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Abstract
Object detection, aiming at locating objects from a large number of specific categories in
natural images, is a fundamental but challenging task in the field of computer vision. Recent
years have seen significant progress of object detection using deep CNN mainly due to its
robust feature representation ability. The goal of this paper is to provide a simple but com-
prehensive survey of the recent improvements in object detection in the era of deep learning.
More than 100 key contributions are investigated mainly from five directions: architecture
diagram, contextual reasoning, multi-layer exploiting, training strategy, and others which
includes some other progress like real-time object detectors and works borrowing the idea
from RNN and GAN. We discuss comprehensive but straightforward experimental com-
parisons under widely used benchmarks and metrics. This review finishes by providing
promising trends for future research.

Keywords Object detection · Deep convolutional neural networks (CNNs) ·
Recent progress · Computer vision

1 Introduction

Object detection is a fundamental and challenging task in computer vision. It can be treated
as a combination of classification and localization, but multiple objects with different scales
should be detected and classified at the same time within one image. Object detection has
received wide attention and has been applied in many other fields like autonomous driving
[15], surveillance [4], etc.

Early object detection approaches adopted the sliding-window paradigm. Hand-crafted
features like HOG [12] and SIFT [59] are applied and classifiers detect objects on dense
image grids. Based on multi-scale, deformable models, DPM [23] and its descendants have
been the leading methods on PASCAL VOC [19] for many years.
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With the availability of large-scale training data like ImageNet [14] and the advance of
high-performance GPUs, it’s easy to train large models especially deep convolutional neural
networks such as AlexNet [45]. Many CNN-based methods have been proposed to boost
the performance of object detection for the powerful feature representation ability of CNN.
The history of CNNs for vision recognition can date back to LeNet [46] in the 1980s, which
is applied to document recognition. Due to the computation constraint at that time and the
appearance of the other simple but efficient methods like support vector machine (SVM),
deep learning has not been applied broadly yet. Until a milestone method, AlexNet, won the
first place in ILSVRC 2012, deep learning represented by CNN returns to the public view
and object detection steps into the era of deep learning.

According to [28], object detection can be roughly sorted into three kinds: object
detection (OD), salient object detection (SOD) [42] and category-specific object detection
(COD). We focus on category-specific object detection, and we use object detection instead
of COD through this paper. Object detectors based on CNN can be categorized into two
types: two-stage and one-stage. In the two-stage method, a set of region proposals are firstly
generated by Selective Search [85] or EdgeBoxes [107] or region proposal network (RPN)
[71], then the certain object locations and the corresponding category labels are determined
by using convolutional networks (the below part of Fig. 1). On the contrary, the one-stage
approaches use a single feed-forward convolutional network [68] or a reduced convolu-
tional network with extra multi-scale layers [56] to directly predict object classes and object
bounding boxes (the above part of Fig. 1).

The difference between one-stage method and two-stage method is whether there is a
region proposal stage before the detection part or not, but we summarize the two methods
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Fig. 1 Illustration of backbone and detection business part. The diagram above is a concise version of SSD
[56] and the below is from Faster R-CNN [71], which are the representative models of one-stage and two-
stage respectively. The backbone networks are usually borrowed from classification task, and a reduced
VGG-16 [79] is employed in both the two networks
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regardless of the region proposal, and we divide the whole detection process into two
parts: backbone and detection business part, see Fig. 1. The backbone networks are usually
designed and trained for ImageNet [14] classification task. The robust feature extraction
ability and transfer learning help the later detection business part detect and classify the
objects more accurate. The detection business part is integrated into the backbone after the
feature map generated in the previous layer.

As the borrowed backbone network is a fundamental part of an object detector, its per-
formance on classification will affect the accuracy on object detection. Since AlexNet [45]
became the winning of ImageNet [14] in 2012, the last few years had witnessed signifi-
cant progress in the accuracy improvement on this authoritative dataset. Intuitively, these
architectures focus on the accuracy improvement while they need to solve the problems
arising with the increasing of the depth of network (e.g., a 152-layer ResNet [30] surpasses
a 16-layer VGG-Net [79] with three times depth but lower complexity). On the other hand,
some methods [8, 35, 40, 100] pay close attention to the model size and running speed
for applying their applications on devices with memory and computing speed constraint
(e.g., SqueezeNet [40] achieves comparable accuracy compared to AlexNet [45] with 50×
fewer parameters and less than 0.5MB model size with model compression). More details
about these architectures that employed in object detection as backbone will be discussed
in Section 2.1.

Object detection business part, as mentioned above, is the vital part of object detection
pipeline which turns the feature maps output from backbone to class labels and bounding
boxes. Similar to the backbone networks, two-stage approaches focus on improving the
accuracy on standard evaluation datasets like PASCAL VOC [18, 19] and MS COCO [52].
Differently, one-stage methods perform better in speed perspective, such as YOLO [68] can
process an image at 45 frames per second (FPS) with the accuracy outperforms R-CNN [24]
and its second version YOLO9000 [69] outperforms Faster R-CNN [71] with ResNet while
still running significantly fast. Some of the two mainstream methods [24, 56, 68, 73] will
be introduced in Section 2.2.

The main purpose of this paper is about the recent progresses of object detection in
deep learning era, mainly about the detection business part. As shown in Fig. 2, we firstly
introduce some representative models of detection business part in Section 2.2. Then, in
Section 3, we investigate recent progresses of the detection business part mainly based on
R-CNN [24], YOLO [68], and SSD [56] from five perspectives: architecture diagram, con-
textual reasoning, multi-layer exploiting, training strategy and others. Methods focusing on
architecture diagram try to design new network by replacing their backbone or changing
the components of the original detectors like using position-sensitive RoI pooling or using
deformable convolution instead of standard convolution or adopting multi-stage or cascade
structure. Approaches concatenating multi-scale features, using top-down pathway and con-
duct skip connections and combining both will be classified into multi-layer exploiting part.

Fig. 2 Architecture of the main
part of this review
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Contextual information plays an important role in object detection especially for object
detection of small objects. Some advanced techniques like concatenating features, using
a semantic segmentation subnet utilized for introducing context into detection will be
discussed in this part. Different training problems like class imbalance, non-maximum
suppression, large mini-batch and etc. will be solved with different training strategies. Addi-
tionally, new ideas borrowed from the other fields like Recurrent Neural Network (RNN),
generative adversarial networks (GAN), weakly supervised learning, and new backbone for
object detection and real-time object detectors will be introduced at last.

Benchmarks and metrics for object detection will be talked in Section 4 and compre-
hensive but straightforward comparisons of object detectors in this paper will be given in
Section 5. Finally, we conclude this work in Section 6 and offer some promising trends for
future research.

The main contributions of this paper are summarised as:

1. Plenty of literatures are investigated in this brief review to give a comprehensive
understanding of object detection in the deep learning era.

2. Mainly focusing on the recent progress on object detectors using deep CNNs, we review
these works through a unique methodology from five main parts: architecture diagram,
contextual reasoning, multi-layer exploiting, training strategy, and others.

3. Comprehensive comparisons of these detectors are summarised to offer an intuitive
understanding of differences between them. Some promising trends for future research
are provided after a short summary of this review.

2 Backbone and detection business part

In this section, we go deep into the improvements on the backbone network and two main
streams of the detection business part respectively. Firstly, we investigate the backbone from
both accuracy and speed perspective. Then we introduce the main methods of the two main
streams like R-CNN [24], OverFeat [73], YOLO [68] and SSD [56].

