
Multimedia Tools and Applications (2019) 78:28189–28208
https://doi.org/10.1007/s11042-019-07888-4

YADA: you always dream again for better object
detection

Khanh-Duy Nguyen1 ·Khang Nguyen1 ·Duy-Dinh Le1 ·Duc Anh Duong1 ·
Tam V. Nguyen2

Received: 12 September 2018 / Revised: 26 April 2019 / Accepted: 10 June 2019 /
Published online: 8 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Object detection has been attracting a lot of attention from the computer vision community.
It has a wide range of practical applications ranging from the traditional use such as image
annotation to modern uses such as self-driving vehicles, robotics, surveillance systems, and
augmented reality. Recently, deep learning has significantly improved the state-of-the-art
performance of the object detection task. Many works explore various deep network struc-
tures to improve the performance. However, the impact of training data is still not well
investigated. Although some works focus on data augmentation and data synthesis, there is
no guarantee that they are effective for the training process. In this paper, we propose a novel
framework addressing the problem of generating relevant data and how to use them effec-
tively. We apply lucid data synthesizing which generates data by mining hard examples and
embedding them to the same context locations. Further, we utilize a dual-level deep network
leveraged with these generated data to effectively detect hard objects in images. Extensive
experiments on two benchmarks, PASCAL VOC and KITTI, demonstrate the superiority of
our approach over the state-of-the-art methods.

Keywords Object detection · Deep learning · Data synthesis

� Khanh-Duy Nguyen
khanhnd@uit.edu.vn

Khang Nguyen
khangnttm@uit.edu.vn

Duy-Dinh Le
duyld@uit.edu.vn

Duc Anh Duong
ducda@uit.edu.vn

Tam V. Nguyen
tamnguyen@udayton.edu

1 University of Information Technology, VNU-HCM, Viet Nam
2 University of Dayton, Dayton, OH, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-019-07888-4&domain=pdf
http://orcid.org/0000-0003-4237-2737
mailto: khanhnd@uit.edu.vn
mailto: khangnttm@uit.edu.vn
mailto: duyld@uit.edu.vn
mailto: ducda@uit.edu.vn
mailto: tamnguyen@udayton.edu


28190 Multimedia Tools and Applications (2019) 78:28189–28208

1 Introduction

Object detection is one of the most important tasks in computer vision through this decade. It
aims to predict the existence of objects and localize the objects in a given image. This is very
useful in a wide range of applications, e.g. self-driving vehicles, robotics, and augmented
reality. In the earliest stage of object detection, pioneering works utilize hand-crafted fea-
tures for object representation. Viola et al. utilize the lightweight Haar features and cascade
classifier to efficiently detect human faces [48]. Later, Dalal et al. introduced Histogram of
Gradients (HOG) [5] as effective features for pedestrian detector. HOG is then widely used
to detect other objects. Felzenszwalb et al. proposed discriminatively trained part based
models (DPM) [9] to detect the objects with deformable parts, i.e., humans with different
poses. Van de Sande et al. proposed Selective Search [46] method which uses segmentation
to generate a limited set of locations, permitting the more powerful yet expensive bag-of-
words features. Wang et al. proposed a hierarchy representation of low-level features in
local regions, named Regionlets [49], which is more robust to generic deformable objects.
Recently, the advancement in deep learning and Convolution Neural Network models
(CNN), i.e., Region CNN [13], Fast RCNN [12], Faster-RCNN [33], R-FCN [4], SSD [27],
and YOLO [32], significantly boosts the performance of the object detection task. Modern
object detection approaches shift from designing features and object representation models
to applying different architectures of neural networks. There exist many works explor-
ing different deep network structures to improve the performance, such as AlexNet [24],
VGGNet [37], GoogLeNet/Inception [39–41], ResNet [17, 26], DenseNet [19]. Convolu-
tional neural networks have become deeper and deeper, with state-of-the-art networks going
from 7 layers (AlexNet) to 1000 layers (ResNet). Obviously, deep networks require much
more computing resources, i.e. GPU memory, and run slower than shallow ones in general.
Our main objective in this paper is not only limited in the deep structure context. Instead,
we aim to investigate the impact of training data in the deep networks. In literature, several
works have focused on enriching data, i.e. data augmentation [27, 32, 33] or generating syn-
thetic datasets [10, 16, 35, 47]. However, these works consider the amount of generated data
rather than the importance of these data, that is which objects should be generated more and
how to use them effectively.

In psychology research, the term “lucid dreaming” is used to describe the technique of
controlling dreams and following them to a desired conclusion [22]. Additionally, lucid data
are the images that the dreamer is aware that they are dreaming. In this work, we consider
lucid data as the synthesized data for the specific problem, object detection. Our “lucid
dreaming” is the process of synthesizing desired training data to train an object detector. It
generates new training data by discovering the previously failure cases of the object detector.
Then, these failure cases are synthesized onto many related scenes to strengthen the detector.
In particular, we explore intentional synthesized data used for training a deep learning model
and propose a following effective detection strategy. Our proposed framework is named
YADA (the short form of You Always Dream Again), which represents the idea of using
lucid data dreaming, then re-train a deep model for a better detection performance. We
introduce our novelty in two stages, namely, data preparation during pre-training, and data
residual on the post-training. Regarding the data preparation, we propose using lucid data
dreaming in order to produce more problem-related training data. For the data residual, we
first train a detection model, here we adopt Faster-RCNN [33] for our work. Then we train
another Faster-RCNN model to tackle the challenging objects.



Multimedia Tools and Applications (2019) 78:28189–28208 28191

The remainder of our paper is organized as follows. Section 2 summarizes the related
works. Section 3 introduces the proposed framework. Section 4 presents the experimental
results. Finally, the conclusion and future works are given in Section 5.

