. [33], frameworks are tools that aim to
make the rapid prototyping of user interfaces easier and enable more iterations during the
design process by lowering the threshold of developing the system while retaining a high
ceiling of expressiveness. The threshold is the difficulty of learning and using a system, which
is connected with the development process, while the ceiling captures the complexity of what
can be built using the system, which is directly related with the design process.

The current article presents JUGUEMOS, a toolkit for the prototyping of pervasive
games in Interactive Spaces. The toolkit has been designed as a set of tools that help
developers with the implementation of hybrid games in indoor ISs, lowering this way the
threshold of implementing pervasive games. The toolkit makes use of well-known ab-
straction modeling languages in order to express the physical interactions of the players in
the IS, raising that way the ceiling of expressiveness. Additionally, the toolkit has been
designed with a hardware and software architecture that can be adapted to different IS
configurations and that it is able to deal with the heterogeneity of devices and ubiquitous
technologies in an indoor IS. The toolkit tries to mitigate the lack of tools in this area and
aims to contribute to the spread of hybrid games in interactive spaces. The work proposes
ways to tackle the main challenges involved in the development of this kind of games and
shows the viability of the proposed solutions.

The structure of the article is as follows: Section 2 presents a state of the art of pervasive
games and of frameworks aimed at their development. The design decisions that lead to the
development of the JUGUEMOS toolkit and its architecture are explained in Section 4. The
detailed explanation of the toolkit implementation is presented in Section 5, while Section 6
shows the three case studies carried out in order to explore the toolkit’s expressivity and
potential. Section 7 contains a discussion regarding the advantages of out toolkit together with
the improvements that remain to be done, and finally Section 8 is devoted to conclusions and
future work.

2 State of the art

In the next section, first we are going to analyze several examples of pervasive games,
focusing on their deployment. After that, we carry out an analysis of frameworks or toolkits
aiming to facilitate the creation of pervasive games.

2.1 Pervasive games in the literature

It has been mentioned in the introduction that when developing pervasive games it is necessary
to augment the game environment to allow the players to interact with the technologies
involved in the game. In this first part of the state of the art we categorize the pervasive games
analyzed in four categories depending on the augmentation carried out: objects augmentation
(smart toys), table augmentation (tabletops), room augmentation (Interactive Spaces), or
world augmentation (outdoor games).

Multimedia Tools and Applications (2019) 78:32261–32305 32263



2.1.1 Object augmentation

“Caves & Creatures” [23] is a tabletop role-playing game that combines a tangible board and
physical objects with a computer screen where the actions of the players are shown. Players
physically move their characters on the board and use cards augmented with Radio Frequency
Identification (RFID) to represent different items that can be traded with other players. RFID
technology uses electromagnetic fields to detect and track tags attached to objects. The tags
can be detected meters away from the RFID reader and they usually carry a local power source
in order to operate. Therefore, this kind of technology is commonly used in ubiquitous
computing systems when it is necessary to know the position of certain objects or persons.
Among the objects to be used, there is also a magic wand with a built-in accelerometer to
recognize the movements that the players make to cast spells.

Martins et al. [27] and Tanenbaum et al. [43] propose storytelling digital augmented
environments with Noon and the Reading Glove respectively. Noon is an interactive experi-
ence where players have to discover the secrets of a manor by manipulating different objects to
trigger the memories they keep stored inside. Players wear a bracer with a built-in RFID reader
to detect the different objects and the hand movements. The images and sounds that represent
the different memories are displayed in a PDA encased in a hollowed-book, also carried by the
players. Similar to the Noon game, the Reading Glove uses a similar wearable controller
embedding a RFID reader to detect tagged objects. Players have to discover hidden memories
inside 12 different objects to find out a story about a spy who has been betrayed. The story is
narrated through video and audio feedback on a computer screen.

“Don’t Panic” [30] is an augmented board game where four players have to collaborate to
prevent panic from spreading in certain sectors of a city when random dangerous events take
place. The cardboard where the game is played is a traditional physical object but the pieces
used in the game are square-shaped augmented artifacts with an integrated LCD screen to
show information related to the game. These artifacts have several functionalities: they detect
other artifacts by proximity, they can display sounds, and represent the pawns controlled by the
players, such as the dice to move the characters through the cardboard and the cards that trigger
the game events.

“BoomChaCha” [50] is a rhythm-based collaborative game where players have to defeat
monsters using different toy weapons. The tracking of the toys and how they are manipulated
is carried out integrating in the toys accelerometer sensors wirelessly connected to a computer
via an Arduino microcontroller. That way, the computer wirelessly receives sensor data from
multiple toys, and responds to players by sending commands to the toys’ Arduino
microcontrollers to light on LEDs attached to the weapons. Digital feedback is shown in a
projection screen.

Park [35] developed the “Hybrid Monopoly”, a new Monopoly-based hybrid board game
that makes use of digital smart phones that can be combined with the non-technological game.
In this version of the Monopoly, the playing pieces and board remain as physical elements, but
a game calculator replaces the game’s bank and the cards become digital elements appearing in
the smartphone screen. RFID technology is once again used to detect the position of the
playing pieces on the board. Three-multicolor LEDs and a LCD panel provide visual feedback
to the player’s actions, and audio instructions are given to the player through the smartphone
devices.

Finally, Gatti et al. [9] made use of haptic digital augmentation to create a hybrid version of
the traditional Foosball game. In this version, goals are replaced by a set of hit sensors situated

Multimedia Tools and Applications (2019) 78:32261–3230532264



on either side of the table. By hitting the sensors with the ball, players can hinder the
opponent’s movements thanks to a haptic actuator attached to the clamps that applies friction
when one of the players’ sensors is hit.

2.1.2 Table augmentation

“PingPongPlus” [13] is a digitally augmented version of the classical ping-pong game
considered one of the pioneers in the field of hybrid games. Digitally augmenting the ping-
pong table required to develop a completely new ball tracking hardware, consisting of an audio
based sensor capable of triangulating how the ball bounces on the ping-pong table. Graphic
feedback is provided by projecting digital images on the ping-pong table, and by generating
animated graphics related to the hits of the ball on the table. Several augmented ping-pong
game modes were developed, enriching the traditional ping-pong game.

RoboTable [20] is a tabletop system that allows users to manipulate robots intuitively. This
time, instead of using RFID technology to detect the robot on the table, special printed markers
are attached to the robot’s base. Digital cameras installed inside the tabletop are in charge of
detecting the robot’s markers placed on the tabletop surface, and the reacTIVision software
framework [15] is used to recognize the markers of the robots. reacTIVision simplifies the
tracking of conventional objects on interactive tables attaching ordinary printed markers on the
base of the object instead of complex and expensive electronic components. reacTIVision uses
the TUIO communication protocol [16], built on the Open Sound Control communication
protocol (OSC) [47] in order to allow the transmission of messages which are sent when
carrying out manipulations on the tabletop surface.

Other hybrid tabletop games also use reacTIVision. In the “Farm” game [4] children
manipulate animal toys with reacTIVision markers in different ways: for example, when the
child makes the cow and the hen “jump” on the tabletop, the image projected on the tabletop
shows milk and eggs respectively, and when the pig toy is moved on the virtual bushes, it
collects strawberries. Finally, “Uprising” [7] is a digitally augmented board game in which
players control zombies and humans playing pieces on the tabletop surface to defend their
respective territories. This game uses reacTIVision to detect the playing pieces on the tabletop,
and also projects the image of the board on the tabletop surface.

2.1.3 Room augmentation

The Kidsroom [2] is an indoor environment that re-creates a child’s bedroom where children
become the protagonists of a story: “The Bedroom World”. The children have to go asking the
different pieces of furniture of the room in order to discover a magic word that would allow
them to travel to other worlds. Visual feedback is provided through wall projections that
recreate the room environment and the different worlds the children can travel to, and audio
feedback is reproduced via several speakers. The deployment of the game required to use a
total of four cameras to track the children’s position and movements in different angles, and a
detection algorithm was implemented to recognize the actions the children perform while
playing.

Touch-Space [6] is an interactive room aimed to support mixed-reality based hybrid games
where players have to walk around and interact with physical objects. In order to track the
players’ position in the room, Touch-Space uses a Real Time Locating System (RTLS) able to
detect the position of the head and hands of the players. RTLS systems make use of wireless

Multimedia Tools and Applications (2019) 78:32261–32305 32265



tags attached to objects or persons that send wireless signals to the sensors that compose the
RTLS so that the system can triangulate their position. In Touch-Space, players also wear a
Head-Mounted Display (HMD) to support video-see through augmented reality feedback, and
the HMD has a small video-camera to track visual markers attached to different objects of the
room. The position of the markers is tracked using the ARToolkit software framework [17]. In
addition, the players carry a wand toy that gives visual feedback about the tasks that they have
to perform.

Age Invaders [18] is an interactive indoor game installation based on the Atari™ Space
Invaders classic arcade game. In Age invaders the spaceship digital sprites were physically
replaced by the players themselves. In a room, one team plays the defenders while the other
plays the invaders. The floor is digitally augmented with audio and video projection,
representing the star background and the missiles that each player shoots. Players use a hand
controller to shoot the missiles. When a player is hit, the “explosion” is showed in a LED
display that the players wear on their body. The tracking of the players’ interactions during the
game is provided by installing RFID readers in the players’ shoes.

Another mixed reality example is Treasure [11], where players have to find objects marked
with RTLS tags. In order to gather other physical information related to the objects, such as
their orientation or certain changes produced in their surrounding environment, MOTE sensors
are attached to certain objects. There are two different kinds of objects: target, the ones that the
players have to find to win the game, and supporting, the ones that give hints to the player to
find the target objects. Treasure has been designed so that it is possible to trigger different
digital responses to the player’s actions: for example, when they find an object an audio can be
played, an image/video can be shown on the wall, or both.

Another game, theMusic Room [31] is an interactive indoor installation where music can be
composed by dancing in the space. In order to detect the dancers’ movements, cameras are
embedded in the environment and a tracking software was developed by applying digital
image algorithms. The information extracted from the camera image analysis is sent to a
musical composition digital system using OSC. The composition system analyzes the data
from sensors and generates music depending on the way people are dancing (close to each
other, far from each other, fast, slow).

2.1.4 World augmentation

In outdoor games, players can be widely scattered in places from a campus to a whole city, or
even the world. “Can you see me now?” [8] is a mobile mixed reality game in which online
players play an adapted game of catch with real players (runners). Online players move in a
virtual model of the city and runners have to “catch” the online player using a handheld map
where the position of other runners and the online players is shown. Runners also wear Walkie-
Talkies to communicate with each other. In this case, the whole city becomes the playground
where players, online and runners, are collaborating.

Another example of outdoor game is Treasure [5]. In this game players have to collect
virtual coins in the city with the help of PDAs where a map with the current positions of the
coins and the players is displayed. Players compete to collect more coins and they can even
steal coins from another nearby player. In both games, GPS sensors are used to track the
position of the players, and visual and audio feedback is provided by the use of PDAs.

Finally, “Save the Safe” [41] is an adaptation of the traditional game of cops and robbers. In
this version, children divided in robbers and cops carry a device with a LED that shows the

Multimedia Tools and Applications (2019) 78:32261–3230532266



color of the team and gives audio instructions. At the beginning of the game, the device of one
of the cops vibrates, indicating that he/she has the key that the robbers have to steal to win the
game. Only the cop with the key knows it, so the robbers must run after the different cops and
approach their devices to the cops’ ones to try to guess who has the key, while the cops have to
pass the key with their devices to prevent the robbers from stealing it. The devices used in this
game embed different hardware components such as an accelerometer sensor to measure
movements and a XBee module that allows RF communication to interconnect the different
devices and measure distances between devices. Visual and audio feedback is provided by a
vibration motor, speakers and LEDs.

2.1.5 General conclusions

All the examples that have been explained are summarized in Table 1 in order to show their
characteristics more clearly. The second column indicates the way to interact with the
respective systems, the third column relates to how the implementation has been carried out,
and the fourth column shows the different kinds of outputs found in the games.

After the detailed analysis of the different games, some conclusions can be extracted
regarding their common characteristics:

– - The development of hybrid games requires the integration of a great variety of devices,
and there are some kinds of sensors that are commonly used depending on what to track:
games where objects are augmented require RFID technology and visual printed markers
that are later tracked by specialized software; when the game needs to “know” the position
of the players in the system, RTLS technologies are applied in room augmented games
while GPS sensors are used in world augmented applications; and when it is necessary to
recognize the player’s gestures, accelerometers sensors are integrated. Also, some games
make use of actuator hardware, such as BoomChaCha, whose toys are reactive to users’
manipulations by lighting LEDs in certain colors, and Augmented Foosball, where haptic
actuators are embedded in the foosball’s rods to apply force depending on the player’s
performance during the game.