2.1 Backbone

Deep learning has got a lot of attention since AlexNet [45] won first place in the challenge
of ImageNet [14] in 2012. Great improvements have been achieved both in the accuracy
[38] and speed [37] of image classification. In this part, we briefly introduce some of
the advanced classification architectures that have been widely applied in object detection
as backbone, which are utilized to extract features. The development of backbone can be
divided into several stages which are represented by some classic network design principles
(see Fig. 3 ). The first is repeat which stacks structure with the same topology and makes the
entire network becomes a modular structure. This technique starts from AlexNet and VGG
[79] (Fig. 3a) and is adopted by almost all the later works. The second is multi-path which
first appears in Inception [82] module (Fig. 3b). The input from the previous layer is divided
into different paths to transform by filters with different kernel sizes, and finally, the output
is concatenated by a 1×1 convolutional layer. The last is the skip-connection (Fig. 3c) which
starts from Highway Network [81] and becomes a standard principle from ResNet [30].
It constructs the connection between high-level and low-level feature information which
changes the original single linear structure.

AlexNet: AlexNet [45] consists of five convolutional layers and three fully connected
layers. It is a milestone study of deep learning and computer vision for introducing some
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Fig. 3 Development of backbone. a VGG-16 [79] repeats the basic components of CNN: convolution layer,
pooling layer and fully connected layer. b Inception module [82] uses multi-path and different kernel size of
convolution. c skip-connection [30] connects high-level and low-level features

advanced techniques like training the network with graphics processing unit (GPU) for
speeding up the operation of convolution parallelly and using the dropout to prevent from
overfitting.

VGGNet: VGGNet [79] won second place in the classification task and the first place in
location task in the competition of ILSVRC 2014. The small receptive field is utilized in the
whole network for fewer parameters. It has two versions: VGG-16 and VGG-19. VGG-16
has been widely used because of its simple architecture, which has 13 convolutional layers,
five pooling layers, and three fully connected layers.

GoogLeNet: To solve the overfitting and computing problem arising with the increasing
size of the network, Inception module was introduced in GoogLeNet [82]. Using different
kernel sizes of filters in the same layer helps preserve the spatial information and reduce the
parameters. It has 22 layers, which is almost three times deeper than AlexNet, but it has 12
times fewer parameters than AlexNet.

ResNet/ResNeXt: ResNet [30] is one of the most successful CNNs and has been
exploited in many applications including the very famous AlphaGo [78]. The idea of the
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ResNet is simple yet effective, which each layer should not learn unreferenced functions but
learn residual functions with references to the layer’s inputs. This kind of learning makes it
easier to train much deeper networks efficiently. ResNet has different architectures: ResNet-
50, ResNet-101 and ResNet-152. ResNeXt [93] is the upgraded version of ResNet. It is
constructed by repeating a building block that aggregates a set of transformations with the
same topology. It demonstrates that it’s more effective to increase the size of the set of
transformations (cardinality) than to increase the depth and width. Moreover, a 101-layer
ResNeXt can achieve better accuracy than ResNet-200 but with only 50% complexity.

DenseNet: Inspired by the shortcut connection of ResNet, DenseNet [38] connects each
layer in the network with every other layer in a feed-forward fashion with L(L+2)/2 direct
connections. In addition to the original features (alleviating the vanishing-gradient problem
and reducing the number of parameters) of the shortcut connection, this design has new
features that strengthen feature propagation and encourage feature reuse. Besides, with the
help of the bottleneck layer, translation layer, and small growth rate, the network becomes
narrow which can prevent from overfitting.

The models above mainly focus on the accuracy improvement of the classification by
increasing the depth and width of the network. On the other hand, some architectures are
putting their attention on the model size while maintaining considerable accuracy so that
they can be utilized on the devices with memory and computation speed constraints.

MobileNets: MobileNet [35] is a lightweight deep neural network proposed by Google
for embedded devices such as mobile phones. The core of network designs, separable con-
volution, can effectively reduce the number of parameters and computation at the expense
of lesser performance. Separable convolution replaces traditional convolution operations
with two-step convolution operations: depth-wise convolution and point-wise convolution.
Subsequent MobileNet-v2 [72] mainly adds residual structure, and adds a layer of point-
wise convolution before depth-wise convolution, which optimizes the bandwidth usage and
further improves the performance on embedded devices.

Xception: Xception [8] is an improvement to Inception v3 [83], mainly using Depth-
wise Separable Convolution to replace the original Inception v3 convolution operation, in
the premise of little increase in network complexity to improve the effectiveness of the
model. Xception separates the tasks related to learning space from the tasks related to learn-
ing channels by adding groups to the convolution layer, which dramatically reduces the
theoretical computation complexity and the size of the model.

SqueezeNet: Based on three architecture design strategies: (1) replace 3 × 3 filters with
1 × 1 filters; (2) decrease the number of input channels to 3 × 3 filters; (3) downsample
late in the network so that convolution layers have large activation maps, SqueezeNet [40]
is a small CNN architecture. Fire module which consists of squeeze convolution layer and
expand layer is used to reduce the parameter number. With further compression, the model
size of SqueezeNet can be compressed to less than 0.5 MB which is 510× smaller than
AlexNet [45] while it can achieve AlexNet-level accuracy with 50× fewer parameters.

ShuffleNet: ShuffleNet [100] utilizes two new mechanisms, point-wise group con-
volution, and channel shuffle, to reduce computation cost while maintaining accuracy.
Experiments show that it is an extremely computation-efficient CNN architecture with com-
parable accuracy. Channel split is introduced in the upgrade version, ShuffleNet v2 [61], to
speed up the network. Some practical guidelines for efficient network design are proposed
in this work, and ShuffleNet v2 achieves a trade-off between speed and accuracy.

In addition to these models mentioned above, there are also some noticeable architectures
[37, 97]. ZFNet [97] presents a method of deconvolution for visualization of convolution
network, which can analyze the effect of convolution network and guide the improvement of
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the network. Based on AlexNet network, ZFNet obtains a better result. SE block in SENet
[37] is designed by explicitly modeling the interdependence between channels and adap-
tively recalibrating the channel response. The core of the SENet is squeezing and excitation
operation.

2.2 Detection business part

The detection business part can be divided into two main streams according to whether
there’s an independent region proposal stage or not. In the part, we present some of the
representative models of two-stage approach and one-stage approach.

OverFeat: Overfeat [73], one of the first advances in using deep learning for object
detection, integrates three tasks of image classification, location, and detection into a
framework to boost the accuracy and won the first place in the ILSVRC2013 localization
competition. OverFeat is based on the multi-scale sliding-window algorithm, which is an
intuitive search method of object detection.