2 Related works

Recently, the advancement in deep learning significantly improves the performance in many
computer vision problems. For instance, CNN [25] improves the performance of image
recognition, image parsing, and saliency analysis [42–44]. The success of CNN model for
these tasks has inspired other works for integrating CNN model into the object detection
problem, i.e., Region CNN [13], Fast RCNN [12], Faster-RCNN [33], R-FCN [4], SSD [27],
and YOLO [32]. Several works have succeeded in further boosting the performance of CNN
object detectors by applying advanced detection techniques. Cheng et al. [1, 2] proposed
an effective method to train rotation-invariant and Fisher discriminative CNN (RIFD-CNN)
models. This method can improve the performance of R-CNN [13], Fast R-CNN [12], Faster
R-CNN [33], and R-FCN [4]. Chu et al. [3] proposed multi-scale adjacent level feature
maps and cascaded region proposal network for improving both recall and accuracy of Fast
R-CNN and Faster R-CNN detectors. Zhang et al. [51] presented a novel weakly super-
vised learning framework which utilizes instance-level and image-level prior-knowledge for
object detection. Next, SPFTN [50] is proposed for addressing the weakly supervised video
object localization and segmentation tasks. Several approaches focus on designing features
and classifiers to applying different architectures of neural networks. Accordingly, lots of
networks, such as AlexNet [24], VGGNet [37], GoogLeNet/Inception [39–41], ResNet [17,
26], DenseNet [19], have been explored. A comprehensive review for advanced deep net-
work object detectors is presented by Han et al. [15]. Convolutional neural networks have
become deeper and deeper, with state-of-the-art networks going from 7 layers (AlexNet)
to 1000 layers (ResNet). Generally, deep networks give better accuracy than shallow ones
thanks to their advantage on the approximation of compositional functions [34, 52]. The lim-
itation of deep networks is requiring much more time for training and testing. Several works
success in designing of a light-weight network that can achieve the competitive accuracy,
for instance, SqueezeNet [20], Darknet-19 [30] and Darknet-53 [31].

The aspect of data on training deep network structure is also explored. In a recent paper,
Ross Girshick et al. [28] scaled up to 3.5 billion images and 17,000 distinct “labels” for the train-
ing process and get the successful result. Data is costly and therefore people have to find
the way to augment the available labelled data. Basic data augmentation techniques such as
cropping, flipping, and colour jittering are commonly used in many works (Faster-RCNN
[33], YOLO [32], SSD [27]). This helps generate more samples for object class by apply-
ing transformations and then helps the trained detectors can recognize objects through minor
changes in appearance. Other efforts come from the idea of augmenting data by GANs model.

From another viewpoint, it is not only the amount of supplied data that is most impor-
tant. The quality (or reasonability) of data is also the matter. To deal with this, several
works focus on generating realistic synthetic data (which try to make synthetic objects hav-
ing the same appearances, locations, without major artefacts). Rendering images from 3D
models is a commonly used method for generating synthetic datasets, e.g. SYNTHIA [35],
SceneNet [16], Virtual KITTI [10], SURREAL [47]. This approach is also used for render-
ing realistic data for training object detector. Gupta et al. [14] use 3D CAD objects models



28192 Multimedia Tools and Applications (2019) 78:28189–28208

and render them into scenes. They observe an 1% improvement mean AP point on NYUD2
dataset comparing with without using synthetic data. As a closer look, Peng et al. [29]
investigate the ability of CNN object detector to learn from synthetic CAD-rendered images
with/without simulating low-level cues, such as realistic object texture, pose, or background.
Likewise, Tremblay et al. [45] rendering 3D car models with varying aspects of the scene
(e.g. car type, texture, location, camera angle, and lighting). Their experiments on KITTI
dataset show the performance of Faster R-CNN detector with additional training on the
synthetic data superiority the one using COCO initialized weights. Johnson-Roberson et al.
[21] leverage the rich virtual worlds created for major video games to create synthetic data.
They captured images from the video game with different simulated times of day, complex
weather, and lighting scenarios.

The rendering-based data are expensive to generate, requiring artists to carefully model
specific environments in detail, and typically limited to a few categories like cars. Without
the advent of rich 3D repositories, Dwibedi et al. [6] proposed a cut and paste method to gen-
erate synthetic images. Then, they trained a Faster R-CNN detector using the VGG network.
Their method, when combined with real images, improves relative performance by more
than 21% on GMU Kitchen dataset. The success of this approach should encourage more
inventing on popular object detection datasets such as PASCAL VOC and KITTI. However,
there is no successful result reported until now. Our hypothesis is this due to the uninten-
tional mode of generating synthesized data. Many easy objects could be learned effectively
by deep networks, and therefore generating more instance of these objects cannot improve
the performance of the system. The synthesizing process should focus on the hard and usu-
ally rarely appearing objects. Then we proposed a method to create intentional synthesized
data by adopting hard example mining, as inspired by our previous work [23]. Instead of
generating more object instances, we try to explore the hard and rarely appearing cases in
the dataset and then generate synthesized data for these cases. Furthermore, we build a sep-
arate synthesized set for these cases and then train an additional specific detector. Detection
results from this detector can effectively complement for the detector trained by real data.

3 Proposed framework

In this section, we will introduce the proposed YADA framework in details. Figure 1 shows
the overview of our framework pipeline.