– - The hybrid games presented in Table 1 make use of different software toolkits and
frameworks in order to carry out certain parts of the implementation, such as reacTIVision
and the ARToolkit to process camera digital image to track printed markers. Several
programming environments such as Max MSP, Arduino, Processing and Eclipse are used
to develop the game logic. In order to communicate distributed hardware components,
different communications protocols are used, such as TCP, RPC, Bluetooth and OSC.
Very often, the development of hybrid games requires to implement their own detection
and tracking algorithms from scratch. Although in some works this could be due to the
lack of existing software at the moment (“The Bedroom World” and “PingPongPlus”),
there are relatively recent works that require hardware level coding from scratch too, such
as Robo Table, Music Room and Augmented Foosball. In addition, among the 19 works
analyzed, in 14 of them the coding of the game has been made ad hoc, without using
any specific tool or framework that facilitates the task of dealing with the different
paradigms involved in the game. The only 5 works that make use of existing frameworks
are “Don’t Panic” with Anyboard, “Caves & Creatures” with Pegasus, “Farm” with
ToyVision, “Save the safe” with RaPIDO, and “Treasure” with Sixth-Sense, which will be
analyzed in the next section.

Multimedia Tools and Applications (2019) 78:32261–32305 32267



– - With the exception of Augment foosball, that does not provide visual output, and Music
Room, that only uses audio feedback, the rest of the games employ a combination of audio
and visual feedback. It can also be observed that there are multiple ways to show visual
information (projection screens, controlled lights, tabletop surfaces, PDAs, smart-phones,

Table 1 Pervasive games classification based on deployment

GAME INPUT IMPLEMENTATION OUTPUT

OBJECT
AUGM.

Caves & Creatures
(2006) [23]

Objects
Gestural

Communication: TCP/IP,
Bluetooth

Language: C
Toolkit: Pegasus*

Computer screen
Accelerometer

Noon (2009) [27] Objects Communication: RF PDA
Accelerometer

The Reading Glove
(2010) [43]

Objects Communication: RFID
Language: Max MSP

Computer (audio,
images)

Don’t Panic (2015)
[30]

Objects Communication: RFID, Bluetooth
Toolkit: AnyBoard*

LEDs

BoomChaCha
(2016) [49]

Objects Communication: TUIO, RF (xBee)
Language: Processing

LEDs
Projection screen
Accelerometer

Hybrid Monopoly
(2017) [35]

Objects Communication: Bluetooth, RFID
Language: C++, Java

LCD panel
LEDs

Augmented foosball
(2017) [9]

Objects Communication: Open loop
control (Arduino)

Linear actuator
LEDs
Impact sensor

TABLE
AUGM.

PingPongPlus (1999)
[13]

Sound Algorithms: Hit-detection,
sound-based tracking system

Language: C++

Projector

RoboTable (2009)
[20]

Objects
Gestural

Communication: Bluetooth
Language: Java
Toolkit: reacTIVision

Tabletop surface

Farm (2015) [4] Objects Communication: TUIO (OSC)
Toolkit: reacTIVision, ToyVision*

Tabletop surface
Projection screen
Speakers

Uprising (2015) [7] Objects Communication: TUIO (OSC)
Language: Processing
Toolkit: reacTIVision

Tabletop surface

ROOM
AUGM.

Kidsroom (1996) [2] Embodied
Gestural

Communication: RPC protocol
Algorithms: Vision-based

Projection screens
Speakers
Lights

Touch-Space (2002)
[6]

Embodied Communication: Markers, RTLS
Toolkit: ARToolkit

Wand for visual/audio
information

Age Invaders (2008)
[18]

Embodied Communication: RFID, Bluetooth LEDs
Projection screens
Speakers

Treasure (2012) [11] Embodied Communication: RTLS
Toolkit: Sixth-Sense*

Projection screens
Speakers
MOTE sensors

Music Room (2014)
[31]

Embodied Communication: OSC
Algorithms: Visual tracking

Speakers

WORLD
AUGM.

Can you see me
now? (2003) [8]

Embodied Communication: Wi-Fi, GPS PDA
Walkie-talkie

Treasure (2005) [5] Embodied Communication: UDP, Wi-Fi, GPS PDA
Save the safe (2013)

[41]
Objects

Gestural
Communication: RF
Language: Processing, C++
Toolkit: RaPIDO*

LED
Speaker
Accelerometer

Multimedia Tools and Applications (2019) 78:32261–3230532268



monitors), and, unlike traditional games where the player’s actions and the feedback
obtained take place in the same space, in hybrid games the manipulations that the players
carry out to interact with the application do not necessarily happen in the same place
where the feedback is provided but in their surroundings, and even in different devices at
the same time. Also, giving feedback in different ways means that there aremultiple and
heterogeneous displays in charge of showing some pieces of information in order to
make the game evolve.

After the analysis of hybrid games carried out from the point of view of the deployment
process, it can be concluded that the creation of hybrid games is not something trivial, since it
demands to deal with very different technologies whose software and hardware may greatly
differ. For that reason, frameworks or tools able to facilitate the whole development process of
hybrid games or, at least, a part of it, are needed, which is what we are going to discuss in the
next section.

2.2 Frameworks for the development of hybrid games

The design and prototyping of hybrid games arises important technical challenges for
interaction and game designers. In literature, we can find several examples of design and
implementation processes of hybrid games, as those cited in the previous section. It is
common to find that the design process usually starts with paper prototyping to test the
game rules [24]. Paper prototypes enable designers of hybrid games to quickly manip-
ulate the game rules, goals, and interactions. However, it would be difficult to evaluate
the player experience using only paper prototypes. The common design process relies on
interactions with short cycles of implementation of a functional prototype, alternating
game design and play-tests to quickly test the effects of game design decisions [29]. As
the iterative design process advances, more advanced and high-fidelity prototypes are
required. Without a functional prototype and a quick iterative design process, hybrid
game experiences cannot be properly evaluated. In this context, a multidisciplinary work-
group emerges: engineers and hardware experts are required to deal with hardware, and
software developers to code the application.

Therefore, the prototyping process depends on the communication between designers and
developers, but the gap between the design and implementation processes is especially critical
in the context of hybrid games [38]: as the prototype becomes technologically more complex,
the times between iterations are longer, since changes in the design are translated into critical
impacts in the hardware and the code, which also lengthens the implementation process while
hindering the iterations [44]. In addition, as outlined in the examples of the previous section,
hardware configurations are usually purpose-built for each game and software is written from
scratch, from low-level hardware code to high level game logic. Another important question in
the context of hybrid games is how existing hardware and software design solutions can be re-
used, and how higher level prototyping support can be provided to designers so they can
contribute to the implementation process, bridging that way the gap between the design and
implementation processes. While many rapid prototyping tools are available for the standard
platforms like personal computers and smartphones, tools for rapid prototyping of hybrid
games are less common.

In the analysis of hybrid games carried out, it was seen that most part of the games had been
developed ad hoc, but there were also some of them that used specific frameworks to deal with

Multimedia Tools and Applications (2019) 78:32261–32305 32269



the creation of the games. Next, we are going to present these frameworks and focus on the
three characteristics that we could extract from the previous section.

Pegasus [23] is a software architecture for developing hybrid games based on tangible
interaction. To integrate the different tangible and graphical components, each interaction
device is associated with a software proxy in charge of communicating with the other devices
to exchange information. PDAs are used to show information related to the game, and the
authors have created an XML-based language to store the rules of the game. These rules can be
modified in runtime, and the different devices can be connected or disconnected while the
game is running.

Sixth-Sense [10] is an infrastructure initially aimed at the development of smart-artifact
services but which is also used by the same authors to create hybrid games. Sixth-Sense is
based on the OWL ontology to define relationships found in a typical smart home environment
(humans, objects, and humans and objects). However, the ontology can be extended by adding
other concepts related to games, such as a win/loss status.

AnyBoard [30] is a framework for the development of hybrid board games that facilitates
the coding of the game logic and also provides tools to support the design of the games. In
order to do so, AnyBoard proposes the Interactive-Token approach, based on the Token+
Constraint framework [45]. The Token+Constraint framework provides designers with an
abstraction language to specify any TUI. With this language, designers can define the different
interactions of the systems in terms of relationships between elements of the game. This way,
AnyBoard reduces the gap between the design and prototyping processes.

ToyVision [26] also facilitates de prototyping of hybrid games for tabletop devices. In this
case, ToyVision adopts the Tangible User Interface Modelling Language (TUIML) [39], to
provide a common tool between designers and developers. ToyVision provides designers with
a GUI assistant that enables designers to draw the TUIML specification of a hybrid game for
tabletop devices. This graphic is automatically translated into XML code, facilitating that way
the process of coding the logic of the tabletop game.

Finally, RaPIDO [42] is a prototyping platform for outdoor games. In the games developed
with RaPIDO, players make use of hand-made devices to interact with the game and the other
players. RaPIDO devices are hand controllers which embed a RFID reader sensor in order to
detect tagged objects, and an accelerometer sensor to measure movements; feedback is
provided by a vibration motor, speakers and LEDS to provide audio and visual feedback.
The communication between different controllers is provided by the Arduino microcontroller
and the xBEE wireless module which also enables to measure the distance between them.
Developers have access to a software API that allows to choose the functionalities of the
device that they want to activate, and to program the behavior of the devices using the Arduino
or C development environments. Therefore, RaPIDO enables the development of hybrid
games in which interaction and feedback are provided by multiple identical hand controllers,
which integrate different sensors and feedback hardware to be used in different ways.

Next, we are going to present a summary of the characteristics of the frameworks that have
been commented in this section (see Table 2). The first three columns show if the frameworks
deal with the three challenges that we have found in the previous section: the integration of
different devices (first column), the coding of the application (second column), and the
management of displays (third column). The fourth column indicates the end-user the frame-
work is addressed to, and the fifth column shows the category of the games developed by those
frameworks: object augmentation (OA), table augmentation (TA), room augmentation (RA)
and world augmentation (WA).

Multimedia Tools and Applications (2019) 78:32261–3230532270



It can be seen that the integration of devices is not considered in any of them. In our case, as
we wanted to support pervasive games in Interactive Spaces it was considered a critical point.
Besides, display management was also crucial and the support to software coding, a must.
These three aims were the ones that guided the design of the JUGUEMOS toolkit. The
complexity of the task made us focus on developers. Nevertheless, one additional aim was
to lower the gap between designers and developers as we will show in the case of studies
section.

3 Toolkit architecture

The following section is organized as follows: first, the design decisions that were taken to
develop the toolkit are explained; then, the general architecture of the toolkit is described; and
finally, we will delve deeper into to the process of integrating different devices and creating a
pervasive game.

3.1 Toolkit requirements and design decisions

The JUGUEMOS toolkit architecture has been designed with the following requirements in
mind, which are related to the challenges extracted from the state of the art:

1. To allow the easy integration of multiple devices.
2. To facilitate the coding of the game application.
3. To support the management of multiple displays.

Regarding the first requirement, solution lies on the use of a standard communication
protocol between devices of very different hardware characteristics. In the first part of
the state of the art, when analyzing how the pervasive games had been created we
realized that, among the works that gave details about the communication protocol that
they used, there were some that used the OSC Protocol and the TUIO Protocol (also
based on OSC). As we have commented briefly before, OSC is a protocol for networking
multimedia devices that has been adopted and incorporated in several development
environments aiming physical computing, such as Processing [36], a flexible software
aimed to code within the context of the visual arts, Pure Data [37], an open source
programming language specialized in visual and sound based applications, or vvvv [46],
a programming environment designed to facilitate the handling of large media

Table 2 Characteristics of frameworks

Framework Integration Coding Displays Addressed to Category

Designers Developers

Pegasus (2006) [23] ✓ ✓ ✓ TA
Sixth-Sense (2008) [10] ✓ ✓ RA
ToyVision (2012) [26] ✓ ✓ ✓ ✓ TA
AnyBoard (2015) [30] ✓ ✓ ✓ ✓ OA
RaPIDO (2017) [42] ✓ ✓ ✓ WA
JUGUEMOS ✓ ✓ ✓ ✓ RA

Multimedia Tools and Applications (2019) 78:32261–32305 32271



environments with physical interfaces. Also, the TUIO protocol was built on OSC in
order to allow the transmission of messages between tangible multitouch surfaces.
Besides these programming environments, there are many other tools that make use of
OSC (and TUIO) to isolate the hardware details of the system from the development of
the interactive application, such as ReacTIVision, a toolkit focused on vision based
sensors that simplifies the tracking of conventional objects by only requiring attaching
a printed marker on the object, and KinectOSC [19], an utility to transmit data from
official Microsoft Kinect SDK via OSC, easing the way to deal with the diverse Kinect
messages by adopting a more simple format. After seeing that existing frameworks made
use of OSC for interconnecting very different applications, we decided to adopt it in our
toolkit and to use Processing to implement the whole toolkit due to its facility to
implement OSC connections.