R-CNNs: R-CNN [24], one of the most famous region-base convolutional neural net-
works, is the first to use deep CNN to extract feature for object detection. Firstly, it generates
about 2k object candidates named region proposals through Selective Search [85]. Then
these proposals are resized to the fixed size to fit the input size of the CNN like AlexNet.
A fixed length of feature vectors is generated by the CNN and finally classified using
class-specific linear support vector machines (SVMs). This simple yet effective pipeline
has reached state-of-the-art performance on the benchmark datasets with momentous per-
formance boost over all previous models, which are mainly based on DPM [23] while
the computation for every region proposal is very time-consuming. The whole detection
pipeline of R-CNN is shown in the above part of Fig. 4. To solve the computation and the
limited image input size problem, SPPnet [29] (the middle part of Fig. 4) introduces spatial
pyramid pooling to relax the constraint of the fixed input size due to the fully connected
layers. More importantly, SPPnet extracts the feature maps from the entire image indepen-
dent of the region proposal stage. Then it matches the proposals through spatial pyramid
pooling (SPP) and generates a fixed-length vector regardless of the input size. Finally, the
fixed-length representation is input into the last two fully connected layers and then clas-
sified by category-specific linear SVMs. SPPnet speeds up the R-CNN method 24-102×
faster with better or comparable accuracy. Fast R-CNN [25] inherits the spatial pyramid
pooling from SPPnet but modifies it as Region of Interest (ROI) Pooling which can be seen
as a single-level SPP (the lower left corner of Fig. 4). It uses the bounding-box regres-
sor instead of linear SVMs and utilizes a multi-task loss which makes the network can be
trained in a single stage and no extra storage is required for feature caching during the train-
ing. This method can train a very deep detection network with a backbone VGG16 [79],
testing 9× faster than R-CNN [24] and 3× faster than SPPnet [29]. At test time, the detec-
tion network processes one image in 0.3s (excluding object proposal time). Faster R-CNN
[71] replaces the Selective Search [85] in the region proposal stage with the region proposal
network (RPN) (the right corner of Fig. 4) which is built by several convolutional layers,
which makes the network completely trainable end-to-end. With the RPN, Faster R-CNN
can process an image in 0.2 seconds (including region proposal), which is 250× faster than
R-CNN and 10× than Fast R-CNN, almost toward real-time. It is noticeable that the back-
bone of R-CNN is AlexNet [45], and SPPnet is based on ZF-5 [97] while Fast R-CNN and
Faster R-CNN adopt VGG-16 [79].

YOLOs: Focusing on real-time object detection, YOLO [68] borrows ideas from the
design of the architecture of GoogLeNet [82]. The input image is divided into S × S grid
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and the grid where the center of the object lies in charge of the prediction of the object.
Each grid cell outputs B bounding boxes and confidence scores for those boxes, as well
as C class probabilities. The unified framework runs at 45 frames per second with the per-
formance outperforming DPM [23] and R-CNN [24]. The architecture of YOLO can be
seen in the above part of Fig. 5. To improve the precision and recall of object localization,
YOLOv2 [69] adopts some advanced methods to make the detection better, stronger and
faster. Briefly, the idea of anchor box is introduced from Faster R-CNN [71] and the net-
work architecture is altered to fit the modification where the fully connected layer of the
output layer is replaced by a convolutional layer. Using WordTree and joint training method,
the authors train YOLOv2 simultaneously on the MS COCO [52] detection dataset and the
ImageNet classification dataset. YOLOv2 gets 78.6 mAP at the speed of 40 frames per sec-
ond, outperforming state-of-the-art methods like Faster R-CNN with ResNet and SSD while
still running significantly faster. Based on Darknet-53 [67], which is as accurate as ResNet-
101 or ResNet-152 [30] but much faster, YOLOv3 [70] makes an incremental improvement
not only on the accuracy perspective but also speed. Multi-scale prediction employed to
get more meaningful semantic information from the upsampled features and finer-grained
information from the earlier feature map. At the image size of 320 × 320, YOLOv3 runs as
accurate as SSD [56] but three times faster. It achieves similar performance but 3.8× faster
compared to RetinaNet [54].
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SSD: As one of the most successful one-stage approaches, single shot detector (SSD)
[56] (the below of Fig. 5) discretizes the output space of the bounding boxes into a set of
default boxes. Each feature map is located at different aspect ratios and scales in the default
boxes. These default bounding boxes are essentially equivalent to Faster R-CNN’s anchor
boxes [71]. At prediction time, scores are generated for each object class in each default
box and the box is adjusted to match the object shape. The network combines predictions
from multiple feature maps with various resolutions to deal with objects of different sizes.
SSD uses the reduced VGG-16 [79] like Faster R-CNN but with a better performance.

3 Improvements

3.1 Architecture diagram

The main idea of architecture design is to use deeper backbone which not only leads to
improvements in classification but also in object detection. For example, Faster R-CNN
[71] can achieve over 3% mAP boost by replacing the original VGG-16 [79] backbone
with ResNet-101 [30]. While changing the components of CNN (e.g. using a deformable
convolution or position-sensitive RoI pooling) or using a multi-stage structure can also get
a new architecture diagram (shown in Fig. 6). For example, Mask R-CNN [31], R-FCN [10]
and its descendant [80], and CoupleNet change the original RoI pooling in Fast R-CNN
[25], DeepID-Net [64], DCN [11] replaces the convolution with deformable convolution to
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Fig. 6 The improvements of architecture of object detectors. a Deformable convolution used in DCN [11].
b Position-sensitive RoI pooling introduced in R-FCN [10] to keep the spatial information for better local-
ization. c and d multi-stage structure where “I” is input image, “Conv” backbone convolutions, “pool”
region-wise feature extraction, “H” network head, “B” bounding box, and “C” classification. “B0” is pro-
posals in all architectures. c CRAFT [94] adopts it to generate compact and better localized proposals and
reduce false positive in classification. d Cascade R-CNN [6] consists a sequence of detectors trained with
increasing IoU thresholds
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fit the scale variance of objects, CRAFT [94], Cascade R-CNN [6], ME-RCNN [47], STDN
[105] and [50, 95] adopt a cascade structure to boost accuracy.

Mask R-CNN [31] is designed for instance segmentation and object detection, which
modifies a little to Faster R-CNN by replacing RoI with RoIAlign. Just adding a branch for
an object mask in parallel with the branch for bounding box regression, Mask R-CNN can be
generalized to other tasks easily, e.g., human pose estimation and person keypoint detection.
As the third version of R-CNN [24], Faster R-CNN [71] achieves a speed-accuracy trade-off
for using the Region Proposal Network (RPN) to generate object proposals for detecting.
Taking Faster R-CNN as the baseline, R-FCN [10] borrows idea from fully convolutional
neural network (FCN) [58] which is applied for semantic segmentation. Firstly, feature maps
are generated by a modified 101-layer ResNet [30] whose last average pooling layer and
fully connected layer are discarded and the output of the last convolutional layer is resized
to 1024-d from 2048-d. Then an RPN proposes candidate RoIs based these feature maps.
A position-sensitive RoI (PSRoI) pooling (shown in Fig. 6a) is designed to keep the spatial
information of object regions and generates scores for each RoI (the size of RoI is 3 × 3).
The result is generated by averaging voting on each RoI. The use of a fully convolutional
network can avoid the loss of spatial information that brought by the fully connected layer
applied to classification. Online Hard Example Mining (OHEM) [76] (after-mentioned) is
applied during the training. CoupleNet [106] proposes the idea to couple the global structure
with local information for object detection. The object proposals generated by the Region
Proposal Network (RPN) are input into the coupling module with two branches. The local
part information of the object is encoded by the position-sensitive RoI (PSRoI) pooling in
one branch, and the global and context information are captured by the RoI pooling in the
other branch. Different coupling strategies and normalization ways are investigated to make
full use of the complementary advantages between the global and local branches.

In the architecture of DeepID-Net [64], a new deformation constrained pooling (def-
pooling) layer models the deformation of object parts with geometric constraints and
penalty. Besides, a new pre-training strategy is introduced to learn more suitable feature
representations for the object detection task with excellent generalization capability. To
fit the geometric variations adaptively, two modules named deformable convolution (see
Fig. 6b), and deformable RoI pooling are introduced in DCN [11] to enhance the trans-
formation modeling capability of CNNs. The two modules augment the spatial sampling
locations with additional offsets and learn the offsets from the target tasks without extra
supervision. The original counterparts in existing Faster R-CNN can be replaced by the
new modules, and the new network deformable convolutional networks can be trained end-
to-end by back-propagation. Extensive experiments validate the performance boost of this
approach including semantic segmentation and object detection.