Fig. 1 Our YADA framework pipeline



Multimedia Tools and Applications (2019) 78:28189–28208 28193

3.1 Lucid data synthesizer

3.1.1 Similar scene retrieval

In this context, we define the “easy” and “hard” objects as the objects detected and misde-
tected by a trained object detector, respectively. “Hard” objects are discovered depending
on the baseline detector. In other words, we train the baseline detector, then use the trained
model to detect objects in training image set. Objects misdetected by the baseline detec-
tor (or have confidence score lower than the detection threshold) are considered as “hard
objects”. The first step to synthesize hard object instances data is to create a pool of similar
images. This step aims to help the synthesized data have the real contexts as the original one.
Given the training set images T , for each image Iq in T we use the features extracted from
the layer f c7 of the VGG imagenet pre-trained model to retrieve the top k similar images
in the training set to form its similarities pool. Let P denote the pool of similar images (a
ranked list of images). Let Vq and V P

i denote the feature vectors of the query image Iq and
of the image Ii from the pool, respectively. Then we define the similarity level between Iq

and the i-th image of P as the Euclidean distance between their corresponding features vec-
tors: si = ‖Vq − V

p
i ‖. The smaller the Euclidean distance is, the higher level the similarity

of the two images is. Each image Ii is ranked in the ascending order by the similarity.
Note that if the value of k is small, we only paste hard objects to a few images that

are very similar to the original image. The method prefers to generate realistic synthesized
image rather than increase the number of samples by a significant amount. On the other
hand, if we set k by a large value, the similarity of original and destination images will be
decreased but we can generate more hard samples for the synthesized set. The value of this
parameter is empirically set at 100 in our experiments.

3.1.2 “Hard” object lucid data synthesizer

For lucid data synthesizer, we replace “easy” objects by the “hard” ones to ensure the sim-
ilar context for the new synthesized image. Specifically, for an image I in the training set,
firstly we find all available positions, that are the bounding boxes of detected objects. Next,
we create a pool of hard objects by collecting them from top k similar images of I . In par-
ticular, we run a Faster RCNN detector on these images to find misdetected objects. The
similarity between two images is defined as the Euclidean distance between their corre-
sponding features vectors, as presented in Section 3.1.1. Then, each available position in the
image I is matched with an object in the pool of “hard” objects. We exploit the width, the
height , and the aspect ratio (height/width) measurements of the available boxes and the
object bounding boxes for matching. The details are shown in Algorithm 1. The illustration
of this process is shown in Fig. 2

Following the synthesizing, we further highlight image regions on the synthesized image
set. In particular, we apply histogram equalization for images to make the hard object
instances more outstanding. The details of this operation are shown as below equations,{

Ceq(x,y)
= (L − 1) ∗ τ(C(x,y))

Ceq = {Ceq(x,y)
: 0 � x < W, 0 � y < H }, (1)

where τ(C(x,y)) = ∑W
i=0

∑H
j=0(C(i,j) � C(x,y))/(W × H), C is a color channel (R/G/B),

Ceq represents the color channel after histogram equalization, C(x,y) represents the value of



28194 Multimedia Tools and Applications (2019) 78:28189–28208

Fig. 2 Lucid Data Synthesizer: the process of generating synthesized images in our framework

pixel (x, y) in the image channel, Ceq(x,y)
represents the value of pixel (x, y) in the image

channel after histogram equalization, L is fixed at 256, W and H are the width and the
height of the image, respectively.

Directly pasting objects onto background images obviously creates boundary artifacts.
Although these artifacts seem subtle, when such images are used to train detection algo-
rithms, they give poor performance as proved in the work [6]. As current detection
methods [33] strongly depend on local region-based features, boundary artifacts substan-
tially degrade their performance. The blending step will smoothen out the boundary artifacts
between the pasted object and the background, therefore, they improve performance of the
trained detectors. We use the traditional Gaussian blending for smoothing edges. Further-
more, Mask RCNN [18] is also used for segmenting of objects from the background before
pasting them on the similar images. Excluding background pixels in object bounding boxes
will make synthesized objects better blended with the new scenes.



Multimedia Tools and Applications (2019) 78:28189–28208 28195

3.2 Bounding box fusion

For the testing procedure, an input image is fed into the first CNN model to detect “easy”
objects. Then, the second CNN model trained for the hard objects is used to detect the
undiscovered objects. In fact, the detected objects of the first CNN model could be erased
from the images by using the masking to prevent the duplicate detections. However, this
manipulation could drop down the recall rate because it also removes a number of objects
that are occluded by the detections. Therefore, we propose a fusion method to combine the
two bounding boxes set B1 (first CNN model) and B2 (second CNN model) as follows.
Figure 3 shows the pipeline of proposed fusion scheme.

3.2.1 Duplicate truncation

Firstly, all the duplicated bounding boxes are truncated. These duplicates are identified as
follows.

D = {(bi, bj ) : area(bj ∩ bi)

area(bj ∪ bi)
> ζ }, (2)

where bi is a bounding box in B1, bj is a bounding box in B2, and ζ is the NMS threshold
and fixed at 0.7. Meanwhile, ∩ denotes the intersection operation of two bounding boxes,
and ∪ denotes the union operation of two bounding boxes.

Fig. 3 Proposed detection fusion scheme illustrated by real data (detections of ’plane’ class - VOC 2007
testing set). The CNN model trained by synthesized data (focusing on hard objects) has a balanced detection
confidence histogram whereas most of detections of the CNN model trained by standard data have confidence
scores in range [0.9-1.0]. Our fusion method improves the detections recall by normalizing the detection of
the synthesized data based model (including duplicates truncating and scores rescaling), then concatenating
both of detections set



28196 Multimedia Tools and Applications (2019) 78:28189–28208

We remove the duplicated bounding boxes from the B2 instead of B1 because the
detections from the second model generally have lower confidence scores.

3.2.2 Score re-scaling

We then rescale confidence scores of detections from the second model. This aims to two
purposes: firstly, we want to handle the uncertainty of these detections. These detections
focus on hard objects therefore their confidence should not be higher than the confidence of
easy objects. Second, we need to scale these scores to an reasonable range so that they can
effectively complement the detections from the first model.

To do that, for each object class C we estimate the mean value μC of detection scores
from the first model. Then we rescale confidence scores of detections from the second
model by the following equation:

SNormalized = SOriginal × 1

μ′
C

× (1 − μC − γ × σC), (3)

where μ′
C is the mean value of detection scores from the second model, σC is the standard

deviation of detection scores from the first model, and γ is the coefficient for flexible han-
dling the fusion of two Gaussian distributions. The idea behind this Eq. 3 is that we want to
re-scale the confidence scores of the hard object detector by translating their mean values.
The new mean value is determined based on the mean value of confidence scores from the
baseline detector. γ is a coefficient score to establish the distance between two mean values.
For experimental settings, we set γ = 0.2.