Regarding the second requirement, the development of tools that allow an easy and
rapid prototyping of applications it is not a trivial matter, due to the low-abstraction level
of the data received from the ubiquitous technologies, and the impact in the code when
changing the interaction methods. For this reason, the solution to facilitate the
prototyping of applications is to allow the development of prototypes in a high-
abstraction level, reducing this way the gap between the definition and development of
the application. Several works that focus on the definition of ubiquitous technologies in a
high-abstraction level can be found in the literature: Shaer et al. [40] present in their
work the Token and Constraint (TAC) paradigm for describing and specifying tangible
user interfaces, and Hornecker and Buur [12] created a model with four different
categories that allow to better understand, define and analyze Tangible interactive
applications. However, these last works are focused on helping designers by providing
them with means to present and define the physical interactions that are carried out in a
Tangible system, but they do not address the development process. But, in order to allow
a rapid prototyping of applications, it is necessary a model that facilitates the work of
developers. As we have commented before, TUIML addresses this necessity, allowing
designers to define the system by using the TAC paradigm, but also proposing a way to
translate the application concept into a language understandable by a computer. For that
reason, some toolkits have make use of TUIML and the TAC paradigm, such as
ToyVision and Anyboard, which have been already analyzed in the previous section.
Until now, TUIML had just been used in the field of Tangible Interaction, but after
analyzing it we realized that it could also be extended to other kind of interactions, so we
adopted it as a model for our toolkit in order to raise the ceiling of expressiveness in the
creation process of pervasive games.

Finally, regarding the third requirement, pervasive games that are played in interactive
spaces where multiple interaction paradigms converge require to show information in very
different displays, such as projection screens, mobiles, tabletop surfaces, or even the floor
itself. For that reason, in order to be able to distribute the game’s visual information in multiple
displays easily, we decided to ground our work on the Virtual Space topology paradigm [34].
In this paradigm, the interactions between the different displays are limited and determined by
a virtual space defined by the system that covers all the physical displays involved in the
system. Also, every time that it is necessary to show information related to a specific device,
each one of them provides a viewport into this virtual space that corresponds to the actual
physical display where the information must appear. In a later section we will explain in more
detail how this Virtual Space paradigm was adapted in our toolkit.

Multimedia Tools and Applications (2019) 78:32261–3230532272



3.2 Architecture description

Figure 1 sketches the toolkit architecture.
The JUGUEMOS toolkit is based on a centralized network architecture in which a software

Broadcaster is individually connected with the Host application and with each of the
hardware devices integrated in the IS (display, sensor or actuator). Each device has associated
a software process in charge of dealing with the specific hardware issues:

& Each display device has associated a “Painter” software process in charge of painting
visual information or playing audio streams in the specific display device.

& Each actuator device has associated a “Publisher” software process in charge of sending
commands to the corresponding hardware actuator. Actuator devices are capable of
performing physical actions perceptible by the users (e.g., object movements, turning
on/off lights, etc)

& Each sensor device has also associated a “Publisher” software process in charge of
processing and interpreting the raw data captured by the hardware sensor.

Communication between the devices and the Broadcaster is based on the OSC Protocol.
Therefore, all devices of the IS are connected to a local network by Ethernet or Wi-Fi.
The Broadcaster keeps an UDP network socket with each device and with the Host (the
application in charge of managing the game logic). The Broadcaster serves as a central
network distribution node in the IS network: on the one hand, it redirects the commands
that are sent by the Host to the displays and actuators; on the other hand, it redirects the
data of the sensors to the Semantic Level. This last process is in charge of interpreting
the data sent by the sensors in a high abstraction level. As previously noted, the

SENSOR
EVENTS

DRAWING 
COMMANDS

ACTUATOR
COMMANDS

PUBLISHERPUBLISHER

Displays Sensors
Ubiquitous Technologies
Actuators

Events Filtra�on
Forma�ng MessagesSENSOR

DATA

SEMANTIC LEVEL

PAINTER

API
Status of the game
Last events

BROADCASTER

HOST

TUIML.xml
GRAPHIC

ASSISTANT

ABSTRACTION 
IN TUIML

Fig. 1 Toolkit architecture

Multimedia Tools and Applications (2019) 78:32261–32305 32273



JUGUEMOS toolkit uses the TUIML modeling language to abstract the data received
from the sensors as meaningful physical manipulations of players in the context of a
specific hybrid game. In order to do this, the Semantic Level needs to previously “know”
the context of the game that is running on the IS. Once the game is being defined in
TUIML terms, the Graphic Assistant allows to translate this model into an XML file
(TUIML.xml). The Graphic Assistant is also directly connected to the Broadcaster in
order to visually show all the Publishers and Painters connected to it, and also the
elements detected by the different ubiquitous technologies in real time, so that it is easier
for the developer to define the TUIML.xml file. The data written on this file allows the
Semantic Level to filter and process the sensor data in the context of the game, keeping
an updated status of all the physical elements involved in the IS during the game.

Game developers will be in charge implementing the Host application; therefore, they
need to access this updated status in order to make evolve the game logic (as response of
players’ physical actions). For that purpose, the developers use an API that provides
several functions to consult the status kept by the Semantic Level. That way, the
development of the game is completely isolated from the hardware details of the IS.
Also, it was decided to separate the Semantic Level from the coding of the game so that
developers can code the game in any computer language, as far as an OSC socket could
be implemented. At this moment, we have an API implemented in the Processing
Programming Environment, but the API can be easily translated into other programing
environments.

The creation of the JUGUEMOS toolkit was an iterative process in which we incrementally
developed and added new tools according to the requirements that have been commented at
the beginning of this section. Following we will explain this process in detail.

4 JUGUEMOS toolkit development

The creation of the JUGUEMOS toolkit was carried out iteratively in three different stages that
correspond to the three requirements explained in the previous section. In each stage, an
example of use to show the fulfillment of the requirement was carried out in the JUGUEMOS
IS, an IS built in the ETOPIA Arts and Technology Center in the city of Zaragoza (Spain)
thanks to a national research project.

4.1 Stage 1: Integrating heterogeneous devices

This first stage is related to the first requirement, consisting of carrying out the integration of
very different and diverse displays by making use of the OSC Protocol (see Fig. 2).

Each electronic device (sensor, actuators and displays) needs a software process (painters
and publishers) implementing a standardized communication protocol with the Broadcaster
process, using a common format of OSC messages. The Broadcaster is a software process that
runs in a computer with a unique IP address. The Broadcaster opens a network port (i.g:
32000) to listen to the “Publisher” managers. In order to connect with the Broadcaster, each
painter and publisher process has to send the Broadcaster an OSC message indicating the kind
of device that is connecting (actuator, sensor or display) in the OSC address, and the port
number in which the device will listen to the OSC messages coming from the Broadcaster (see
Table 3).

Multimedia Tools and Applications (2019) 78:32261–3230532274



That way, the Broadcaster can keep a list of all the devices connected, and it is able to
receive and send OSC messages to any particular device, to a group or to all the connected
devices (see Fig.3).

Once connection is established, sensor publishers can send OSC messages to the Broad-
caster with the data captured by the sensor hardware; actuator publishers can receive OSC
messages from the Broadcaster with commands to be performed by the actuator hardware; and
painters can receive OSC messages with paint commands to be draw (image displays) or
played (sound devices) in the display hardware. All the devices carry out the connection in the
same way as showed in Fig. 4. The only difference is the value of the variable type that is
“sensor”, “actuator”, “display” or “host” depending on the device that is connecting.

The “Publisher” managers associated to sensor devices store one or several variables that
correspond to the physical magnitudes that the sensor tracks. These physical magnitudes are
characterized by the number of dimensions that they need in order to represent the numerical
value that has been tracked:

& 0D: the tracked value is binary (1 = true/0 = false); i.g.: a sensor button has two states: “on”
and “off”.

SENSOR
EVENTS

ACTUATOR
COMMANDS

PUBLISHERPUBLISHER

Displays Sensors
Ubiquitous Technologies
Actuators

Events Filtra�on
Forma�ng MessagesSENSOR

DATA

SEMANTIC LEVEL

PAINTER

API
Status of the game
Last events

Stage 3: Falicitate the codingStage 1: Heterogeneous devices

BROADCASTER

HOST

TUIML.xmlGRAPHIC
ASSISTANT

Itera�on 1

Itera�on 2

Itera�on 3

Itera�on 4

Stage 2:
Mul�-Displays

DRAWING 
COMMANDS

ABSTRACTION 
IN TUIML

Fig. 2 Stages to implement the toolkit

Table 3 OSC Message format to
connect to the Broadcaster Address (string) Port (int)

actuator/connect value
sensor/connect value
display/connect value

Multimedia Tools and Applications (2019) 78:32261–32305 32275



Fig. 3 List of devices connected in the Broadcaster

OscP5 oscP5;
NetAddress myBroadcastLoca�on;
String remoteIP="155.210.155.1"; // IP address of the Broadcaster
int listenPort=12000;                       // Port in which the "Publisher" manager listens

// to the Broadcaster messages
oscP5 = new OscP5(this,listenPort);
myBroadcastLoca�on = new NetAddress(remoteIP,32000);
OscMessage m;
String address="/" + type + "/connect";
m = new OscMessage(address,new Object[0]);
m.add(listenPort);
oscP5.send(myMessage, myBroadcastLoca�on);  

Fig. 4 Processing code to connect to the Broadcaster

Multimedia Tools and Applications (2019) 78:32261–3230532276



& 1D: the sensor tracks a numerical value; i.g.: a micro sensor that captures the audio volume.
& 2D: the sensor tracks a bi-dimensional vector; i.g.: a sensor that track 2D position of

objects on a surface

At this moment, our toolkit is limited to 2D sensors for simplicity, but it can be upgraded to
support 3D sensors. Also, each dimension has a certain set of associated manipulations:

& Add: a new object has been tracked in the IS (value1 argument is 1), or has stopped being
identified (value1 argument is 0).

& Move: an object that has been previously identified has moved inside the IS. The value1
argument is the new value of the object if the dimension is 1D, and (value1, value2) is the
bi-dimensional vector if the dimension is 2D.

& Rotate: an object that has been previously identified has rotated. value1 is the new angle of
the object

Sensor categorized as 0D have just the “add” manipulation, since they just allow two different
status (button that is “on” or “off”, object that is “placed” or “removed”), while 1D-sensors and
2D-sensors have the three of them.

The format of the OSC messages to send messages between the different “Publishers” and
the Broadcaster is shown in Table 4. The address of the OSC message indicates the name of
the device and the dimension of the data that it is going to be sent. The manipulation is also
indicated as an argument. All numerical values are normalized between 0 and 1 with the
exception of the rotate values, which are ranged between 0 and 2π radians. Finally, the rest of
the arguments are the ID, which corresponds to the name of the object that has been
manipulated, and SessionID, which is the copy number of the object that has been manipu-
lated, enabling this way to track identical objects (same ID) individualized by the “session ID”.
Also, the structure of the messages that the Broadcaster sends to the “Publisher” managers of
the actuators is the same than the one explained in Table 4 changing the first parameter of the
address with “actuator” instead of “sensor”.

4.1.1 Case of use: “Butterflies” game

In order to prove that our Broadcaster network worked, the “Butterflies” game was developed.
In this game, the sensors involved were:

& A Real-Time Localization System (RTLS) to track the children’s position on the IS area
thanks to small active RF beacons that they wear hanging around their necks, and whose
position is triangulated by four sensor receptors placed on the IS corners.

& A microphone, in order to detect when children were shouting.

Table 4 OSC Message format of the sensors

Address Manipulation ID SessionID Value1 Value2

/sensor/0D/device_name add – – 0/1
/sensor/1D/device _name move – – 0 to 1

rotate – – 0 to 2π
/sense/2D/device _name move – – 0 to 1 0 to 1

Multimedia Tools and Applications (2019) 78:32261–32305 32277



Also, regarding the displays involved, a projection screen was in charge of showing an
animation with several butterflies flying. While children are quiet, the butterflies fly around
until they eventually land on the flowers. However, if children shout, the butterflies that are
closer to the children get scared and fly away from the children (see Fig. 5).

In “Butterflies”, the child’s meaningful manipulations are to walk in front of the projection
screen next to the butterflies, and to shout in order to scare them. Table 5 shows the OSC
messages that must be generated by the sensors “Publishers” to carry out this game logic.