Based on the philosophy of “divide and conquer”, CRAFT [94] divides both the region
proposal and object classification into two sub-tasks (illustrated in Fig. 6c). An additional
Fast R-CNN is attached to the original region proposal network (RPN) to provide more
compact and better-localized object proposals in the proposal generation stage. In object
classification, two Fast R-CNNs are employed in a cascade structure to reduce false pos-
itives by capturing both inter- and intra-category variances. Similarly, [95] exploits the
features in all layers to reject easy negatives via cascade rejection classifiers and evalu-
ates left proposals using a scale-dependent pooling method. Group recursive learning is
utilized in [50] with multi-stage detection. The proposed architecture consists of three
cascaded networks which respectively learn to perform weakly-supervised object segmen-
tation, object proposal generation, and recursive detection refinement. A multi-stage object
detection architecture, Cascade R-CNN [6], is proposed to address problems that detection
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performance tends to degrade with increasing IoU thresholds (Fig. 6d). It is composed of a
sequence of detectors trained with increasing IoU thresholds, to be sequentially more selec-
tive against close false positives. These detectors are trained stage by stage, leveraging the
observation that the output of a detector is a good distribution for the training of the next
higher quality detector. Taking Fast R-CNN [25] as a baseline with a backbone VGG-16 [79]
or ResNet-101 [30], ME R-CNN [47], representing for Multi-Expert Region-based CNN,
consists of multiple experts and constructed on top of the R-CNN framework. Focusing
on better capturing the appearance variations brought by various shapes, poses, and view-
ing angles, ME R-CNN is equipped with three experts each responsible for objects with
particular shapes: horizontally elongated, square-like, and vertically elongated. Besides, for
better data augmentation, the exhaustive search is applied in the training stage for providing
a compact but effective set of regions of interest (RoIs) for object detection. To solve the
scale problem in object detection, a one-stage object detector named Scale-Transferrable
Detection Network (STDN) [105] using scale-transfer module (STM) and DenseNet [38]
is proposed. DenseNet is altered to integrate high-level semantic information and low-level
details to achieve more powerful features. STM consists of pooling and super-resolution
layers with no additional parameters and computation.

We have reviewed some of the representative models which design new architecture
diagram and highlights of these models are illustrated in Table 2. Not only the networks
talked above can be categorized into this subsection, but also many other methods like
DSSD [20], MR-CNN [22], GBD-Net [98], which are classified into other parts.

3.2 Multi-layer exploiting

Detectors like SPPnet [29], Fast R-CNN [25], Faster R-CNN [71] and YOLO [68] are based
on the top-most feature of deep CNN and do not make full use of the bottom details. SSD
[56], DSOD [74] and MS-CNN [5] make predictions on multi-scale features. SSD [56]
adopts default boxes, matching strategy introduced in MultiBox [17] and several extra con-
volutional layers in which multiple feature maps with the different resolution are combined
to naturally handle objects of various size (architecture can be seen in Fig. 7a). Neverthe-
less, the layers from the bottom of a CNN have weak semantic information, which will harm
their representational capacity for small object recognition. In this part, we focus on meth-
ods concatenating multi-scale features of CNN [2, 7, 41, 43, 49, 104] or using top-down
pathway and conduct skip connections [9, 53, 77] or combining both [9, 44, 99] (see Fig. 7).
These operations will not only help enhance the power of features but also help introduce
contextual information (aftermentioned).

Several recent works [7, 41, 49, 104] investigate the architecture of SSD and pro-
pose some useful methods to merge features of the original SSD architecture. R-SSD [41]
analyzes how to use features effectively to improve the performance of SSD. Rainbow con-
catenation, pooling, and deconvolution are performed simultaneously to create feature maps
with an explicit relationship between different layers rather than growing layers close to the
input data, e.g., by replacing VGG-16 [79] with ResNet-101 [30]. Multi-level feature fusion
method is proposed to add contextual information for small object detection in SSD pipeline
in Feature-Fused SSD [7] architecture. Two modules, concatenation module, and element-
sum module, are carefully investigated and features from different layers of VGG-16 (e.g.,
conv3 3, conv4 3, conv5 3) are also explored. FSSD [49] uses a lightweight fea-
ture fusion module to make the network run faster. Features from different layers with
various scales are concatenated first and then applied to generate a set of pyramid features
and finally predicted independently. ESSD [104] extends the shallow part of SSD through
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Fig. 7 Architecture of multi-scale fusion and top-down pathway. a Multi-scale detection used in SSD [56].
b Feature Pyramid Network (FPN) [53] is a classic top-down structure. c Top-down Module (TDM) [77]
where “L” represents lateral connection module and the prediction is implemented at the top of the top-dwon
module. d A combination of multi-layer concatenation and top-down in MDSSD [9]

Extension Module which consists of several convolutional layers and deconvolutional lay-
ers. This kind of extension also focuses on the contextual information which is similar to
the two feature fusion modules in Feature-Fused SSD.

Meanwhile, there are also several proposed methods trying to improve the performance
of the two-stage modules. ION [2] uses skip pooling and spatial recurrent neural networks
to integrate information at multiple layers, and detects objects using these features. To solve
the coarseness of the feature maps generated by Region Proposal Network (RPN) [71] which
will harm small object detection and precise localization, a deep hierarchical network named
HyperNet [43] is proposed to handle region proposal generation and object detection jointly.
HyperNet is mainly based on Hyper Feature which aggregates hierarchical feature maps first
and then compresses them into a uniform space. The Hyper Feature well incorporates deep
but highly semantic, intermediate but really complementary, and shallow but naturally high-
resolution features of the image, thus enabling us to construct HyperNet by sharing them
both in generating proposals and detecting objects via an end-to-end joint training strategy.

Instead of using multi-layer feature aggregation, a top-down pathway and lateral con-
nection are introduced to merge multi-layer features. Instead of combining high-level and
low-level features with skip connections, top-down contextual information is required when
selecting the right features from low-level. Top-down modulations are proposed to incorpo-
rate fine details into the detection framework. The TDM [77] is applied as a supplement to
the standard bottom-up, feedforward ConvNet, connected using lateral connections (shown
in Fig. 7c). These connections modulate the low layer filters and the top-down network
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handles the selection and integration of contextual information and low-level features. The
TDM can be easily integrated into the state-of-the-art two-stage detection framework and
gets a significant improvement on detection including small objects. After investigating how
to construct feature pyramids with marginal extra cost, a top-down architecture with lateral
connections is proposed for building high-level semantic feature maps at all scales. This
architecture named Feature Pyramid Network (FPN) [53] (Fig. 7b) can be easily embed-
ded into the Faster R-CNN system, and the joint model achieves state-of-the-art results
on the COCO detection benchmark with a speed of 6 FPS on a single GPU. MDSSD
[9] (Fig. 7d) designs several multi-scale Deconvolution Fusion Modules which is a modi-
fied top-down architecture with skip connection to provide a significant boost on detection
of small objects. The high-level semantic features from different depth are fed into sev-
eral deconvolution layers to produce higher resolution features and then merged with the
low-level features to achieve skip connections.

Inheriting both the multi-scale concatenation and top-down structure, RefineDet [99]
and RON [44] introduce some new techniques to improve performance. Based on one-stage
approach, RON [44] associates the best of two-stage approach and one-stage approach.
RON is an efficient and practical framework for object detection. Reverse connection is
applied to address multi-scale object localization in a top-down model and the objectness
prior is employed to solve the negative sample mining and reduce the searching space of
objects. Optimizing reverse connection, objectness prior and object detector jointly by a
multi-task loss function, RON can predict detection results from different scales of feature
maps. RefineDet [99] inherits the merits of both one-stage approach and two-stage method
while discarding their shortcomings. It is composed of two inter-connected modules: the
anchor refinement module (ARM) and the object detection module (ODM). ARM tries to
identify and remove negative anchors to reduce search space for the classifier and coarsely
adjust the locations and sizes of anchors for better input of the regressor. ODM predicts the
bounding boxes and classes from the output of ARM. There is a transfer connection block
(TCB) to transfer the features in the ARM to predict locations, sizes, and class labels of
objects in the ODM. The connections between TCBs are achieved by a top-down pathway
with lateral connections with ARM and ODM. The whole network is trained end-to-end
with the multi-task loss function.