4 Experimental results

4.1 Benchmark datasets

We evaluate our proposed method on two challenging real-world datasets: PASCAL VOC
and KITTI. The PASCAL Visual Object Classes Challenge [7] is a popular dataset in object
detection and recognition. The KITTI dataset [11] is used as a benchmark for autonomous
driving systems.

We conduct experiments on the PASCAL VOC 2007 dataset with 9,936 images and
24,640 annotated objects of 20 classes including people, vehicles, animals, and indoor
objects. Half of them is used for training and validation process, and the other half is used
for testing. The number of objects in each class is approximately equivalent in both sets. We
also make the statistic comparison of hard objects/total objects ratio between the original
trainval set and our synthesized trainval set in Fig. 4. Visualization of synthesized images is
shown in Fig. 5.

The KITTI dataset has 7,481 images in the training set and 7,518 images in the test set
with a total of 80,256 labelled objects of 8 classes: pedestrian, car, van, truck, tram, and
misc. Yet, ground-truth labels are available only on the training set.

For measuring the performance, we use the average precision (AP) metric for both of the
two datasets. This is the average of the precision obtained at all values of recall correspond-
ing with the ranked output bounding boxes. We take the method of computing AP using all



Multimedia Tools and Applications (2019) 78:28189–28208 28197

Fig. 4 Statistic comparison of hard objects/total objects ratio between VOC 2007 train-val set and synthe-
sized VOC 2007 train-val set

data points [8] instead of using only 11 points with equally spaced recall as in [7]. For more
details, the precision and recall are defined as follows:

precision = tp

tp + fp
(4)

recall = tp

tp + f n
, (5)

where tp denotes the number of detected bounding boxes which are correct, fp denotes
the number of detected bounding boxes which are incorrect, and f n denotes the number of
missed bounding boxes.

A bounding box is decided as whether true positive or false positive by measuring the
ratio between its intersection area and union area (with a ground-truth box), which usually
called IoU (Intersection over Union). This metric is computed as the equation below:

τ = area(bp ∩ bg)

area(bp ∪ bg)
, (6)

where bp is a predicted bounding box and bg is a ground-truth bounding box, ∩ denotes the
intersection operation of bounding boxes, and ∪ denotes the union operation of bounding
boxes. In order to be considered as a true positive, τ must be greater than 0.5. A predicted
box will be assigned to the best-overlapped ground-truth box (which has the largest IoU).
When multiple boxes overlap with a ground-truth box, that means all of these boxes satisfy
the constraint of IoU, only the box which has the maximum IoU is accepted as true positive,
the leftovers are judged as false positives.

4.2 Implementation settings

We conduct experiments on the medium scale CNN model - VGGM and the large scale
one - VGG16. We also report the performance of our reproduced Faster-RCNN in order to
make a fair comparison. Note that for implementing Faster-RCNN, we modify the author’s
public source code1 to work well with the OHEM-model,2 which is developed for Fast
RCNN. This model can significantly reduce the consumed GPU memory by using gradient
accumulation over two forward/backward passes. Thus, we can run the VGG16 network on

1https://github.com/rbgirshick/py-faster-rcnn
2https://github.com/abhi2610/ohem

https://github.com/rbgirshick/py-faster-rcnn
https://github.com/abhi2610/ohem


28198 Multimedia Tools and Applications (2019) 78:28189–28208

Fig. 5 Synthesized images from VOC 2007 dataset. The first row of each group (separated by the red line)
shows real images in the dataset, whereas the second row shows the corresponding synthesized images.
Replaced objects are highlighted by yellow rectangles



Multimedia Tools and Applications (2019) 78:28189–28208 28199

Table 1 Detection results on PASCAL VOC 2007 test set (all methods are trained on VOC 2007 trainval set)

Model Faster-RCNN [33] Faster-RCNN* YADA

VGGM - SS 61.8 61.7 63.2

VGGM - MS N.A. 63.0 64.0

VGG16 - SS 69.9 70.4 72.5

VGG16 - MS N.A. 71.9 73.5

Evaluation metric is AP (AUC). MS: multi-scale, SS: single scale. N.A. is for the null results where the
results cannot be found in the original paper. * indicates our own Faster-RCNN implementation. The best
performance of each model is marked as boldfaced

the medium GPU card (Tesla K20c), which requires maximum 4GB of RAM. However, the
disadvantage is that this supports only alternating optimization training and therefore taking
more training time.

4.3 Performance on PASCAL VOC

The experimental results of different network settings are shown in Table 1. Regarding the
single scale setting, our YADA improves the Faster-RCNN by a large margin. With VGG16
network backbone, YADA outperforms Faster-RCNN by 2.6%. In addition, multi-scale is
also proved its superiority over single-scale Faster-RCNN setting with 1.0% gain.