The “child” ID corresponds to the id of the RF beacon that the child is wearing in order to
be detected by the RTLS system. Since in our case we do not have more than an RF beacon
with the same ID, it is not necessary to differentiate copies of the same ID, so the SessionID
field is 0. The same way, the microphone just detects noise but it is unable to differentiate
voices, so its IDs and SessionIDs will be always 0, which may difficult the creation of certain
games where it is necessary to know when a specific child is speaking or shouting.

Also, to test whether the format of the OSC messages was flexible enough to deal with
heterogeneous devices, we developed another version of the “Butterflies” game that used a
sensor different from the microphone. In this new version, we used aMuse band [32], an EEG
sensor that measures the concentration and relaxation of the user. In this case, while the user
remains calm or is not concentrating, the butterflies stay on the flowers. However, when the
user gets nervous or concentrates, the butterflies run away from him/her (see Fig. 6).

It can be seen in Table 6 that the only difference of changing the sensor that is being used is
the name of the different elements, but the way to send the data with the EEG sensor would be
the same than with the microphone sensor.

4.2 Stage 2: Multi-display management

This second stage is related to the second requirement, consisting of dealing with multiple
displays such as monitors, projectors, and Android smartphones and tablets. In order to do so,
the most widely used methods consist of (1) using specific hardware for each display, (2) using
transmission protocols based on streaming. However, in order to guarantee that our toolkit
could work with as many configurations as possible, we could not use these alternatives.

First, because we wanted to keep the homogeneity given by OSC in order to connect all the
elements in the system (displays included), since using hardware devoted for each display
would imply a specific integration that would go against the first challenge of common
integration.

Fig. 5 Child scaring butterflies in one projection screen

Multimedia Tools and Applications (2019) 78:32261–3230532278



And second, because not all devices support streaming, since it greatly depends on
hardware and some of the devices that may be used in IS (mobiles, tablets, or even
Arduinos) may not have the necessary features to implement it. Also, streaming tends to
consume considerable bandwidth, which in our case has to be avoided in order to assure
the correct transmission of the messages between the Broadcaster and the devices.

Therefore, our solution to implement the management of displays consisted of treating
displays as any other ubiquitous device, in order to keep the homogeneity of the toolkit and
guarantee the easy integration of devices. In order to do so, we implemented multiplatform
software “Painter” processes associated to each display. A “Painter” process provides the Host
application with functions that allow drawing graphic elements (lines, shapes, bitmaps, etc)
and reproducing sounds. These processes also listen to OSC messages coming from the Host
application, containing commands to paint or reproduce the different elements in the displays.
The resources such as images, videos and sounds used in the game are stored in the computer
hosting the “Painter” processes, so the Host does not need to send the resource via streaming,
but just to indicate the resource that needs to be displayed via making use of some predefined
commands.

The way to integrate different displays is to consider each display device as a part of a
Virtual Space (VS) that covers them all. Figure 7 shows an example of how to arrange different
displays inside the Virtual Space.

By using this technique, it is possible to adapt different displays configurations in the
IS, as far as the virtual space area covers all device displays involved in the IS. The
arrangement of the displays is defined an XML file (displays.xml). The content of the
“displays.xml” is composed of an ID that allows to identify the device, the position of
the display (the (0, 0) coordinate corresponds to the bottom-left corner), and the
dimension of the display.

Table 5 OSC messages that the sensors send for “Butterflies” game

Address Manipulation ID SessionID Value1 Value2

RTLS
/sensor/2D/RTLS move RF beacon 0 x y
MICROPHONE
/sensor/1D/micro move 0 0 [volume] –

Fig. 6 Butterflies run away when the player concentrates

Multimedia Tools and Applications (2019) 78:32261–32305 32279



Each paint command received by the Broadcaster is in Virtual Space coordinates. Using the
information stored in “displays. XML”, the Broadcaster can locate which display devices must
paint the command, convert its coordinates to local display device coordinates, and send the
OSC command to each display device in particular. Table 7 shows some of the OSC messages
that the Broadcaster sends in order to draw commands or reproduce sounds.

The address of the OSC message indicates the command, while the arguments of the
message are the values needed to carry out the command. The id of the display is always
sent so that the “Painter” knows where to paint inside the Visual Space. The graphical
elements such as text, lines, ellipses and rectangles have three arguments (r, g, b) that
represent the color, while the commands to display images or sounds need to send the
name of the resource. Some of the arguments correspond to the different positions of the
elements (x, y, ×2, y2) and other characteristics such as content, width, height, size or
thickness. Other more specific arguments are the type that appears in the “/display/
playVideo” and “/display/playAudio” commands that can be “play” or “loop”; the pivot
argument used to take the “center” or the “corner” as a reference to draw; and the frame
in “/display/jumpVideo”, which indicates the specific frame from where we want to
reproduce the video.

This list of commands can be extended by implementing the corresponding function in the
“Painter” processes, and creating a new OSC message with the format previously presented.
The use of some of these commands will be shown later in the subsection where the coding of
the game with the API is explained.

Table 6 OSC messages that the sensors send for “Butterflies (EEG)” game

Address Manipulation ID SessionID Value1 Value2

RTLS
/sensor/2D/RTLS move RF beacon 0 x y
MUSE
/sensor/1D/Muse move muse_id 0 [concentration] –

Fig. 7 Example of integration of displays

Multimedia Tools and Applications (2019) 78:32261–3230532280



4.2.1 Case of use: Multi-display “butterflies” game

We proceeded to use this technique of integration of displays by re-designing the “Butterflies”
game by using the three projections walls instead of just one of them. This way children would
be able to walk around the entire IS instead of being forced to just move in front of one single
projection screen, clearly improving the game experience.

This time, three entries will appear in the “displays.xml” file, each one of them correspond-
ing to the size of the projection walls (see Fig. 8).

In order to show the different elements in the screen, the Host will use a “draw” function in
charge of formatting an OSC message and send it to the “Painter” process. Figure 9 shows the
code necessary to draw the background in the different screens.

Finally, Fig. 10 shows the result of the “Butterflies” game being extended to multiple
displays, where children can scare butterflies by getting close to the different screens.

4.3 Stage 3: Easing the coding of the game

This third stage is related to the third requirement, consisting of easing the coding of the
application. This stage has a total of four different iterations: we first adapted the TUIML
model to define the pervasive games, afterwards the Semantic Level was added to the
toolkit to filter the different messages, a Graphic Assistant was also created to make the
definition of the game easier, and finally an API to facilitate the creation of the game
logic was developed. As a case of use, and Interactive Space game found in the
literature, selected for the variety of the interaction supported, was developed.

Table 7 OSC Message format of the displays

Address Arguments

/display/text id r g b content x y size –

/display/line id r g b ×1 y2 ×1 y2 thickness
/display/ellipse id r g b x y width height thickness
/display/rectangle id r g b x y width height thickness
/display/drawImage id name x y width height angle pivot –
/display/playVideo id name type x y width height – –
/display/stopVideo id name – – – – – – –
/display/jumpVideo id name frame – – – – – –
/display/playAudio id name type – – – – – –
/display/stopAudio id name – – – – – – –

<xml >
<virtualDisplay width="3840" height="1248">

<display id="1" x="0" y="0" width="1280" height="768" />
<display id="2" x="1280" y="0" width="1280" height="768" />
<display id="3" x="2560" y="0" width="1280" height="768" />

</virtualDisplay>
</xml>

Fig. 8 “displays.xml” file of the “Butterflies” game

Multimedia Tools and Applications (2019) 78:32261–32305 32281



4.3.1 Iteration 1: Abstracting the game with the TUIML syntax

Until this point, the toolkit was dealing with the raw data that the sensors sent, which meant
that the Host application received all the messages of all the sensors that were connected
Broadcaster, even if some of them were not meaningful for the game: for example, in the
“Butterflies” game if a tabletop was connected, the Host received its messages even if that
device is not used in the game. As the complexity of the game prototypes grew, we decided
that it was necessary to filter the messages that the Host received, and also to define them in the
context of the game to facilitate the development of the game logic.

In section 3.1 we already discussed the advantages that using TUIML could offer, and that
our hypothesis was that a broader interpretation of TUIML would also allow to define the
interactions produced in a pervasive game in an interactive space. In [39] a Token was any
physical element that appeared in a TUI, and a Constraint was a physical restriction that a

myMessage.add(width); // width of the element
myMessage.add(height); // height of the element
myMessage.add(angle); // rota�on angle of the element
if (pivot.equals("center"))  myMessage.add("center"); // coordinates rela�ves to center or corner
else  myMessage.add("corner"); // of the element

sendOSCMessage(myMessage);

displays.draw("background_screen1.jpg", 0, 0, 1280, 768, 0, "corner");
displays.draw("background_screen2.jpg", 1280, 0, 1280, 768, 0, "corner");
displays.draw("background_screen3.jpg", 2560, 0, 1280, 768, 0, "corner");

public void draw(String name, float x, float y, int width, int height, float angle, String pivot) {
idDisplay = ""; 
for(int j = 1; j < displayList.length; j++)  {

// calcula�on of the display on which the element will be drawn by using the x, y, width, and  
// height arguments (idDisplay)

}
myMessage = new OscMessage("/display/draw");
myMessage.add(idDisplay); // 1, 2 or 3
myMessage.add(name); // name of the element that is going to be drawn
myMessage.add(x); // x posi�on of the element
myMessage.add(y); // y posi�on of the element

Fig. 9 Processing code to draw elements in multiple displays

Fig. 10 Multi-display version of “Butterflies” game

Multimedia Tools and Applications (2019) 78:32261–3230532282



token imposed to the manipulation of another token, called Subtoken, of the first one.
Figure 11 shows this hierarchy.

In TUIML, the relations established between two tokens (Token and Subtoken) limited by
Constraints are described using TACs. A TAC is a conceptual structure used to describe the
status of a subtoken in a specific instant of time; this status is defined as the relation of that
subtoken inside the Constraint of a bigger token. The TAC structure can be easily used to
describe the current status of a board game.

In pervasive games for IS, this hierarchy remains with the difference that the elements
involved on it are not just playing pieces that are manipulated on a board divided in cells. As
the tangible interaction design space expands, also the tangible interaction perspective extends.
In an IS, users can interact with the game by simply walking on the floor, by manipulating a
variety of digital augmented objects, by making certain gestures, or by physical interacting
with other player. From the TUIML point of view, the different elements involved in an IS,
such as different furniture, interactive walls, and the floor itself, become Tokens; the physical
restrictions imposed by these Tokens, such as the surface of a table furniture, the surface of a
wall and the floor itself, are Constraints; and the elements that are manipulated on these
Constraints, such as toys and the user who is moving in front of the wall and on the floor, are
the Subtokens. Hierarchy of tokens and subtokens can have multiple levels: last subtokens can
also have associated Constraints: i.e., the user is a Subtoken inside the IS, but at the same time
the user can grab a toy, and establish a new level of token and constraint relationship: the toy is
a subsubtoken of the user, which is a subtoken of the IS (a token).

In order to describe the states of physical elements and users in a IS at a specific time
instant, a TAC palette is used, and each TAC of the TAC palette describes a different
relationship between two tokens through a constraint. Digital variables bounded to a TAC
are used to represent physical properties of the subtoken inside the Constraint. Originally, the
TAC paradigm defined Constraints as mechanical restrictions to the manipulation of token.
Physical manipulations take place in the 3D space, so Constraints have been always defined as
regions in the space. However, Contraints can also be classified as 1D, 2D and 3D, and
depending on their dimension they will enable a different set of physical manipulations. The 0-
Dimension (0D) represents the binary status of an element (on/off, true/false, add/remove) and
it is a manipulation contemplated in all the Constraint types (see Fig.12).

This re-interpretation of TUIML also allows describing pervasive games, since it is just
necessary to classify the different elements involved in the game with this hierarchy of Token,
Constraints and TACs. Nevertheless, we are aware that TUIML has also certain limitations.

Fig. 11 Representation of hierarchy between Tokens and Constraints

Multimedia Tools and Applications (2019) 78:32261–32305 32283



For example, TUIML does not allow representing the state of the elements, just relations
between them, so this model falls short when trying to define games in which the status of
objects is meaningful, limiting that way the range of games to be developed with the toolkit.
However, we believe that its capacity to define relations between elements in a rather simple
way facilitates the iterations during the development process, as we will show in the last
subsection of this section.

4.3.2 Case of use: Designing “The Bedroom World” with TUIML

To assess the potential I the TUIML approach, the “The Bedroom World” pervasive game from
Bobick et al. [2] was chosen due to the variety of interactions supported. In “The Bedroom
World” a child enters an interactive bedroom where different pieces of furniture talk when the
child approaches them. The child has to go asking around until discovering a magic word that
will allow him/her to travel to another world (see Fig. 13). At the end of the game, the voice of
the child’s mother sounds indicating the child to go to bed. When the child enters the bed a
monster appears asking the child to say the magic word. The child does so, the game ends and
the next world begins.