In this subsection, these methods try to combine features from multiple layers to achieve
better feature representation. Intuitively, combining high-level features with high seman-
tic information and low-level with high resolution can bring performance boost. Different
combining mechanisms are proposed and we highlight them in Table 2.

3.3 Contextual reasoning

Context [86] has been proven to play an important role in visual recognition. In the task
of object detection, it’s always to locate some objects with low resolution which is known
as small objects without considering its background information. Contextual or semantic
information can be introduced into the detector through several ways, such as concatenating
features [7, 9, 20, 102, 104], using a semantic segmentation subnet [22, 75, 102], and other
techniques [57, 98].

As mentioned before, SSD is a simple architecture that detects objects in a dense manner
with several different convolution layers of various resolution. While the biggest prob-
lem in SSD is that the low layer with high resolution but has less semantic information.
Deconvolution module is introduced in DSSD [20] to add contextual information for object
detection, especially for small objects. DSSD replaces the original VGG-16 [79] in SSD
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with ResNet-101 [30] and adding five extra deconvolutional modules with one convo-
lution layer representing for different resolutions, named DSSD Layers which is similar
to the original SSD Layers. The change of backbone and the added extra DSSD Layers
will not only boost the accuracy but also increase the inference time. In a similar way,
contextual information is introduced by multi-level feature fusion, extension module and
Deconvolution Fusion Modules in Feature-Fused SSD [7] , ESSD [104] and MDSSD [9]
respectively.

Also focusing on improving SSD, a novel single-stage object detector named Detection
with Enriched Semantics (DES) [102] which consists of two main branches is proposed.
A segmentation branch which uses the idea of weakly supervised semantic segmentation is
introduced to solve the problem that low-level feature map doesn’t have high-level semantic
information. A global activation module is utilized to provide global context information
and pure channel-wise feature map learning in high-level layers. Experiments show that this
method excels in both accuracy and speed. For its flexibility and simplicity, it can be applied
to other two-stage or one-stage object detectors.
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Fig. 8 Architecture of MR-CNN [22] and GBD-Net [98]. MR-CNN with region adaptation components of
(“pool” operation in the figure stands for “adaption max pooling”) can be extended to also learn seman-
tic segmentation-aware CNN features. Gate functions in GBD-Net are defined for controlling the message
passing rate
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Based on multi-region deep CNN, semantic segmentation-aware features are encoded
in MR-CNN [22] (see the above of Fig. 8). Contextual information is introduced through
the contextual region and semantic segmentation module. Experiments show that MR-CNN
surpasses any other previous work by a significant margin. Based on Fast R-CNN, Inside-
Outside Net (ION) [2] is introduced to leverage contextual information and multi-scale
knowledge for object detection. This architecture consists of a 2× stacked 4-directional
IRNN for contextual information and multi-layer ROI pooling with skip connection and nor-
malization for improving localization accuracy. It achieves state-of-the-art results on both
PASCAL VOC [19] and MS COCO [52], and it’s particularly effective at improving the per-
formance of small objects detection. Based on Faster R-CNN [71] and instead of inheriting
a bottom-up, feedforward structure of CNNs, [75] adopts the idea that humans, top-down
information, context, and feedback play an important role in object detection. It augments
Faster R-CNN with a semantic segmentation network from ParseNet and uses it for top-
down contextual priming and top-down iterative feedback using two-stage training. Results
indicate that it improves the performance on object detection, semantic segmentation, and
region proposal generation.

Instead of simply concatenating features, a novel gated bi-directional CNN (GBD-Net)
[98] (shown in the below of Fig. 8) is proposed to pass messages between features from
different regions during both feature learning and feature extraction, which can be exploited
through convolution in two directions and can be conducted in different layers. Therefore,
local and contextual visual patterns can validate the existence of each other by learning their
nonlinear relationships and their close iterations are modeled in a much more complex way.
SIN [57] makes use of two kinds of context including scene contextual information and
object relationships within a single image. It can be incorporated into a typical detection
framework (e.g. Faster R-CNN) with a graphical model, formulating object detection as a
problem of graph structure inference. When given an image, the objects are considered as
nodes in a graph and relationships between the objects are modeled as edges in such a graph.

Except for multi-layer feature combination like methods in the above part, contextual
information can also be introduced by the semantic segmentation branch and other tech-
niques. Highlights of these methods are shown in Table 2 and experimental results are
compared in Section 5.

3.4 Training strategy

With the increase of the depth of the backbone, the arising of more challenging detection
datasets, and the special goal of object detection, the training of a detector is time-
consuming and hard. Several training strategies are introduced in this part to deal with above
problems, such as class imbalance [54, 76, 87], non-maximum suppression [3, 34] and large
mini-batch [65].

Class imbalance The task of object detection is to detect a various number of objects with
different resolutions and we use a reduced CNN (backbone) applied for classification and
convert object detection into a classification problem. This introduces a significant imbal-
ance between the number of annotated objects (foreground) and the number of backgrounds
during the training stage. Two-stage approaches set the ratio between foreground and back-
ground as a fixed number (e.g. 1:3). To solve the imbalance problem between background
and foreground, a training strategy named online hard example mining (OHEM) [76] is pro-
posed based on bootstrap or hard example mining which is utilized when training SVMs.
Hard examples are selected during training by loss instead of using hyperparameters to
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determine the ratio between positives and negatives, thus simplifying training. Experiments
show that this training algorithm can lead to better training convergence and comparable
accuracy improvements in detection on standard benchmarks. What’s more, it is orthogonal
with the region-based object detectors like Fast R-CNN [25], SPPnet [29]. Instead of search-
ing for hard examples based on the original dataset, A-Fast-RCNN [87] adopts a simple but
efficient way that generates hard positives through adversarial networks. It just focuses on
examples with occlusions and deformations and proposes two subnets: Adversarial Spatial
Dropout Network (ASDN) which learns how to occlude a given object and Adversarial Spa-
tial Transformer Network (ASTN) which creates deformations on the object features. The
original detector Fast R-CNN and the two adversarial networks are trained jointly. Simi-
larly, to solve the imbalance problem in the one-stage method which is blamed for the lower
performance compared to the two-stage approach, a dynamically scaled cross entropy loss
function, Focal Loss [54] is introduced to improve the accuracy by reshaping the standard
cross entropy loss such that it down-weights the loss assigned to well-classified examples.
Focal Loss focuses on training on a sparse set of hard examples and prevents the vast num-
ber of easy negatives from overwhelming the detector during training. A single, unified
network, RetinaNet is designed to validate the effectiveness of Focal Loss. This network
is composed of a backbone-ResNet-based Feature Pyramid Network (FPN) and two task-
specific subnetworks-one is class subnet for object classification and the other is box subnet
for bounding box regression.