We also compare our proposed method with other state-of-the-art methods. The results
in Table 2 show the effectiveness of YADA. Our method outperforms all the baselines.
In details, YADA outperforms the Fast RCNN by 5.4% mAP, and the Faster-RCNN by
3.6% mAP . Comparing with the online hard example mining - OHEM method [36], our
method achieves an improvement by 3.6% mAP. We also evaluate our proposed method

Table 2 VOC 2007 test detection average precision (%)

Method aero bike bird boat bottle bus car cat chair cow
Fast-RCNN 74.6 79.0 68.6 57.0 39.3 79.5 78.6 81.9 48.0 74.0
Faster-RCNN 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3
OHEM 71.2 78.3 69.2 57.9 46.5 81.8 79.1 83.2 47.9 76.2
SSD300 73.4 77.5 64.1 59.0 38.9 75.2 80.8 78.5 46.0 67.8
SSD512 75.1 81.4 69.8 60.8 46.3 82.6 84.7 84.1 48.5 75.0
YADA-SS 73.0 83.3 72.4 58.1 51.5 83.1 85.5 87.5 50.2 78.5
YADA-MS 75.5 84.7 74.3 61.2 54.0 83.2 87.1 85.6 53.1 80.3

Method mAP table dog horse mbike person plant sheep sofa train tv
Fast-RCNN [12] 68.1 67.4 80.5 80.7 74.1 69.6 31.8 67.1 68.4 75.3 65.5

Faster-RCNN [33] 69.9 67.2 80.3 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6

OHEM [36] 69.9 68.9 83.2 80.8 75.8 72.7 39.9 67.5 66.2 75.6 75.9

SSD300 [27] 68.0 69.2 76.6 82.1 77.0 72.5 41.2 64.2 69.1 78.0 68.5

SSD512 [27] 71.6 67.4 82.3 83.9 79.4 76.6 44.9 69.9 69.1 78.1 71.8

YADA-SS 72.5 68.7 84.1 86.1 77.9 80.3 38.7 72.7 65.7 77.9 74.3

YADA-MS 73.5 68.7 83.3 85.1 80.4 80.6 42.2 72.0 65.2 77.9 76.4

All methods use VGG16 network. Training set is VOC07 trainval. MS: multi-scale, SS: single scale. The
best performance of each category is marked as boldfaced



28200 Multimedia Tools and Applications (2019) 78:28189–28208

Table 3 VOC 2007 test detection average precision (%)

Method aero bike bird boat bottle bus car cat chair cow

Fast-RCNN 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8

Faster-RCNN 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9

OHEM 77.7 81.2 74.1 64.2 50.2 86.2 83.8 88.1 55.2 80.9

SSD300 75.5 80.2 72.3 66.3 47.6 83.0 84.2 86.1 54.7 78.3

SSD512 82.4 84.7 78.4 73.8 53.2 86.2 87.5 86.0 57.8 83.1

YADA-SS 81.6 85.3 78.7 65.8 59.0 88.5 89.2 93.3 56.6 85.5

YADA-MS 82.0 85.4 82.0 70.1 63.0 89.2 90.1 92.4 58.6 88.3

Method mAP table dog horse mbike person plant sheep sofa train tv

Fast-RCNN [12] 70.0 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

Faster-RCNN [33] 73.2 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

OHEM [36] 74.6 73.8 85.1 82.6 77.8 74.9 43.7 76.1 74.2 82.3 79.6

SSD300 [27] 74.3 73.9 84.5 85.3 82.6 76.2 48.6 73.9 76.0 83.4 74.0

SSD512 [27] 76.8 70.2 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3

YADA-SS 77.9 71.0 88.9 89.9 80.6 83.1 44.1 80.9 73.4 84.2 79.0

YADA-MS 79.3 72.0 88.4 89.5 80.5 84.4 46.8 82.1 74.8 85.9 80.2

All methods use VGG16 network. Training set is VOC07+12 trainval. MS: multi-scale, SS: single scale. The
best performance of each category is marked as boldfaced

with the training data from PASCAL VOC 2007 and 2012. As shown in Table 3, all methods
improve their performances owing to the larger training data. Again, the YADA method
leads all baselines with a remarkable margin. Figure 6 shows some visualization results of
our YADA method on the PASCAL-VOC 2007 test set. Indeed YADA well discovers the
unseen (challenging or undetected) objects.

4.4 Performance on KITTI

For KITTI dataset, we evaluate our work on the validation set due to the unavailability of
the ground-truth on the test set. We split 2

3 released images for training set and 1
3 images for

validation set. The results of different settings on KITTI dataset are reported in Table 4. Our
proposed framework surpasses the Faster-RCNN baselines in all network structures. As a
closer look in VGG16 implementation, our proposed method significantly improves Faster-
RCNN in the three main categories, namely, car, pedestrian and cyclist by 2.8%, 3.7%,
and 2.5%, respectively. This improvement highlights the potential usage of our method
into the practical systems such as autonomous vehicles. The overall performance of YADA-
SS is 83.2%, that improves Faster-RCNN-SS with 3.4% gain. YADA-MS further boosts
YADA-SS with 1.8% increment.

4.5 Effect of score-scaling process in YADA

In this subsection, we conduct a comparison experiment on the score re-scaling process,
which is used to combine detected objects from the the two models. To make clear the
effect of this process, we evaluate performance of our YADA method in two settings: with
and without using score-scaling. The results are shown in Table 5. We observe that the



Multimedia Tools and Applications (2019) 78:28189–28208 28201

Fig. 6 Visualization of true detections of YADA on VOC 2007. For each image, the red color boxes repre-
sent detections from the usual Faster-RCNN model and the green color boxes represent detections from our
proposed YADA framework. The result shows the superority of YADA over the Faster-RCNN with more
objects can be detected in images



28202 Multimedia Tools and Applications (2019) 78:28189–28208

Table 4 KITTI detection average precision (%) on the validation set for 7 object categories with different
network structures of Faster-RCNN and our method

Method Model mAP Car Pedes. Cyclist Truck Van Tram Misc

Faster-RCNN*-SS VGGM 74.1 80.4 56.9 66.4 86.2 81.4 81.6 65.9

Faster-RCNN*-MS VGGM 75.9 83.4 58.9 65.9 89.3 83.1 81.1 69.8

Faster-RCNN*-SS VGG16 79.8 82.5 62.6 72.1 92.2 87.2 88.4 73.5

Faster-RCNN*-MS VGG16 83.0 87.0 67.1 75.0 94.1 89.2 92.1 76.3

YADA-SS VGG16 83.2 87.1 68.2 75.9 93.4 89.8 90.7 77.2

YADA-MS VGG16 85.0 89.8 70.8 77.5 94.7 90.6 92.6 79.1

* indicates our own Faster-RCNN unshared implementation. The best performance of each category (Faster-
RCNN or our method) is marked as boldfaced

mAPs of YADA without score-scaling decreased by 2.8% and 3.2% respectively to single-
scale and multi-scale configurations. The detections from hard object detector (the second
model) should be post-processed before concatenating with the detections from the baseline
detector (the first model). Our solution is to re-scale their confidence scores to eliminate
noise from uncertain detections. Our YADA method with score-scaling process improves