The original game did not use any tabletops, but in order to make the most of the
devices currently installed in our IS we decided to change the table that the child has to
approach for a tabletop device on which the child has to place his/her hand to “make it
talk”. For this reason, we will call the adapted game “The Augmented Bedroom World”
(TABW) from now on.

In order to detect the child’s manipulations, the following sensors of our IS are used:

& The RTLS to locate where the child is in the IS.
& A tabletop to detect when the child places a hand on the Table.
& A microphone to detect when the child is shouting the magic word.

Fig. 12 Manipulations according to the dimension

Multimedia Tools and Applications (2019) 78:32261–3230532284



Therefore, the TAC palette of TABW is composed of three different Tokens: (1) the RTLS
Token, that will detect when theRF beacon that the child carries (Subtoken) is close to the rug
and the bed (Constraints); (2) the Tabletop Token, that will detect when a child places a finger
(Subtoken) on the tabletop; (3) and the Microphone Token, that will detect when someone
shouts with a volume inside a certain range (Constraint). Since the microphone could not
differentiate the children’s voices, a default value = 0 was assigned to the volume detected by it
(Subtoken) (see Table 8).

The manipulations that we are going to take into account are “add” instead of “move”
because we just need to know when the child enters the rug and the bed areas, and when
the finger is placed on the tabletop, but nor their exact position. For the Microphone
though we use the “move” manipulation because we need to know the exact value of the
voice in order to know if the child is shouting or not. Figure 14 shows the TUIML
hierarchy of TABW.

With this example we wanted to prove that expanding the design space of TUIML could
cover new interaction modalities in Interactive Spaces, opening the possibility of the creation
of a toolkit that supports the building of pervasive games in IS.

4.3.3 Iteration 2: Graphic assistant

TUIML allowed us to model the different interactions of the games, but it was necessary to
translate them into a language understandable by the computer system. For this reason, we
created a Graphic Assistant that allowed (1) to define these interactions by following the
hierarchy of Token-Constraint-Subtoken, and (2) to create an XML file containing the game’s
descriptions in terms of that hierarchy.

Table 8 TAC palette for TABW game

Manipulation Token Constraint Subtoken Values

add RTLS rug-area (2D) RF beacon (child) 0/1
add RTLS bed-area (2D) RF beacon (child) 0/1
add tabletop surface (2D) finger 0/1
move micro shout-range (1D) 0 0 to 1

Fig. 13 “The Bedroom World” game

Multimedia Tools and Applications (2019) 78:32261–32305 32285



As we have commented before, the Graphic Assistant connects directly with the
Broadcaster to show in runtime all the Publishers and Painters connected to it together
with the name of the device (sensor, display or host) associated to them (see Fig. 15a).
Display, host and actuator devices just show the IP where they are connected. However,
when clicking on the name of one of the sensors (Tokens) connected to the Broadcaster,
the Graphic Assistant shows the objects (Subtokens) that are currently being detected by
the sensor.

The Graphic Assistant translates all these devices into a list of Tokens, the elements
detected by those devices into Subtokens, and the areas where manipulating those
elements have meaning in the game into Constraints. This hierarchy is then translated
into an XML-file. The Graphic Assistant also allows working with a previously created
XML file, in case it is necessary to carry out some modifications (see Fig.15b).

Fig. 14 TUIML hierarchy of the TABW game

Fig. 15 Devices connected appear in the Graphic Assistant main screen (a) and also the management of the xml file(b)

Multimedia Tools and Applications (2019) 78:32261–3230532286



4.3.4 Example of use: Defining the “The Augmented Bedroom World” with the graphic
assistant

In “The Augmented Bedroom World” three sensors are involved: the RTLS to detect where the
children wearing RF beacons are, a tabletop to detect when someone places a finger on it, and
the micro to detect when children are shouting. Therefore, to define this game with the Graphic
Assistant, we need to create the constraint and subtokens associated to those sensors.

As we have commented in the previous section, we are going to consider two different
constraints associated to the RTLS sensor: when children step on the rug and when they step
on the bed. The process to create these two constraints is as follows: after running the
Broadcaster, we initiate the Graphic Assistant and click on the RTLS sensor name. When
doing so, the Graphic Assistant will show where the RF beacons are in the space. To define the
constraint correctly, we situate two RF beacons in the place of the IS where we want to situate
the rug and the bed. Those RF beacons will appear on the Graphic Assistant, so we just need to
draw a constraint associated to the RTLS sensor around those RF beacons (see Fig. 16). The
constraints are created by clicking directly on the screen in order to compose the vertex of the
constraint. Once the constraint is created, it is necessary to assign a name to it (BED and RUG
in the example) and to select the tokens to be manipulated inside that constraint. The beacons
that appear on the image (147 and 255) are the ones that children are going to wear when
playing, so we add them as subtokens of the two constraints.

The way to define the constraint of the Tabletop would be the same than the example
showed in Fig. 16, with the difference that the constraint defined will cover all the
surface.

Finally, to define a constraint associated to a 1D-sensor (such as the micro) we add a new
constraint, which at first does not have any range associated. The constraint selected is
highlighted in white to differentiate them from the others that have been defined (Fig. 17a).
After selecting the desired constraint, we proceed to indicate its range. The first bar indicates

Fig. 16 Definition of “step on the rug” and “step on the bed” interactions

Multimedia Tools and Applications (2019) 78:32261–32305 32287



the values that the micro sensor is detecting in real-time. In Fig. 17b the user is shouting at the
micro, which is detecting a normalized value of 0.752. By doing this, the developer can
establish in the second bar a range between 0.5 and 1.0 for the constraint, which covers the
previously detected value (see Fig. 17c).

4.3.5 Iteration 3: Semantic level

The function of the Semantic Level is to create and keep updated the TAC palette explained in
section 4.3, which, as its name indicates, contains a set of TACs describing relations that take
place in the IS between two tokens through a constraint.

In order to do this, OSC messages arriving to the Broadcaster from the sensor publishers are
processed by the Semantic Level thanks to the “TUIML.xml” that has been created with the
Graphic Assistant, where the different elements of the game have been defined in TUIML
terms. The Semantic Level uses the ID of the message that has been sent by the sensors to
identify the element that has been manipulated. If the ID of the message that has arrived is
defined in the “TUIML.xml” file, the next step is to consult the type of the Subtoken (0D, 1D
or 2D), and in case of being 1D or 2D, the Semantic Level will extract the position of the
Subtoken to know if it has been manipulated inside a Constraint. This way, raw messages from
sensor are:

& Filtered: OSC messages from tokens not related to the game (not defined in the
“TUIML.xml” file) are discarded. OSC messages from Tokens related to the game but
that falls out of all the Constraints defined in the “TUIML.xml” are also discarded

& Abstracted: by defining Constraints, game events are identified by constraint names.
Also, relations between Tokens, Subtokens and Subsubtokens are identified as
manipulation inside Constraints.

Fig. 17 Definition of the “shouting” interaction. Constraint selected (a), value detected (b) and constraint range (c)

Multimedia Tools and Applications (2019) 78:32261–3230532288



4.3.6 Case of use: Filtering events for “The Augmented Bedroom World”

Table 9 shows the events related to “The Augmented Bedroom World” (TABW) that the
Semantic Level will receive from the different sensors.

The Semantic Level receives all the manipulations related to the sensors involved in the
game, so it is necessary to filter the ones that have meaning in the context of the game. The
constraints do not appear in the messages received because, at this point, the Semantic Level
only has the data sent by the sensors.

The next step is to take this data, that in this case belongs to the interactions carried out in
TABW game, and check if those interactions are taking place in the constraints that have been
defined with the Graphic Assistant in the context of the game. For example, the Semantic
Level will receive messages every time that a child with an RF beacon moves, but when
consulting the XML generated by the Graphic Assistant it will just take into considerations
when a child moves inside the rug area and the bed area.

In order to do this, the Semantic Level reads the XML, where the constraints are defined
with their vertex, and calculates if the RF beacon position (2D move manipulation) is inside
that constraint. The same way, the Semantic Level filters the values sent by the micro sensor
inside the range (0.7–1.0), which was defined with the Graphic Assistant previously.

4.3.7 Iteration 4: API

With the Graphic Assistant, the creation of the “TUIML.xml” file that contained the definition
of the game was greatly simplified, easing that way the developer’s work. However, it was still
necessary to provide developers with functions that easily allowed to consult the status of the
TAC palette at any moment, which was the objective of this last iteration.

The Semantic Level keeps updated the whole physical status of the elements involved in the
IS as a list of instantiated TACs, which represents all the manipulations taking place at any
moment. Each token involved in the pervasive game has its own TAC list, expressing that way
its relation with other subtokens through manipulations inside constraints. ATAC list is a table
in which each row is an instantiated TAC, while the columns contain the information related
with the TACs (see Table 10).

The first field is the name of the constraint in which the Manipulation, the second field, has
taken place. These manipulations are the ones described in subsection 4.1. The third and
fourth fields are the ID and SessionID of the subtoken that has been manipulated inside the
Constraint of the Token. Finally, the fifth field is the values of the manipulation. Depending on
the type of the manipulation there will be one value (0D and 1D) or two values (2D).

Table 9 TABW events to be filtered

tokenName type manip ID SessionID Value1 Value2

RTLS 0D add RF Beacon 0 0/1 –
RTLS 2D move RF Beacon 0 0 to 1 0 to 1
Tabletop1 0D add finger num 0/1 –
Tabletop1 1D rotate finger num 0 to 1 –
Tabletop1 2D move finger num 0 to 1 0 to 1
Micro 0D add 0 0 0/1 –
Micro 1D move 0 0 0 to 1 –

Multimedia Tools and Applications (2019) 78:32261–32305 32289



The coding of the Host application consists of listening from OSC messages from the
Broadcaster, parsing them, evolving the game according a game rules, responding to players
composing OSC messages, and sending them to displays and actuators. In order to simplify the
parsing and composing of OSC messages with the adequate format the toolkit provides
developers with an API. This API is at the moment for the Proccesing programming environ-
ment, but it could be easily translated to other programing environments as far it enables OSC
implementation.

The Functions of the API are classified in three groups:

1. Functions to consult the TAC list of each Token: the API offers different functions that
allow to:

& Consult the status of the game: the developer can always know the status of the elements
that are involved in the pervasive game at any moment.

& Event of last TAC that has been instantiated in the system: A callback function can be
implemented to be triggered each time a TAC has changed, witch informs of the last
manipulation that has taken place in the IS.

The API also provides functions in order to consult the specific attributes of the TAC that have
been explained in the Table 8 of section 4.4.1.

2. Functions to send commands to actuators: these commands will cause the actuator to
react physically. For example, the functions can lit a LED in a specific color.

3. Functions to send graphic and sound commands to displays: these commands are the
ones explained in the Table 7 of section 4.2.

4.3.8 Example of use: Implementation of “The Augmented Bedroom World” with the API

In TABW, the list of TACs that need to be consulted are shown in Table 11, since we need to
know: when the child steps on the rug (TAC1), when the child steps on the bed (TAC2), when
the child places his/her hand on the tabletop (TAC3) and when the child is shouting the magic
word (TAC4).

Next, in Fig. 18 part of the code in Processing language for the TABW Host application is
presented. In TABW we make use of the API functions (1), that allow the developer to know
the last TAC that has been instantiated, and the API functions (3) in order to draw the
background and reproduce sounds.

Finally, Fig. 19 shows different moments of TABW game: when the player steps on the
player steps on the rug and when she places a hand on the tabletop.

After explaining in detail the architecture of the toolkit, in the next section some cases
studies are presented.

Table 10 TAC list

TOKEN

Constraint Constraint_values Manipulation ID SessionID Values

Multimedia Tools and Applications (2019) 78:32261–3230532290



5 Cases studies: Exploring toolkit expressivity and threshold

During the last two years, the JUGUEMOS toolkit has been employed in several projects with
students, which has helped us to obtain valuable feedback about its expressivity and threshold.
Three of them will be presented in this section. Two of them have used the JUGUEMOS IS
while the third one was carried out in the Aragon School of Design (ESDA).