Non-maximum suppression Non-maximum suppression (NMS) is an independent part
which is attached to the object detection pipeline as the last step in both one-stage and
two-stage approach. Its function is to reduce the number of detections and select the exact
bounding box with the highest score by setting the score of neighboring detections to zero
directly. An algorithm, named Soft-NMS [3], is proposed to deal with this problem. It
decays the detection scores of all other objects as a continuous function of their overlap
with the bounding box with the maximum score. Soft-NMS obtains comparable improve-
ments for the coco-style mAP metric on standard datasets like PASCAL VOC 2007 and
MS-COCO by just replacing the NMS with Soft-NMS without any extra hyper-parameters.
Since Soft-NMS does not require any additional training and is simple to implement, it
can be easily integrated into any object detection pipeline. Instead of modifying the post-
processing algorithm–NMS, a new network architecture named Gnet [34] is designed to
perform NMS, using only boxes and their score. A loss that penalizes double detections and
joint processing of detections are used in the building of this network. Gnet makes the entire
detection pipeline become a real end-to-end trainable network without any post-processing
part. Experiments demonstrate that with enough training data, the proposed Gnet is a suit-
able replacement for traditional NMS both for one-stage and two-stage method. It’s a good
idea to perform NMS with a neural network while it does cost time. A relation module [36],
focusing on finding the relation between the region proposals instead of processing them
individually, is proposed to perform duplicate removal instead of the original greedy NMS
and Gnet. Experimental results show that this module is effective in improving duplicate
removal step with comparable process speed compared to the greedy NMS and much faster
than Gnet.

Largemini-batch There is a trend to use a very large mini-batch size to speed up the train-
ing of CNN-base image classification [27, 96] while the mini-batch size in object detection
remains very small (e.g. 2-16) due to the GPU memory constraint. To deal with the potential
problems brought by small mini-batch size in object detection, such as long training time,
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failure for batch normalization and imbalance between positives and negatives, a large mini-
batch detector, MegDet [65] is proposed. Variance equivalence assumption and new warmup
strategy are introduced to help the convergence and higher performance. More importantly,
Cross-GPU Batch Normalization is advised to make the training converge quickly and it’s
the first time to use BN in object detection training. Experimental results show that these
useful training strategies make the training faster (from 33 hours to 4 hours), and achieve
even better accuracy.

Some training problems like class imbalance, NMS, and large mini-batch are talked in
this part. Strategies tried to solve these are highlighted in Table 2. For tricks to train object
detection networks, you can refer [103].

3.5 Others

Apart from techniques talked above, some object detectors specially designed for real-time
object detection [33, 48, 62, 80, 88, 90, 91], ideas borrowed from other kind of tasks like
recurrent neural networks (RNN) [2, 66], generative adversarial networks (GANs) [60, 87,
92] and weakly supervised learning [84, 101], and new backbone specially designed for
object detection [51].

Real-time object detection Intuitively, the two-stage approach focuses on the accuracy
perspective in object detection while the one-stage approach performs better in speed per-
spective. It’s true that most methods of the one-stage approach can run towards real-time
like SSD [56], YOLO [68–70]. Actually, there are also some other methods designed to
be real-time object detectors [33, 48, 62, 80, 90, 91]. The main technique to design a real-
time object is to use a light-weight backbone like Xception [8], SqueezeNet [40] or borrow
an idea from them to design a similar lightweight network. PVANet [33] proposes a novel
network structure, which is an order of magnitude lighter than other state-of-the-art net-
works while maintaining accuracy. Based on the basic principle of more layers with fewer
channels, this new deep neural network minimizes its redundancy by adopting recent inno-
vations including C.ReLU and Inception structure. This network can be trained efficiently
to achieve reliable results while the required compute is less than 10% of the recent ResNet-
101. Focusing on the application on autonomous driving with model size, inference speed,
and comparable efficiency constraint, SqueezeDet [91] adopts several convolutional lay-
ers to extract features and compute bounding boxes and class probabilities simultaneously.
This model is fully convolutional, which leads to a small model size and better energy
efficiency. Light-Head R-CNN [48] uses a thin feature map and a light R-CNN subnet
which consists of pooling and single fully-connected layer to make the head of the network
as light as possible. With a tiny network (e.g., an Xception like network), Light-Head R-
CNN gets 30.7 mmAP at 102 FPS on COCO [52]. Tiny SSD [90], a single-shot detector
for real-time embedded object detection, is composed of a highly optimized, non-uniform
Fire sub-network stack borrowing from SqueezeNet and a non-uniform sub-network stack
of highly optimized SSD-based auxiliary convolutional feature layers explicitly designed
to minimize model size while maintaining object detection performance. The results show
that Tiny SSD achieves a model size of 2.3MB (about 26× smaller than Tiny YOLO [69])
while still maintaining an mAP of 4.2% higher than Tiny YOLO on VOC 2007 [18]. To
design a fast and efficient object detection system, F-YOLO [62] investigates three aspects:
(1) Network architecture, (2) Loss function and (3) Training data. Inspired by DenseNet
[38], Yolo-v2 [69] and Single Shot Detector (SSD), dense map with stacking and deep but
narrow network architecture is altered in F-YOLO, which contains only 15M parameters
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compared to 138M in VGG-16 model [79]. Feature Map-NMS (FM-NMS) is introduced to
finish the network distillation, which is the first one to apply distillation on a single pass
detector (Yolo). What’s more, distillation loss employed for both labeled and unlabeled data
is designed to fit the network distillation. As a modification of R-FCN [10], R-FCN-3000
[80] focuses on large scale object detection. The main idea of R-FCN-3000 architecture is
to decouple localization and classification by predicting objectness and classification scores
independently. Same as R-FCN, RPN is used for generating proposals which are fed into
a super-class detection branch (like R-FCN) which jointly predicts scores for each super-
class. Extra fully convolutional layers are applied to generate per class scores and then these
scores are averaged inside the RoI to get the classification probability which is multiplied
with the super-class detection probability for detecting 3000 classes.

RNN Recurrent Neural Networks (RNN) [89] is a kind of neural network where connec-
tions between neurons form a directed graph along a sequence which has been applied to
process sequences of inputs. Recurrent Rolling Convolution (RRC) architecture over multi-
scale feature maps is introduced in [66] to construct object classifiers and bounding box
regressors which are “deep in context”. Its goal is to achieve accurate detection with a high
IoU threshold. Results on KITTI [21] dataset show the effectiveness of the RRC with a
reduced VGG-16 [79]. A 2x stacked 4-directional IRNN module is proposed in ION [2] to
introduce context information to improve localization accuracy.

GANs Generative Adversarial Networks (GANs) [26] consists of two networks: one gen-
erates candidates (generative) and the other evaluates them (discriminative) (thus the
“adversarial”). Inspired by this, A-Fast-RCNN [87] uses an adversarial network to generate
hard examples for training instead of selecting them based on the original dataset. Similarly,
[92] and [60] also adopt adversarial networks to generate examples to boost the accuracy of
object detection.

Weakly supervised Object detectors find and classify objects through datasets with anno-
tated ground-truth bounding boxes and class labels which are marked by hand. This kind
of annotation costs money and time, so there are not so many object detection datasets as
ImageNet [14] which has millions of labeled images. Weakly supervised training can help
boost performance with unannotated images through “turn” classifier to a detector. [101]
proposes weakly-supervised to a fully-supervised framework for object detection (W2F).
Given an image collection with only image-level labels, Multiple Instance Learning (MIL)
is employed to train a weakly-supervised detector, and then a pseudo-ground-truth exca-
vation algorithm is exploited to seek pseudo-ground-truth boxes, which are in turn refined
using pseudo-ground-truth adaptation algorithm and applied to train a supervised detector.
[84] incorporates external knowledge about object similarities from visual and semantic
domains in modeling the category-specific differences and then transferring this knowledge
for adapting an image classifier to an object detector for a “weak” category.