Table 5 VOC 2007 test detection average precision (%) of YADA with/without score-scaling process

Method aero bike bird boat bottle bus car

Faster-RCNN*-SS 79.9 83.4 77.2 64.9 57.4 88.0 88.1

Faster-RCNN*-MS 80.4 84.3 80.9 69.5 62.3 89.0 89.2

YADA-SS without score-scaling 76.8 81.3 72.1 59.9 56.1 85.9 86.7

YADA-MS 79.2 81.5 74.2 61.8 59.1 87.2 88.1

YADA-SS with score-scaling 81.6 85.3 78.7 65.8 59.0 88.5 89.2

YADA-MS 82.0 85.4 82.0 70.1 63.0 89.2 90.1

Method cat chair cow table dog horse mbike

Faster-RCNN*-SS 92.9 55.8 83.6 70.8 87.5 89.1 78.2

Faster-RCNN*-MS 91.8 57.9 87.3 71.9 87.8 89.1 79.2

YADA-SS without score-scaling 89.0 51.8 81.2 68.5 84.0 87.3 73.7

YADA-MS 89.2 53.0 84.5 69.1 84.1 86.8 73.8

YADA-SS with score-scaling 93.3 56.6 85.5 71.0 88.9 89.9 80.6

YADA-MS 92.4 58.6 88.3 72.0 88.4 89.5 80.5

Method mAP person plant sheep sofa train tv

Faster-RCNN*-SS 76.7 81.2 42.4 79.3 72.1 83.2 78.4

Faster-RCNN*-MS 78.5 83.1 45.8 81.5 73.8 85.1 79.3

YADA-SS without score-scaling 73.9 79.1 42.2 75.7 69.8 80.9 75.8

YADA-MS 75.3 80.6 43.9 77.9 70.8 82.7 77.5

YADA-SS with score-scaling 77.9 83.1 44.1 80.9 73.4 84.2 79.0

YADA-MS 79.3 84.4 46.8 82.1 74.8 85.9 80.2

All methods use VGG16 network. Training set is VOC07+12 trainval. The best performance of each category
is marked as boldfaced



Multimedia Tools and Applications (2019) 78:28189–28208 28203

Table 6 VOC 2007 test detection average precision (%) of YADA on other baselines

Method aero bike bird boat bottle bus car cat chair cow

YOLOv2 352x352 72.1 80.3 66.6 56.0 41.1 80.5 79.6 85.5 46.3 69.1

RFCN 82.8 88.4 83.2 71.9 70.3 88.6 90.7 91.7 67.8 88.6

SNIPER 91.3 93.8 88.3 81.2 78.3 91.3 95.1 89.1 75.7 89.6

YADA-YOLOv2 72.5 81.0 67.7 56.6 42.0 80.6 80.4 86.0 47.6 69.6

YADA-RFCN 84.5 89.3 83.5 72.3 71.2 89.2 91.3 91.8 68.1 89.3

YADA-SNIPER 91.4 93.9 88.5 81.4 78.9 91.4 95.2 89.1 76.3 89.5

Method mAP table dog horse mbike person plant sheep sofa train tv

YOLOv2 352x352 [30] 70.2 72.2 80.5 84.7 83.5 71.8 39.8 66.4 73.9 81.3 72.4

RFCN [4] 82.0 75.6 92.4 89.8 85.4 85.2 52.5 82.9 81.8 88.6 80.9

SNIPER [38] 86.7 84.8 86.8 91.6 93.1 91.5 67.4 86.9 86.7 90.1 80.9

YADA-YOLOv2 70.9 73.1 80.7 85.0 83.9 73.0 41.0 67.3 75.1 82.1 73.1

YADA-RFCN 82.6 75.7 92.7 90.0 86.4 86.3 53.3 83.0 82.1 89.2 81.8

YADA-SNIPER 87.0 85.1 87.2 92.0 93.2 91.7 68.1 87.0 86.9 90.7 81.5

RFCN and SNIPER use Resnet-101 network. YOLO uses DarkNet-19 network. Training set is VOC07+12
trainval. The best performance of each category is marked as boldfaced

Faster-RCNN by 1.2% and 0.8% in terms of mAP corresponding to single-scale and multi-
scale configurations.

4.6 YADA on other deep networks

In this subsection, we focus on investigating the impact of our synthesized data on other
deep networks. In addition to Faster-RCNN as in the previous experiments, YOLOv2 [30],
RFCN [4], and SNIPER [38] are integrated into our framework. Note that aforementioned
RFCN and SNIPER deploy Resnet-101, whereas YOLOv2 deploys Darknet-19 network.
Similar to YADA framework with Faster RCNN baseline, we generate hard objects for these
detectors separately and then train them with generated images. Table 6 shows results of
YADA with these different detectors. On VOC 2007 test set, our YADA method further
boosts YOLOv2, RFCN, and SNIPER baselines by 0.7%, 0.6%, and 0.3% in terms of mAP
respectively. The results show that our method is also effective for modern object detectors
and deep networks. Taking a closer look on the amount of improvement for each detector,
YADA-YOLO gains the largest amount in mAP whereas YADA-SNIPER gain the smallest
amount. This can be explained that we cannot teach much for the suporior network as the
inferior network.