5.1 Case study 1: “The Indian World” project

The first case study describes the development of a pervasive game called “The Indian World”,
aimed to be played in JUGUEMOS IS and devised by two students of the Industrial Design
Engineering degree at the University of Zaragoza as part of their final degree project. With this
first case study we wanted to explore the expressivity of the toolkit by seeing if it allowed to
develop other people’s ideas, since up till this point we had just developed games in order to

Table 11 TAC list of TAWB

Num Constraint Constraint_values Manipulation ID SessionID Values

RTLS
1 rug-area [rug-vertex] add RF beacon 0 0/1
2 bed-area [bed-vertex] add RF beacon 0 0/1
TABLETOP
3 surface [surface-vertex] add finger 0 0/1
MICROPHONE
4 shout-range 0.7–1 move 0 0 0 to 1

void eventoTAC(TAC lastTAC) {
// child is on the rug
if (lastTAC.getTokenName().equals("RTLS") && lastTAC.getConstraintName().equals("rug") 
&& lastTAC.getSubtokenName().equals("child") && lastTAC.getManipula�on().equals("add")) {

if (lastTAC.values.get(0) ==1){ 
displaysClient.playAudio("rugVoice.mp3"); 

}
}
// child places the hand on the tabletop
else if (lastTAC.getTokenName().equals("tabletop")  &&
lastTAC.getConstraintName().equals("surface") && lastTAC.getSubtokenName().equals("finger"))
&& lastTAC.getManipula�on().equals("add") {

if (lastTAC.values.get(0) ==1) displaysClient.playAudio("tabletopVoice.mp3"); 
}

// child is on the bed
else if (lastTAC.getTokenName().equals("RTLS") && lastTAC.getConstraintName().equals("bed") 

&& lastTAC.getSubtokenName().equals("child") && lastTAC.getManipula�on().equals("add")) {
if (lastTAC.values.get(0) ==1) childInBed = true;

}
// child has shouted while being on the bed

else if (lastTAC.getTokenName().equals("micro")   &&   lastTAC.getManipula�on().equals("move")
&& lastTAC.values.get(0) > 0.7) {

if (childInBed)  displaysClient.playAudio("endGame.mp3"); 
}

}

Fig. 18 Processing code to treat the events for TABW

Multimedia Tools and Applications (2019) 78:32261–32305 32291



test the functionalities of the toolkit. In this case, the students designed the game concept and
all the graphical resources (images, animations, and sounds). Figure 20 shows the configura-
tion of JUGUEMOS IS at the moment of creating “The Indian World” and the scheme of the
game’s world.

In this game, the protagonist, Drippy, meets an Indian Chief who has a key that Drippy
needs to travel to other worlds. In order to recover the key, children have to play drums of
different colors with drumsticks by following the sequence that the Indian Chief performs.
After doing so, the Indian throws the key to the top of a totem that is also composed of
different colors. Children have to play drums to destroy the corresponding colors of the totem:
for example, if the first totem piece is yellow, the child with the yellow drum must play it.
After the totem is destroyed the key falls to the ground, a light appears over it and then children
can grab it to approach it to the keyhole that has just appeared to end the game.

The correspondences of the different elements that compose the game concept and the
technologies involved in the IS are presented next:

– The different animations are displayed on the three projection walls (see Fig. 20-4) and on
the four tabletop surfaces (see Fig. 20-1). This makes a total of seven displays organized in
a unique Virtual Space. Also, the sound effects, such as the voices of Drippy and the
Indian Chief and the sound of the drumsticks connecting with the drum, are reproduced
through the different speakers of the room and the ones inside the tabletops.

– The drums are the tabletop devices. Each tabletop displays a different color on its surface
(red, green, yellow and blue) and each child “controls” one tabletop. In order to interact
with it, children use drumsticks with small white foam balls attached to their tip, so that
reacTIVision can detect when they hit the tabletop’s surface as if they were actually
playing a drum (see Fig. 21a)

Fig. 19 “The Augmented Bedroom World” game

Fig. 20 Scheme of the Interactive Space and “The Indian World”. 1: Four tabletops. 2: Kinect sensors. 3: RTLS.
4: Projection screens

Multimedia Tools and Applications (2019) 78:32261–3230532292



– The light that appears over the key when children finish breaking the totem is a LED
spotlight placed in the corner of the projection screen, which illuminates the physical key
that has been on the floor during the game. The LED turns on thanks its connection to an
Arduino actuator that has its own Publisher process connected to the Broadcaster.

– The key is a 3D printed object (see Fig. 21b) which contains a RTLS tag inside (see
Fig. 21c), to be tracked when children approach it to the keyhole.

The developer (belonging to the research team) had to translate these concepts into TUIML,
in terms of tokens and constraints. The Graphic Assistant was used to model a constraint in
each tabletop surface, and to define the area of the floor where children would need to
approach with the key in order to open the door to the next world. Therefore, in this case
the events to be taken into consideration are:

– The drumsticks’ tip is placed on the tabletop (when children “play” the drums).
– A child enters an area situated next to the front projection screen.

Thanks to the API functions the codification of the game logic is quite simple (see Fig.22).
Figure 23 shows the Indian World running in the IS, with children interacting with the

tabletops.

5.2 Case study 2: Collaborative experience between designers and developers

As mentioned before, up till this point the games presented had been developed by the authors,
so with this second case study we wanted to see if the toolkit was simple enough to be used by
external developers (threshold). In addition we wanted to explore the capability of the toolkit
to support collaborative multidisciplinary (designers/developers) experiences.

The multidisciplinary team consisted of 5 Graphic Design students of the 4th year at the
School of Arts in the University of Plymouth (UK) and 6 computer engineering students of the
4th year at the School of Engineering and Architecture (EINA) of the University of Zaragoza
(Spain). The graphic design students had previous skills on generating multimedia content for
multimedia applications, but no experience in the design of interactive applications or

Fig. 21 Indian World’s toys

Multimedia Tools and Applications (2019) 78:32261–32305 32293



pervasive games. The Computer Engineering students were all taking a User Center Design
course, which gives them skills to develop interactive multimedia applications, but they had no
previous experience on ubiquitous technologies or on the prototyping of pervasive games.

void eventoTAC(TAC lastTAC) {
// tabletop1 has been touched
if (lastTAC.getTokenName().equals("tabletop1") && lastTAC.getConstraintName().equals("surface") 
&& lastTAC.getSubtokenName().equals("finger") && lastTAC.getManipula�on().equals("add")) {

if (lastTAC.values.get(0) ==1){ 
// stage one of the game: follow sequence

if (gameStatus==1) {
if ((sequence[current]==”red”) {

current++;
}

}
else if (gameStatus==2) {

if ((totem[current]==”red”) {
// the child hasto hit the table four �mes to break the totem sec�on
golpes++;
if (golpes==4) {
current++;
golpes=0;

}
} // totem=red

} // gameStatus=2
} // add =1

} // lastTac
…
//The code for the rest of the Tabletops is the same, but consul�ng if sequence[current] is “green”,
// “blue” or “yellow”

// key is next to the keyhole
else if (lastTAC.getTokenName().equals("RTLS") && lastTAC.getConstraintName().equals("keyhole") 
&& lastTAC.getSubtokenName().equals("143") && lastTAC.getManipula�on().equals("add")) {

if (lastTAC.values.get(0) ==1){ 
endgame= true;

}
}

}

Fig. 22 Processing code to treat the events for the Indian World

Fig. 23 The Indians World running the Interactive Space

Multimedia Tools and Applications (2019) 78:32261–3230532294



Before working together, the 6 computer engineering students attended a 3 h practical
session in the IS so that they could familiarize with the ubiquitous technologies involved in the
IS and JUGUEMOS toolkit. The configuration of the IS at the moment was the same as the
previous case study (4 tabletops, RTLS sensor, and 3 projection screens) but this time it also
included Kinect sensors. The session was completely practical: each student had to follow a
guided exercise in which they had to complete the Butterflies game (section 4.1) by using the
Processing Development environment and the JUGUEMOSAPI. Students were provided with
the official Processing documentation and with the JUGUEMOS toolkit documentation. Also,
we organised another 2 h session with the 5 graphic design students from the School of Arts of
Plymouth, where the students were introduced to the physical affordances of the ubiquitous
technologies currently integrated in the IS, in order to bring physical interaction to pervasive
games. We also showed them different examples of pervasive games developed for our IS.

After those two different sessions, both computer engineers and design students worked
together. The eleven participants were arranged in two groups of 5 and 6 people respectively: 2
designers and 3 developers in one group, and 3 designers and 3 developers in another group.
The designers were the ones in charge of thinking about the game concept, to choose the
interaction paradigms that were going to be used, and to create the graphic resources of the
games. Accordingly, the developers listened to the designers’ ideas to decide if they could be
developed in the IS and within the three hours of the fourth session. The ideas that the two
groups came up with were.

& Car races (group 1): In this game, players use the tabletops to drive their respective cars
with two different objects that control the car’s speed and direction (see Fig. 24 Left). The
designers created the necessary graphical resources for the projection in screens and the
tabletops with the technical support of the developers to choose the images resolutions and
formats supported by the toolkit, a knowledge that the developers had acquired in the first
session.

& Building a car (group 2): The idea was to make a construction game. Players use their
hands to “grab” the car pieces that appeared on the projection screen to “put” them on their
matching place of the car shape (see Fig.24 Right).

In the “Car races” game, the constraints that needed to be defined with the Graphic
Assistant had to cover the whole tabletop surface, since the controls could be placed in any
position on the tabletop. However, in the “Building a car” game developers had to define four

Fig. 24 Pervasive games created. Left: “Car races”. Right: “Building a car”

Multimedia Tools and Applications (2019) 78:32261–32305 32295



different constraints corresponding to the four pieces that needed to be placed on the car shape,
so that the Semantic Level could filter when the user’s hand entered those areas.

Regarding the game logic, developers of the “Car races” game had to consult the messages
with the orientation of each controller (rotate manipulation) and translate this data into two
different values: one value corresponds to the rail where the car moves (upper, middle, or
lower rail), and the other to the speed of the car (slow, normal or fast) (see Fig.25). In the
“Building a car” game developers had to consider the messages that came from the Kinect that
contained the (x, y) position of the player’s hand (move manipulation), to differentiate which
car piece the player was selecting with his/her hand (see Fig.26).

Thanks to the toolkit all the developers were able to develop a fully functional prototype
based on the ideas provided by the designers in a three hours session. However, this was
possible because the ideas presented by the designers were supported by the IS existing
hardware: if different physical interactions had been proposed, the complexity would have
notably increased since it would have been necessary to carry out the integration of new
devices together with the programming of their corresponding Publishers. Nevertheless,
regarding the coding of the game, which is independent of the devices installed in the IS,
the simplicity of the generated code indicates that it is to be expected that new design iterations
can be carried out quite fast, which helps to lower the gap between designers and developers.

5.3 Case study 3: Activity in the Aragon School of Design (ESDA)

It was made possible thanks to a collaboration between the ESDA and our research group. The
collaboration opened the opportunity for their students to explore the possibilities of advanced
interactive installations and for us to continue to explore the expressivity of our toolkit and,
besides, its capability to support interactive experiences outside our IS.

if (lastTAC.getTokenName().equals("tabletop1") && lastTAC.getConstraintName().equals("surface") 
&& lastTAC.getManipula�on().equals("rotate")) {

if (lastTAC.getSubtokenName().equals("control_velocity_id")) { 
// checking if the car goes slow, normal or fast

double angle=360-degrees(lastTac.getValores().get(0));
if (angle >= 90 && angle <= 135) veloc=6; //fast 

else if (angle > 135 && angle < 220) veloc=4;  //normal
else if (angle > 220 && angle <= 270) veloc=2; //slow

} // velocity
else if (lastTAC.getSubtokenName().equals("control_rail_id")) { 

// checking if the car is in the upper or the lowe rail
double angle=360-degrees(lastTac.getValores().get(0));
if (angle >= 90 && angle <= 135) rail=1; //upper 

else if (angle > 135 && angle < 220) rail=2;  //middle
else if (angle > 220 && angle <= 270) rail=3; //lower

} // posi�on
} // lastTac
…  
//The code for the rest of the Tabletops would be the same but changing the parameter of the 

// getTokenName() func�on:” tabletop2”, “tabletop3”, “tabletop4”
}

void eventoTAC(TAC lastTAC) {
// tabletop1 has been touched

Fig. 25 Processing code to treat the events for the “Car Races” game

Multimedia Tools and Applications (2019) 78:32261–3230532296



First, the ESDA organised a contest opened to all students, inviting to submit ideas for an
interactive art installation suitable to be set up in the school hall. No indications were given
except that the installation should transmit the idea of “Innovation”. Five different concepts of
interactive installations were submitted. An external team of professional designers judged the
ideas from a pure design perspective (technical aspects were not judged), and one was chosen
for its graphic approach to the “innovation” concept.