New backbone The backbones for object detection are borrowed from the classification
task. However, there is a gap between the classification and the object detection problem,
which not only needs to recognize the category of the object classes but also spatially
localize the bounding boxes of different sizes. First focusing on the gap between image
classification and object localization, DetNet [51] is a novel backbone network specifically
for the object detection task. Taking ResNet-50 as the baseline, extra stages are introduced
to maintain the spatial resolution of the features for object detection and a low complexity
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dilated bottleneck structure is employed to keep the efficiency of the network. State-of-the-
art results have been obtained for both object detection and instance segmentation on the
MS COCO [52] benchmark based on DetNet (4.8G FLOPs) backbone.

4 Evaluation

4.1 Benchmark

PASCAL VOC 2007 [18] and 2012 [19] are the two main standard benchmarks that have
been widely applied in object detection. There are 20 categories of objects in PASCAL VOC
dataset. PASCAL VOC 2007 consists of 9,963 images totally in which 5,001 images for
training and validation and 4,952 images for testing. All of these images are annotated with
the class label and ground-truth bounding boxes. The PASCAL VOC 2012 is an extended
version of VOC 2007 which contains a total of 22,531 images. The trainval set contains
11,540 images and the test set has 10,991 with no public ground-truth bounding boxes
available. All of the methods should submit their test results to the evaluation server of
PASCAL VOC.

MS COCO [52] is a new and more complex object detection benchmark starting from
2014. Its goal is to improve the state-of-the-art in object recognition by placing the ques-
tion of object recognition in the context of the broader question of scene understanding.
There are more than 200,000 images and 80 object categories in MS COCO. Specificly, the
training set contains 80,000 images, the validation set consists of 40,000 images, and the
test set contains 80,000 images. The object detection challenge held by MS COCO every
year has generated many fantastic works. Similar to PASCAL VOC 2012, the challengers
should submit their results to the evaluation server for the test evaluation. More specif-
ically, the original train/val set which contains 83K/41K images is split into 118K
trainval35k for training and 5K minival for testing.

Apart from the two standard benchmarks for general object detection, ImageNet [14]
classification dataset is employed for the pre-training of the backbone and object detection
dataset is also applied for training of the detectors like R-CNN [24], OverFeat [73] and
SPPnet [29]. There are also some datasets for special object detection like KITTI [21] for
autonomous driving, Caltech [15, 16] for pedestrian detection, and CelebA [55] for face
detection.

4.2 Metrics

The metrics for evaluating object proposals are functions of intersection over union (IOU)
or Jaccard index that measures the difference between the predicted bounding box and the
corresponding ground-truth. the area of overlap IOU between the predicted bounding box
Bp and ground-truth Bgt is formulated as:

IOU(Bp,Bgt ) = area(Bp ∩ Bgt )

area(Bp ∪ Bgt )
(1)

Based on IOU, recall can be computed as the ratio between ground-truth and predicted
bounding boxes above a certain IOU overlap threshold. Therefore, three metrics are
proposed to evaluate objectness detection methods as follows:

– recall-proposal curve: which illustrates recall for different number of proposals.
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– recall-overlap curve: which demonstrates the variation of recall under different IOU
overlap threshold.

– average recall (AR): which computes the area under “recall-overlap” curve in a range
of overlap values (e.g., 0.5-1).

Average precision (AP) and mAP overall object classes are two standard metrics for
evaluating object detection methods. Each bounding box will be assigned a score (likelihood
of the box containing an object). Based on the predictions a precision-recall curve (PR
curve) is computed for each class by varying the score threshold. The average precision
(AP) is the area under the PR curve. While precision stands for the fraction of detections
that are true positives, recall measures the fraction of positives that are correctly detected.
First, the AP is computed for each class and then averaged over the different classes. The
end result is the mAP.

The detection output is assigned to true positive if the IOU between the predicted bound-
ing box and ground-truth exceeds a predefined threshold (e.g., 0.5). Otherwise, the detection
is considered as a false positive. In addition, if multiple detection outputs overlap with the
same ground-truth object, only one will be set as true positive and the others are considered
as false positives (this process is called non-maximum suppression).

In PASCAL VOC [19] datasets, the area overlap threshold is set to be 0.5 (written as
mAP@0.5). A new evaluation metric is proposed for MS COCO [52]. The mAP is aver-
aged over ten different IOU thresholds, from 0.5 to 0.95 with a step of 0.05 (written as
mAP@0.5:0.95). Actually, both mAP@0.5 and mAP@0.5:0.95 are utilized to evaluate
methods evaluated on MS COCO while mAP stands for mAP@0.5:0.95 which is the pri-
mary metric. Additionally, mAPS is used for evaluation for small objects whose resolution
is under 32 × 32.

Despite the wide acceptance of average precision (AP), a recent work [63] points out
its numerous shortcomings: (i) the inability to distinguish very different RP curves, and
(ii) the lack of directly measuring bounding box localization accuracy. Localization Recall
Precision (LRP) Error is proposed to deal with these shortcomings. LRP Error consists
of three components related to localization, false negative (FN) rate, and false positive
(FP) rate. Representing the minimum achievable LRP error, Optimal LRP determines the
“best” confidence score threshold for a class, which balances the trade-off between localiza-
tion and recall-precision. Experiments show that it provides richer and more discriminative
information than AP though it hasn’t been widely employed.

5 Experimental comparison

[39] presents a comprehensive comparison over SSD [56], Faster R-CNN [71], R-FCN [10]
and [28] compares some representative models like YOLO [68, 69], ION [2] and Fast R-
CNN [25]. In this part, we give a comprehensive but straightforward comparison of different
methods talked in this paper from both accuracy and speed aspect.

First, we give an overall review of the results of classic methods in Table 1, improvements
in Table 2 and real-time object detection in Table 3. With the same idea of the improvements
discussed in Section 3, the experimental results are listed in the same order and topology.
Most improvements of the two-stage approach are based on classic methods like R-CNN
[24], Fast R-CNN [25] and Faster R-CNN [71] and most of improved one-stage methods are
supported by SSD [56]. Besides, some techniques like HyperNet [43] and RefineDet [99]
inherit advantages from both one-stage and two-stage approach. It’s no doubt that two-stage
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methods [6, 65] still hold the state-of-the-art position of object detection on both PASCAL
VOC [18, 19] and MS COCO [52] dataset while some one-stage methods [54, 70, 99, 105]
catch up with a lot of two-stage approaches with almost real-time inference speed. Next, we
discuss these improvements from four main perspectives mentioned above.

Architecture diagram In virtue of the powerful feature representation ability of ResNet-
101 [30] or DenseNet [38], R-FCN [10], Mask R-CNN [31], CoupleNet [106], Light-Head
R-CNN [48] and STDN achieve great success both in accuracy and speed view. As analyzed
in [30], ResNet-101 can bring a boost of 6% compared to VGG-16 on object detection
for Faster RCNN. Most importantly, the employment of position-sensitive RoI pooling or
RoI Align in R-FCN and Mask R-CNN can also bring significant improvement. Cascade
structure achieve almost 2× boost compared to original Faster RCNN (42.8% vs. 21.9%).

Multi-layer exploiting In Table 2, many methods try to exploit multi-layer features based
on SSD or Faster RCNN. Obviously, multi-layer features will not only bring improvements
on accuracy but also result in lost is inference speed. As modifications of SSD [56], R-
SSD [41], Feature-Fused SSD [7], FSSD [49], ESSD [104], and MDSSD [9] are often
compared with SSD and its another descendant DSSD [20]. These four methods gain almost
the same improvement compared to conventional SSD and DSSD. Actually, these simple
feature fusion methods can only achieve a slight accuracy boost. The best way to combine
multi-layer features may be adopting top-down path [77] or using top-down path and feature
pyramid network simultaneously [53]. Especially, FPN achieves significant improvement
compared to many other methods and can be easily embedded into one-stage or two-stage
approaches.