5 Conclusions and future work

In this paper, we present a novel method, named YADA (You Always Dream Again), for
generic object detection. The major contribution of this paper lies in two-fold: firstly, we
apply lucid data synthesizing on the training set by mining the hard examples and cloning
them to the same context locations. Different from previous data augmentation works, our
synthesized data is generated with clear criteria. Secondly, we utilize a dual-level of deep



28204 Multimedia Tools and Applications (2019) 78:28189–28208

networks leveraged with the synthesized data. Our framework structure is designed to flex-
ibility combine the two level of deep networks through a fusion scheme. The extensive
experiments on two benchmarks, PASCAL VOC and KITTI, demonstrate the superiority of
our approach over the state-of-the-art methods. In the future, we would like to investigate
our work in more complicated deep networks for object detection. We also aim to apply the
YADA philosophy to other computer vision tasks.

Acknowledgments This research is funded by Viet Nam National University Ho Chi Minh City
(VNU-HCM) under Grant No. B2017-26-01.

References

1. Cheng G, Zhou P, Han J (2016) Rifd-cnn: rotation-invariant and fisher discriminative convolutional
neural networks for object detection. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 2884–2893

2. Cheng G, Han J, Zhou P, Xu D (2019) Learning rotation-invariant and fisher discriminative convolutional
neural networks for object detection. IEEE Trans Image Process 28(1):265–278

3. Chu M, Wu S, Gu Y, Xu Y (2017) Rich features and precise localization with region proposal network
for object detection. In: Chinese Conference on biometric recognition. Springer, pp 605–614

4. Dai J, Li Y, He K, Sun J (2016) R-fcn: object detection via region-based fully convolutional networks.
In: Advances in neural information processing systems, pp 379–387

5. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE Computer
society conference on computer vision and pattern recognition (CVPR 2005), pp 886–893

6. Dwibedi D, Misra I, Hebert M (2017) Cut, paste and learn: surprisingly easy synthesis for instance
detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1301–
1310

7. Everingham M, Gool LJV, Williams CKI, Winn JM, Zisserman A (2010) The pascal visual object classes
(VOC) challenge. Int J Comput Vis 88(2):303–338

8. Everingham M, Eslami SA, Van Gool L, Williams CK, Winn J, Zisserman A (2015) The pascal visual
object classes challenge: a retrospective. Int J Comput Vis 111(1):98–136

9. Felzenszwalb PF, McAllester DA, Ramanan D (2008) A discriminatively trained, multiscale, deformable
part model. In: 2008 IEEE Computer society conference on computer vision and pattern recognition

10. Gaidon A, Wang Q, Cabon Y, Vig E (2016) Virtual worlds as proxy for multi-object tracking analysis.
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4340–4349

11. Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the kitti vision benchmark
suite. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), pp 3354–3361

12. Girshick R (2015) Fast R-CNN. In: 2015 IEEE international conference on computer vision, pp 1440–
1448

13. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection
and semantic segmentation. In: 2014 IEEE Conference on computer vision and pattern recognition, pp
580–587

14. Gupta S, Girshick R, Arbeláez P, Malik J (2014) Learning rich features from rgb-d images for object
detection and segmentation. In: European conference on computer vision. Springer, pp 345–360

15. Han J, Zhang D, Cheng G, Liu N, Xu D (2018) Advanced deep-learning techniques for salient and
category-specific object detection: a survey. IEEE Signal Process Mag 35(1):84–100

16. Handa A, Pătrăucean V, Stent S, Cipolla R (2016) Scenenet: an annotated model generator for indoor
scene understanding. In: 2016 IEEE International conference on robotics and automation (ICRA). IEEE,
pp 5737–5743

17. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp 770–778

18. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In: 2017 IEEE International conference on
computer vision (ICCV). IEEE, pp 2980–2988

19. Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks.
In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 1, p 3

20. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and < 0.5 mb model size. arXiv:1602.07360

http://arXiv.org/abs/1602.07360


Multimedia Tools and Applications (2019) 78:28189–28208 28205

21. Johnson-Roberson M, Barto C, Mehta R, Sridhar SN, Rosaen K, Vasudevan R (2017) Driving in the
matrix: can virtual worlds replace human-generated annotations for real world tasks? In: 2017 IEEE
International conference on robotics and automation (ICRA). IEEE, pp 746–753

22. Kahan TL, LaBerge S (1994) Lucid dreaming as metacognition: implications for cognitive science.
Consciousness Cogn 3(2):246–264

23. Khanh-Duy N, Khang N, Duy-Dinh L, Duc AD, Tam VN (2019) You always look again: Learning to
detect the unseen objects. J. Vis. Commun. Image Represent. 60:206–216

24. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural
networks. In: Advances in neural information processing systems, pp 1097–1105

25. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural
networks.In: Advances in neural information processing systems, pp 1106–1114

26. Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection.
arXiv:1708.02002

27. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: single shot multibox
detector. In: 14th European conference on computer vision, ECCV 2016. Springer

28. Mahajan D, Girshick R, Ramanathan V, He K, Paluri M, Li Y, Bharambe A, van der Maaten L (2018)
Exploring the limits of weakly supervised pretraining. arXiv:1805.00932

29. Peng X, Sun B, Ali K, Saenko K (2015) Learning deep object detectors from 3d models. In: Proceedings
of the IEEE international conference on computer vision, pp 1278–1286

30. Redmon J, Farhadi A (2017) Yolo9000: better, faster, stronger. arXiv preprint
31. Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv:1804.02767
32. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object

detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp
779–788

33. Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region
proposal networks. In: Proceedings of advances in neural information processing systems, pp 91–99

34. Rolnick D, Tegmark M (2017) The power of deeper networks for expressing natural functions.
arXiv:1705.05502

35. Ros G, Sellart L, Materzynska J, Vazquez D, Lopez AM (2016) The synthia dataset: a large collection
of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp 3234–3243

36. Shrivastava A, Gupta A, Girshick R (2016) Training region-based object detectors with online hard
example mining. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp
761–769

37. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition.
arXiv:1409.1556

38. Singh B, Najibi M, Davis LS (2018) Sniper: efficient multi-scale training. In: Advances in neural
information processing systems, pp 9310–9320

39. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A
(2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 1–9

40. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for
computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp
2818–2826

41. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of
residual connections on learning. In: AAAI, vol 4, p 12

42. Tam VN, Luoqi L, Khang N (2016) Exploiting generic multi-level convolutional neural networks for
scene understanding. In: ICARCV, pp 1–6

43. Tam VN, Khanh N, Thanh-Toan D (2019) Semantic Prior Analysis for Salient Object Detection. IEEE
Trans. Image Processing 28(6):3130–3141

44. Tam VN, Qi Z, Shuicheng Y (2018) Attentive Systems: A Survey. Int. J. Comput. Vis. 126(1):86–110
45. Tremblay J, Prakash A, Acuna D, Brophy M, Jampani V, Anil C, To T, Cameracci E, Boochoon S,

Birchfield S (2018) Training deep networks with synthetic data: bridging the reality gap by domain
randomization. arXiv:1804.06516

46. Van de Sande KE, Uijlings JR, Gevers T, Smeulders AW (2011) Segmentation as selective search for
object recognition. In: 2011 IEEE International conference on computer vision (ICCV). IEEE, pp 1879–
1886

47. Varol G, Romero J, Martin X, Mahmood N, Black MJ, Laptev I, Schmid C (2017) Learning from syn-
thetic humans. In: 2017 IEEE Conference on computer vision and pattern recognition (CVPR 2017).
IEEE, pp 4627–4635

http://arXiv.org/abs/1708.02002
http://arXiv.org/abs/1805.00932
http://arXiv.org/abs/1804.02767
http://arXiv.org/abs/1705.05502
http://arXiv.org/abs/1409.1556
http://arXiv.org/abs/1804.06516


28206 Multimedia Tools and Applications (2019) 78:28189–28208

48. Viola PA, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154
49. Wang X, Yang M, Zhu S, Lin Y (2015) Regionlets for generic object detection. IEEE Trans Pattern Anal

Mach Intell 37(10):2071–2084
50. Zhang D, Han J, Yang L, Xu D (2018) Spftn: a joint learning framework for localizing and segmenting

objects in weakly labeled videos. IEEE Transactions on Pattern Analysis and Machine Intelligence
51. Zhang D, Han J, Zhao L, Meng D (2019) Leveraging prior-knowledge for weakly supervised object

detection under a collaborative self-paced curriculum learning framework. Int J Comput Vis 127(4):363–
380

52. Zhou Z-H, Feng J (2017) Deep forest: towards an alternative to deep neural networks: arXiv:1702.08835

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Khanh-Duy Nguyen is a PhD student at University of Information Technology, Ho Chi Minh City, Vietnam.
Prior to that, he obtained his B.S. and M.S. degrees from the University of Science, Ho Chi Minh City,
Vietnam in 2007 and 2011, respectively. His research interests include computer vision, multimedia analysis
and deep learning.

Khang Nguyen received his B.S degree and M.S degrees in Computer Science from University of Science,
VNUHCM, Vietnam in 1990 and 1995. He received his Ph.D. degree in 2012 from the University of Sci-
ence, VNUHCM, Vietnam. Currently, he is the Vice-President of University of Information Technology,
VNUHCM, Vietnam. His research interests include artificial intelligence and computer vision.

http://arXiv.org/abs/1702.08835


Multimedia Tools and Applications (2019) 78:28189–28208 28207

Duy-Dinh Le is a scientist at University of Information Technology, Vietnam. He received his BS and MS
degrees in 1995 and 2001, from the University of Science, Ho Chi Minh City, Vietnam, and his PhD degree
in 2006 from The Graduate University for Advanced Studies (SOKENDAI), Japan. He was an associate
professor at the National Institute of Informatics (NII), Japan from 2013 to 2016. His research interests
include semantic concept detection, video analysis and indexing, pattern recognition, machine learning and
data mining.

Duc Anh Duong is a professor at the University of Information Technology, Ho Chi Minh City, Vietnam.
He obtained his B.Sc and M.Sc in computer science from the University of Ho Chi Minh City in 1990 and
1995, respectively. He received his Ph.D. degree in mathematics from the University of Science, VNUHCM,
Vietnam in 2002. His research interests include image processing, computer vision and pattern recogni-
tion, cryptography and security, geographic information systems, and computer graphics. He was a visiting
researcher at Japan Advanced Institute of Science and Technology (JAIST), Japan from 2008 to 2009. He is
currently Chair of Program of Information Technology and Electronics of Ho Chi Minh City, and Chair of
Program of Information Security of Ho Chi Minh City, Vietnam. He is a member of the ACM and IEEE.



28208 Multimedia Tools and Applications (2019) 78:28189–28208

Tam V. Nguyen is an Assistant Professor at Department of Computer Science, University of Dayton. He
received PhD degree in National University of Singapore (NUS) in 2013. His research topics include com-
puter vision, applied deep learning, multimedia content analysis, and mixed reality. He has authored and
co-authored 60+ research papers with 1000+ citations according to Google Scholar. His works were pub-
lished at IJCV, IEEE T-MM, IEEE T-CSVT, Neurocomputing, ECCV, IJCAI, AAAI, and ACM Multimedia.
He is an IEEE Senior Member.


	YADA: you always dream again for better object detection
	Abstract
	Introduction
	Related works
	Proposed framework
	Lucid data synthesizer
	Similar scene retrieval
	``Hard'' object lucid data synthesizer

	Bounding box fusion
	Duplicate truncation
	Score re-scaling


	Experimental results
	Benchmark datasets
	Implementation settings
	Performance on PASCAL VOC
	Performance on KITTI
	Effect of score-scaling process in YADA
	YADA on other deep networks

	Conclusions and future work
	References