The idea consisted of a room where visitors can enter to be reflected on the wall as a
“cartoon” character. The virtual reflection mimics the visitor movements (see Fig. 27 Left). In
addition, at the entrance of the room, a tactile screen lets visitors choose the virtual avatar they
want to be reflected in the wall (see Fig. 27 Right).

A group of volunteer students and teachers from the different disciplines of the ESDAwas
formed with the aim of designing and implementing the final interactive installation; also, a
research member of our group was involved to be in charge of the coding of the installation
logic.

Several work sessions took place in our interactive space (see Fig. 28 Left). Our toolkit
enabled us to quickly prototype the initial concept (see Fig. 28 Right). The tracking of the
users’ position was provided by a MS Kinect sensor. Two different displays were required: the
wall display and the tactile screen. These last ones were solved using a 10′ android Tablet.

TUIML was used to model the different manipulations of the user’s body parts (head,
hands, feet …), and the different manipulations of touch actions on the tablet screen. This last

void eventoTAC(TAC lastTAC) {
// tabletop1 has been touched
if (lastTAC.getTokenName().equals("Kinect") && lastTAC.getSubtokenName().equals("rightHand")
&& lastTAC.getManipula�on().equals("move")) {

if (lastTAC.getConstraintName().equals("wheel1")) { 
// checking if the car goes slow, normal or fast

double x=lastTac.getValores().get(0);
double y=lastTac.getValores().get(1);

drawPiece(x,y);
} // velocity

} // lastTac
…  
//The code for the rest of the car pieces would be the same but changing the parameter of the  

// getSubtokenName() func�on: “wheel2”, “door”, “carHood”
}

Fig. 26 Processing code to treat the events for the “Building a car” game

Fig. 27 Art concept of the installation. Left: Script. Right: Totem with tactile screen

Multimedia Tools and Applications (2019) 78:32261–32305 32297



one demanded to define several constraints associated with the buttons and sliders included in
the graphic interface to be displayed on the tablet screen, which would enable users to choose a
virtual avatar (see Fig. 29).

When the initial prototype was finished, the group was divided in different work teams
depending on their design disciplines:

& Graphic designers were in charge of creating a collection of virtual avatars, and the graphic
interface to be displayed on the tablet.

& Interior designers were in charge of building a dark room in the ESDA hall, and installing
the hardware elements: video projector, Kinect sensor, and computers.

& The authors were in charge of implementing the game with the toolkit (see Fig. 30).
& Product designers were in charge of building a totem to accommodate the 10′ Android

Tablet (see Fig. 31 Left).

Interconnectivity of the different elements of the installation (projector display, Android
tablet, Kinect sensor, Broadcaster, and Host) was provided by installing a conventional Wi-Fi
router. Finally, the interactive art installation could be enjoyed by ESDA students, staff and
other visitors during a Design Week organized at the ESDA (see Fig. 31 Right).

The students that took part in its development appreciated the experience. One of the
students highlighted that the activity showed her a new application of design through new

Fig. 28 A work session in our interactive space. Left: Teachers and students from different design disciplines.
Right: Students testing an early prototype of the art installation

Fig. 29 Graphic Interface for the tablet screen. Each button and slider controller required to define a constraint to
fingers subtokens in TUIML

Multimedia Tools and Applications (2019) 78:32261–3230532298



technologies. Also, she expressed her interest to learn more about coding for her future design
career.

6 Discussion

When developing hybrid games for interactive spaces, the usual quick cycles of designing,
implementing a prototype and testing become very hard to complete due to the complexity of
implementing functional prototypes. This way, the gap between developers and designers gets
bigger and gaming experiences are not tested till the game has been almost completely
developed. The work presented here wants to contribute to solve these problems proposing
a toolkit, aimed at developers, that facilitates the creation of functional prototypes. A strong
point of the toolkit is to facilitate the integration of new devices that may support different

void eventoTAC(TAC lastTAC) {
// tablet has been touched
if (lastTAC.getTokenName().equals("tablet") && lastTAC.getSubtokenName().equals("finger")
&& lastTAC.getManipula�on().equals("add")) {

if (lastTAC.getConstraintName().equals("rightArrow")) // user has touched the right arrow to select 
the avatar } 

} 
if (lastTAC.getTokenName().equals("tablet") && lastTAC.getSubtokenName().equals("finger")
&& lastTAC.getManipula�on().equals("add")) {

if (lastTAC.getConstraintName().equals("characterArea")) // user has selected an avatar
} 

… // events for each bu�on of the tablet applica�on
// user is moving
if (lastTAC.getTokenName().equals("Kinect") && lastTAC.getSubtokenName().equals("rightHand")
&& lastTAC.getManipula�on().equals("move")) {

// checking if the car goes slow, normal or fast
double x=lastTac.getValores().get(0);
double y=lastTac.getValores().get(1);
drawBodyPart(“rightHand”, x,y);

} // lastTac
…

//The code for the rest of the body parts would be the same but changing the parameter of the  
// getSubtokenName() and drawBodyPart() func�on by other body parts

}

Fig. 30 Processing code to treat the events for the ESDA game

Fig. 31 ESDA activity. Left: Totem designed to accommodate the Android tactile screen. Right: Interactive
installation in the ESDA hall

Multimedia Tools and Applications (2019) 78:32261–32305 32299



types of interaction, without a great implementation impact. This is achieved by using TUIML
as the common design framework, a Graphic Assistant that makes the devices integration
easier and an API that provides a unified way to consult the device events that take place
during the gameplay, facilitating the coding of the game logic. This way, the threshold of
developing pervasive games in complex Interactive Spaces is lowered.

Moreover, the possibility of integrating diverse devices, including diverse displays, has
been able to raise the ceiling of expressiveness of the toolkit. The two first case studies
presented illustrate both aspects (threshold and ceiling). They also show that even though the
toolkit is oriented to developers, it facilitates the work of multidisciplinary teams decreasing
the gap between the two collectives.

Besides, the toolkit does not impose any minimum configuration to work except the
necessity of implementing an OSC client in order to connect the different devices, since one
of the main objectives when developing it was to deal with heterogeneity of devices. Also,
since our toolkit is software based, the hardware requirements are exclusively imposed by the
devices involved. Games that make use of a Kinect sensor, such as “Building a car”
(Section 5.2), just require to be connected to a PC computer with Windows 10 and USB3.0.
The same way, simple sensors such as the microphone used in the “The Augmented Bedroom
World” game or the LED spotlight of “The Indian World” project (Section 5.1) can be
connected to very low-spec hardware, such as an Arduino microcontroller. However, the
RTLS system used in games like “Butterflies” (Section 4.1) and “The Augmented Bedroom
World” (Section 4.3.1) requires a high broadband network router and a medium to high
desktop PC computer. In summary, configurations with simple hardware will allow the
development of simple games, while more complex configurations needing several sensors
and displays working at the same time will require better hardware connected to a better
network, allowing that way more complex games.

This also applies to possible delays in the interaction with the user. They will depend on the
sensors used, on the features of the computer chosen to host the Broadcaster, and, especially,
on the characteristics of the router: high-spec routers will reduce the delay of the interchange of
OSC packets between the Broadcaster and the different devices, while low-spec routers may
cause a delay in the transmissions. Also, the game complexity is a factor to take into
consideration: simple games will probably require less OSC packet traffic than more complex
games. In the experiences shown in the paper, we noticed some delay when working with the
RTLS system due to the implementation of the sensor itself, which was independent of our
software toolkit, and also occasional ‘blinks’ when trying to send too many Draw commands
to the display Painters. However, these delays have never significantly affected user interac-
tion, even in the experiences we have carried out using a low-spec router, such as the one
taking place in the Aragon School of Design (Section 5.3).

Finally, although the toolkit has grown in parallel with a specific Interactive Space, it is not
restricted to it. It is true that the two case studies have been carried out in the Interactive Space,
a specific controlled environment. But the third case study shows that the toolkit infrastructure
can be translated to more “in-the-wild” experiences: as long as the toolkit has access to a Wi-Fi
network, it will be able to connect with the devices involved in the pervasive game.

However, due to the intrinsic complexity of developing this kind of games, the toolkit has
some limitations that we are going to comment next.

The choice of using TUIML as the abstraction model implies a few restrictions. TUIML is
based on establishing relations between constraints and objects that are manipulated inside
those constraints, such as the “add”, “move” and “rotate” manipulations associated to the 2D

Multimedia Tools and Applications (2019) 78:32261–3230532300



and 3D physical space. However, TUIML fails short when trying to represent other kinds of
manipulations that do not meet this definition. For instance, in a game that required using
shape changing objects, made of clay for example, the interactions carried out with the objects
could not be represented with the TAC hierarchy, since in this case a token is being
manipulated itself, not inside a physical restriction imposed by another token. A more
thorough analysis about how TUIML could address this limitation remains to be done, but
still we believe that the range of games that can be designed is considerable, as we have tried to
prove along the whole article. Moreover, we have adopted the static specification of TUIML
that Shaer and Jacob [39] defined, without addressing the dynamic specification in which
Tokens, Constraints and Subtokens could change as the game evolves. In this aspect, our
toolkit is limited because the TUIML defined by the Graphic Assistant is static, which makes it
suitable for games that do not require a very variable game logic during the gameplay. In case
it was necessary to consider changes in the gameplay, it would be necessary to divide the game
in stages associated to different TUIMLs. This is another issue that will have to be tackled in
the future.

Another limitation is that, currently, our toolkit just allows dealing with devices whose data
can be transformed into a 2D-dimension, without addressing 3D-devices. This is due to the
fact that, until now, the applications that we needed to develop could be carried out by
remaining just in the two dimensions, so a new version of the toolkit able to support 3D-
data remains to be developed. In order to do this, it would be necessary to update the Graphic
Assistant so that it could provide developers with a 3D-virtual space that would allow them to
create 3D-constraints (volumes). Also, if 3D-displays were involved, such as holographic
displays, the Virtual Space paradigm would need to be updated, allowing placing the different
physical displays in a 3D-space.

Another key issue is that our toolkit is aimed at developers, not designers. It would be
necessary to simplify even more the process of creating games so that eventually designers
could also use the toolkit without the support of developers. This represents a challenge due to
the complexity of Interactive Spaces.

Finally, in spite of the use cases and studies carried out the last two years, more lengthy and
formal experiences remain to be completed.

7 Conclusions and future work

In this paper we have presented JUGUEMOS, a framework that aims to facilitate the creation
of pervasive games for Interactive Spaces. This goal was motivated by an analysis of pervasive
games and frameworks, which revealed the three challenges that arise when developing these
games and the lack of frameworks when meeting all those challenges.

The JUGUEMOS toolkit is based on a centralized network architecture that allows an easy
integration of new devices with the OSC Protocol and Processing, and that adopts the Virtual
Space display paradigm to deal with the management of different display devices. The toolkit is
based on the TUIML model in order to define pervasive games, and provides developers with a
WYSIWYG Graphic Assistant, in charge of creating the game file that will be interpreted by the
toolkit, and an API to easily access the information related to the devices connected in the IS. We
have presented cases of use that aim to illustrate the different stages that composed the develop-
ment of the JUGUEMOS toolkit, and also three different case studies to show how our toolkit is
actually used. Finally, we discussed the limitations that our toolkit currently has. However,

Multimedia Tools and Applications (2019) 78:32261–32305 32301



although it is still necessary to improve some aspects of our toolkit, we believe that we have
managed to provide developers with a tool that facilitates the creation of pervasive games, and
opens the door to interesting design experiences. In fact, further experiences with designers and
developers of interactive applications are planned in the near future.

Acknowledgments We want to thank Belén Cebrián, Alejandro Navarro, the students and tutors of the School
of Arts of Plymouth, the students and tutors of the EINA, the ESDA staff, and the Cesar-Etopía laboratories, for
making this work possible. This work has been partly financed by the Spanish Government and the European
Union through the contract TIN2015-67149-C3-1R (MINECO/ FEDER) and by the Aragonese Government and
the European Union through the FEDER 2014-2020 “Construyendo Europa desde Aragón” action (Group
T25_17D).

References

1. Arango J, Gallardo J, Gutiérrez FL, Collazos CA, Amengual E, Valera R, Cerezo E (2017) Pervasive games:
giving a meaning based on the player experience. In: proceedings of the XVIII international conference on
human computer interaction, p 9, ACM

2. Bobick AF, Intille SS, Davis JW, Baird F, Pinhanez CS, Campbell LW et al (1999) The KidsRoom: a
perceptually-based interactive and immersive story environment. Presence 8(4):369–393

3. Borchers J (2006) The Aachen media space: multiple displays in collaborative interactive environments. In
Workshop Information Visualization and Interaction Techniques for Collaboration across Multiple Displays
in conjunction with CHI (Vol. 6).