Contextual reasoning MR-CNN [22] and [75] introduce information to the detection
pipeline by using a semantic segmentation subnet or information, demonstrating the effec-
tiveness compared their baseline Faster RCNN (+8.2% for VOC2007 and +5.6% for COCO
separately). Similarly, DES improves SSD with a segmentation branch, achieving +5.1%
mAP on COCO. DSSD [20] applies Deconvolution modules to introduce context in the
pipeline of SSD after the detection layers, getting large progress on COCO (4.8 points).
Undoubtedly, DSSD drops severely on the speed running at 9.5 FPS for its ResNet-101
[30] backbone and extra deconvolutional modules. GBD-Net [98] and SIN [57] investigate
the structure of CNN and add information to network from different ways though they do
not perform very well on PASCAL VOC while they surpass Faster R-CNN on COCO (2.5
points and 1.3 points). From the results above, the segmentation branch helps a lot for object
detection for semantic information are offered and introducing semantic information from
higher layer by deconvolution operation brings both boost accuracy and lost speed.

Training strategy OHEM [76], A-Fast-RCNN [87], and Focal Loss [54] put their attention
on the class imbalance problem of object detection. Both of these methods achieve progres-
sive improvement. Soft-NMS [3] and Relation module [36] solve the problem of duplicate
removal named non-maximum suppression (NMS) which is a post-processing algorithm of
object detection pipeline. MegDet [65] adopts a large mini-batch and won first place in the
2017 MS COCO object detection challenge.

New backbone DetNet is designed especially for object detection as a backbone. With a
DetNet-59, Mask R-CNN obtains a gain of 1.4 points (37.1% vs. 35.7) and FPN gets 4.1
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points (40.3% vs. 36.2). The results demonstrate the effectiveness of the specially designed
backbone for object detection, considering the maintaining resolution and enlarging the
receptive field in the high layer of ResNet-50 [30].

Real-time object detection. Though a lot of object detectors mentioned above achieve
a real-time speed like YOLO [68–70], SSD [56] and its descendants [7, 9, 41, 49, 104],
STDN [105], RefineDet [99] and RetinaNet [54]. There are still many others models trying
to achieve real-time detection by designing a lightweight backbone. These models get fast
speed and comparable performance on accuracy.

6 Conclusion

In this paper, we have reviewed the most recent improvements on object detection. Speci-
ficly, backbone and famous detection networks are discussed first. Then we investigated
these progresses mainly from four directions: architecture diagram, multi-layer exploiting,
contextual reasoning and training strategy. Real-time object detection and ideas borrowed
from other tasks like RNN and GAN are discussed included as others. Benchmarks and
metrics are talked after the analysis. Finally, we simply but comprehensively analyzed the
experimental results of these improvements.

Despite the success achieved in the past several years, there remain problems to be dealt
with, which we see focused on the following aspects:

(1) Powerful and Efficient Features for Object Detection: One of the factors for the
significant success in object detection is the powerful feature extraction capability deep
CNNs, named backbone. These CNNs are pretrained on large scale image classification
datasets ImageNet [14], recent literature [32] indicates that pretraining can speed up the
training for object detection but it is unnecessary. Most importantly, the gap between the
classification task and object detection should be further investigated for not only high-
level semantic information but also more detail information that is needed for localizing
objects. DetNet [51] offers a new idea by maintaining spatial resolution and enlarging
the receptive field.

(2) Better and Less Anchors: Object detectors are strongly based on anchors, where
RPN is utilized to generate proposals in region-based detectors and pre-defined anchors
or default boxes in one-stage methods. Region proposal process can provide high-quality
anchors for classification while it is very time-consuming, one the other hand, most of
the predefined anchors or default boxes are negative. RefineDet [99] tries to select less
default boxes by refinement neural network.

(3) Weakly Supervised or Unsupervised Learning: Current state-of-the-art object
detectors adopt fully-supervised models learned from labeled data with object bounding
boxes or segmentation masks [24, 31, 56, 102], however large scale data with bounding
boxes or segmentation masks are very limited. Therefore, how to detect objects with
less labeled data using weakly supervised or Unsupervised learning should be further
studied [84, 101].

(4) Zero-shot Object Detection: Zero-shot learning method aims to slove a task without
receiving any example of that task at training phase. In conventional object detection
process, it is necessary to determine a certain number of object classes in order to be able
to do object detection wiht high success rate. It is also necessary to ccollect as many as
sample images as possible for selected object classes. Zero-short object detection [1, 13]
aims to detect unknown objects which are not observed during training.
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Till now, more and more methods are emerging to make object detection more accurate
or faster or both on accuracy and speed. We hope this review on recent progress of object
detection can make some help to researchers related to this area.
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93. Xie S, Girshick R, Dollȧr P, Tu Z, He K (2017) Aggregated residual transformations for deep neural
networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, pp 5987–5995. https://doi.org/10.1109/CVPR.2017.634

94. Yang B, Yan J, Lei Z, Li SZ (2016) Craft objects from images. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp 6043–6051

95. Yang F, Choi W, Lin Y (2016) Exploit all the layers: Fast and accurate cnn object detector with
scale dependent pooling and cascaded rejection classifiers. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 2129–2137

96. You Y, Zhang Z, Hsieh C, Demmel J, Keutzer K Imagenet training in minutes
97. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European

conference on computer vision. Springer, pp 818–833
98. Zeng X, Ouyang W, Yang B, Yan J, Wang X (2016) Gated bi-directional cnn for object detection. In:

European conference on computer vision. Springer, pp 354–369
99. Zhang S, Wen L, Bian X, Lei Z, Li SZ (2017) Single-shot refinement neural network for object

detection. arXiv preprint
100. Zhang X, Zhou X, Lin M, Sun J (2017) ShuffleNet: An Extremely Efficient Convolutional Neural

Network for Mobile Devices. arXiv:1707.01083. https://doi.org/10.1109/CVPR.2018.00716
101. Zhang Y, Bai Y, Ding M, Li Y, Ghanem B (2018) W2f: a weakly-supervised to fully-supervised frame-

work for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp 928–936

102. Zhang Z, Qiao S, Xie C, Shen W, Wang B, Yuille AL (2018) Single-shot object detection with enriched
semantics. Technical report, Center for Brains, Minds and Machines (CBMM)

103. Zhang Z, He T, Zhang H, Zhang Z, Xie J, Li M (2019) Bag of freebies for training object detection
neural networks. arXiv:1902.04103

http://arXiv.org/abs/1409.1556
http://arXiv.org/abs/1505.00387
https://doi.org/10.1007/s11263-013-0620-5
http://arXiv.org/abs/1804.06882
http://arXiv.org/abs/1802.06488
https://doi.org/10.1109/CVPR.2017.634
http://arXiv.org/abs/1707.01083
https://doi.org/10.1109/CVPR.2018.00716
http://arXiv.org/abs/1902.04103


Multimedia Tools and Applications (2019) 78:27809–27847 27847

104. Zheng L, Fu C, Zhao Y (2018) Extend the shallow part of single shot multibox detector via
convolutional neural network. arXiv:1801.05918

105. Zhou P, Ni B, Geng C, Hu J, Xu Y (2018) Scale-transferrable object detection. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp 528–537

106. Zhu Y, Zhao C, Wang J, Zhao X, Wu Y, Lu H et al (2017) Couplenet: Coupling global structure with
local parts for object detection. In: Proceedings of international conference on computer vision (ICCV),
vol 2
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