4. Cerezo E, Marco J, Baldassarri S (2015) Hybrid games: designing tangible interfaces for very young
children and children with special needs. In: More playful user interfaces. Springer, Singapore, pp 17–48

5. Chalmers M, Bell M, Brown B, Hall M, Sherwood S, Tennent P (2005). Gaming on the edge: using seams
in ubicomp games. In proceedings of the 2005 ACM SIGCHI international conference on advances in
computer entertainment technology, pp 306-309, ACM

6. Cheok AD, Yang X, Ying ZZ, Billinghurst M, Kato H (2002) Touch-space: mixed reality game space based
on ubiquitous, tangible, and social computing. Pers Ubiquit Comput 6(5–6):430–442

7. Dionisio M, Gujaran A, Pinto M, Esteves A (2015) Fall of humans: interactive tabletop games and
transmedia storytelling. In proceedings of the 2015 international conference on Interactive Tabletops &
Surfaces, pp 401-404, ACM

8. Flintham M, Benford S, Anastasi R, Hemmings T, Crabtree A, Greenhalgh C, et al. (2003) Where on-line
meets on the streets: experiences with mobile mixed reality games. In proceedings of the SIGCHI
conference on human factors in computing systems, pp 569-576, ACM

9. Gatti E, Pittera D, Moya JB, Obrist M (2017). Haptic rules! Augmenting the gaming experience in traditional
games: The case of foosball. In World Haptics Conference (WHC), 2017 IEEE, pp 430-435, IEEE

10. Guo B, Satake S, Imai M (2008) Lowering the barriers to participation in the development of human-artifact
interaction systems. International Journal of Semantic Computing 2(04):469–502

11. Guo B, Fujimura R, Zhang D, Imai M (2012) Design-in-play: improving the variability of indoor pervasive
games. Multimed Tools Appl 59(1):259–277. https://doi.org/10.1007/s11042-010-0711-z

12. Hornecker E, Buur J (2006) Getting a grip on tangible interaction: a framework on physical space and social
interaction. In proceedings of the SIGCHI conference on human factors in computing systems, pp 437-446, ACM

13. Ishii H, Wisneski C, Orbanes J, Chun B, Paradiso J (1999) PingPongPlus: design of an athletic-tangible
interface for computer-supported cooperative play. In proceedings of the SIGCHI conference on human
factors in computing systems, pp 394-401, ACM

14. Jetter HC, Reiterer H, Geyer F (2014) Blended interaction: understanding natural human–computer
interaction in post-WIMP interactive spaces. Pers Ubiquit Comput 18(5):1139–1158

15. Kaltenbrunner M, Bencina R (2007) reacTIVision: a computer-vision framework for table-based tangible interac-
tion. In proceedings of the 1st international conference on tangible and embedded interaction, pp 69-74, ACM

16. Kaltenbrunner M, Bencina R (2007) reacTIVision: a computer-vision framework for table-based tangible interac-
tion. In proceedings of the 1st international conference on tangible and embedded interaction, pp 69-74, ACM

17. Kato H (2007) Inside ARToolKit. In 1st IEEE International Workshop on Augmented Reality Toolkit.
18. Khoo ET, Cheok AD (2008) Age invaders: inter-generational mixed reality family game. Int J Virtual Real

5(2):45–50

Multimedia Tools and Applications (2019) 78:32261–3230532302

https://doi.org/10.1007/s11042-010-0711-z


19. KinectOSC: https://github.com/microcosm/KinectV2-OSC Accessed 3 October 2018
20. Krzywinski A, Mi H, Chen W, Sugimoto M (2009). RoboTable: a tabletop framework for tangible

interaction with robots in a mixed reality. In proceedings of the international conference on advances in
computer Enterntainment technology, pp 107-114, ACM

21. Lahlou S (Ed.) (2009) Designing user friendly augmented work environments. Springer-Verlag London
22. Magerkurth C, Cheok AD, Mandryk RL, Nilsen T (2005) Pervasive games: bringing computer entertain-

ment back to the real world. Computers in Entertainment (CIE) 3(3):4–4
23. Magerkurth C, Engelke T, Grollman D (2006). A component based architecture for distributed, pervasive

gaming applications. In proceedings of the 2006 ACM SIGCHI international conference on advances in
computer entertainment technology, p 15, ACM

24. Magielse R, Markopoulos P (2009) HeartBeat: an outdoor pervasive game for children. In proceedings of
the SIGCHI conference on human factors in computing systems, pp 2181-2184, ACM

25. Malone TW (1981) Toward a theory of intrinsically motivating instruction. Cogn Sci 5(4):333–369
26. Marco J, Cerezo E, Baldassarri S (2012). ToyVision: a toolkit for prototyping tabletop tangible games. In

proceedings of the 4th ACM SIGCHI symposium on engineering interactive computing systems, pp 71-80,
ACM

27. Martins T, Sommerer C, Mignonneau L, Correia N (2009). Noon: a secret told by objects. In proceedings of
the international conference on advances in computer Enterntainment technology, pp 446-446, ACM

28. Montola M (2005) Exploring the edge of the magic circle: defining pervasive games. In: Proceedings of
DAC, pp 16–19

29. Montola M, Stenros J, Waern A (2009) Pervasive games: theory and design. Morgan Kaufmann Publishers
Inc.

30. Mora S, Fagerbekk T, Di Loreto I, Divitini M (2015) Making interactive board games to learn: reflections
on AnyBoard. In Make2Learn@ ICEC, pp 21-26

31. Morreale F, De Angeli A, Masu R, Rota P, Conci N (2014) Collaborative creativity: the music room. Pers
Ubiquit Comput 18(5):1187–1199

32. Muse band: http://www.choosemuse.com/ Accessed 3 October 2018
33. Myers B, Hudson SE, Pausch R (2000) Past, present, and future of user interface software tools. ACM

Transactions on Computer-Human Interaction (TOCHI) 7(1):3–28
34. Nacenta MA, Aliakseyeu D, Subramanian S, Gutwin C (2005). A comparison of techniques for multi-

display reaching. In proceedings of the SIGCHI conference on human factors in computing systems, pp
371-380, ACM

35. Park JW (2017) Hybrid monopoly: a multimedia board game that supports bidirectional communication
between a Mobile device and a physical game set. Multimed Tools Appl 76(16):17385–17401. https://doi.
org/10.1007/s11042-017-4589-x

36. Processing web: http://www.processing.org Accessed 3 October 2018
37. Pure Data web: https://puredata.info/ Accessed 3 October 2018
38. Satyanarayanan M (2001) Pervasive computing: vision and challenges. IEEE Pers Commun 8(4):10–17
39. Shaer O, Jacob RJ (2009) A specification paradigm for the design and implementation of tangible user

interfaces. ACM Transactions on Computer-Human Interaction (TOCHI) 16(4):20
40. Shaer O, Leland N, Calvillo-Gamez EH, Jacob RJ (2004) The TAC paradigm: specifying tangible user

interfaces. Pers Ubiquit Comput 8(5):359–369
41. Soute I, Lagerström S, Markopoulos P (2013). Rapid prototyping of outdoor games for children in an

iterative design process. In proceedings of the 12th international conference on interaction design and
children, pp 74-83, ACM

42. Soute I, Vacaretu T, Wit JD, Markopoulos P (2017) Design and evaluation of RaPIDO, a platform for rapid
prototyping of interactive outdoor games. ACM Transactions on Computer-Human Interaction (TOCHI)
24(4):28

43. Tanenbaum J, Tanenbaum K, Antle A (2010) The Reading glove: designing interactions for object-based
tangible storytelling. In proceedings of the 1st augmented human international conference, p 19, ACM

44. Ullmer B, Ishii H (2000) Emerging frameworks for tangible user interfaces. IBM systems journal 39(3.4):
915–931

45. Ullmer B, Ishii H, Jacob RJ (2005) Token+ constraint systems for tangible interaction with digital
information. ACM Transactions on Computer-Human Interaction (TOCHI) 12(1):81–118

46. Vvvv: multipurpose toolkit (2014) https://vvvv.org/ Las Accessed: April, 2018
47. Wright M (2005) Open sound control: an enabling technology for musical networking. Organised Sound

10(3):193–200
48. Yamabe T, Nakajima T (2013) Playful training with augmented reality games: case studies towards reality-

oriented system design. Multimed Tools Appl 62(1):259–286. https://doi.org/10.1007/s11042-011-0979-7

Multimedia Tools and Applications (2019) 78:32261–32305 32303

https://github.com/microcosm/KinectV2-OSC
http://www.choosemuse.com/
https://doi.org/10.1007/s11042-017-4589-x
https://doi.org/10.1007/s11042-017-4589-x
http://www.processing.org
https://puredata.info/
https://vvvv.org/
https://doi.org/10.1007/s11042-011-0979-7


49. Yanagida Y, Kawato S, Noma H, Tomono A, Tesutani N (2004) Projection based olfactory display with
nose tracking. In virtual reality, 2004. Proceedings. IEEE, pp 43-50, IEEE

50. Zhu F, Sun W, Zhang C, Ricks R (2016) BoomChaCha: a rhythm-based, physical role-playing game that
facilitates cooperation among players. In proceedings of the 2016 CHI conference extended abstracts on
human factors in computing systems, pp 184-187, ACM

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Clara Bonillo is a Ph.D. student in the Doctoral Program in Systems Engineering and Informatics, University of
Zaragoza (Spain), in the AffectiveLab Group. Her research area is Tangible Interaction. In 2015, her final project
entitled “Development of a tool for the design and running of activities for the elderly with the NIKVision
tabletop” received the prize of the best Final Project from the Spanish Human Computer Interaction Association
of which she is a member.

Javier Marco obtained a Ph.D. in Computer Science Engineering in 2011 at the University of Zaragoza (Spain).
His thesis researched the benefits of tangible interfaces for children and their involvement during design and
evaluation stages. He was a visiting researcher at the ChiCI Group at the University of Central Lancashire and at
the M-ITI at the University of Madeira (Portugal), under a Carnegie Mellon post-doc program. He is in the
scientific committee of the Interaccion International Conference and Tangible and Embedded Interaction
International Conference. He also has organized several workshops in different international symposiums dealing
the design and implementation of tangible applications.

Multimedia Tools and Applications (2019) 78:32261–3230532304



Eva Cerezo received a Ph.D. degree in Computer Science in 2002. She is Associate Professor at the School of
Engineering and Architecture and Head of the Computer Sciences and Systems Engineering Department at the
University of Zaragoza. She leads the AffectiveLab, a research group that focuses on affective multimodal human
computer interaction, tangible tabletops and virtual humans. She is author of more than 80 international
publications. She is a member of the Executive Board of the ACM SIGCHI Spanish Local Chapter.

Affiliations

Clara Bonillo1 & Javier Marco2 & Eva Cerezo3

1 Advanced Interfaces Group (AffectiveLab), Computer Science Department, Universidad de Zaragoza, Ed.
Ada Byron, C/María de Luna n. 1, 50015 Zaragoza, Spain

2 Escuela Superior de Diseño de Aragón (ESDA), C/ María Zambrano, n. 3, 50018 Zaragoza, Spain
3 Advanced Interfaces Group (AffectiveLab), Computer Science Department, Engineering Research Institute

of Aragon (I3A), Universidad de Zaragoza, Ed. Ada Byron, C/María de Luna n. 1, 50015 Zaragoza, Spain

Multimedia Tools and Applications (2019) 78:32261–32305 32305


	Developing pervasive games in interactive spaces: the JUGUEMOS toolkit
	Abstract
	Introduction
	State of the art
	Pervasive games in the literature
	Object augmentation
	Table�augmentation
	Room augmentation
	World augmentation
	General conclusions

	Frameworks for the development of hybrid games

	Toolkit architecture
	Toolkit requirements and design decisions
	Architecture description

	JUGUEMOS toolkit development
	Stage 1: Integrating heterogeneous devices
	Case of use: “Butterflies” game

	Stage 2: Multi-display management
	Case of use: Multi-display “butterflies” game

	Stage 3: Easing the coding of the game
	Iteration 1: Abstracting the game with the TUIML syntax
	Case of use: Designing “The Bedroom World” with TUIML
	Iteration 2: Graphic assistant
	Example of use: Defining the “The Augmented Bedroom World” with the graphic assistant
	Iteration 3: Semantic level
	Case of use: Filtering events for “The Augmented Bedroom World”
	Iteration 4: API
	Example of use: Implementation of “The Augmented Bedroom World” with the API


	Cases studies: Exploring toolkit expressivity and threshold
	Case study 1: “The Indian World” project
	Case study 2: Collaborative experience between designers and developers
	Case study 3: Activity in the Aragon School of Design (ESDA)

	Discussion
	Conclusions and future work
	References




