
Multimedia Tools and Applications (2019) 78:26453–26481
https://doi.org/10.1007/s11042-019-07855-z

Text recognition in document images obtained
by a smartphone based on deep convolutional
and recurrent neural network

Hassan El Bahi1,2 ·Abdelkarim Zatni1

Received: 31 August 2018 / Revised: 16 March 2019 / Accepted: 31 May 2019 /
Published online: 11 June 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Automatic text recognition in document images is an important task in many real-world
applications. Several systems have been proposed to accomplish this task. However, a little
attention has been given to document images obtained by mobile phones. To meet this need,
we propose a new system that integrates preprocessing, features extraction and classifica-
tion in order to recognize text contained in the document images acquired by a smartphone.
The preprocessing phase is applied to locate the text region, and then segment that region
into text line images. In the second phase, a sliding window divides the text-line image into
a sequence of frames; afterwards a deep convolutional neural network (CNN) model is used
to extract features from each frame. Finally, an architecture that combines the bidirectional
recurrent neural network (RNN), the gated recurrent units (GRU) block and the connection-
ist temporal classification (CTC) layer is explored to ensure the classification phase. The
proposed system has been tested on the ICDAR2015 Smartphone document OCR dataset
and the experimental results show that the proposed system is capable to achieve promising
recognition rates.

Keywords Text recognition · Document image · Smartphone ·
Convolutional neural network · Recurrent neural network

1 Introduction

In recent years, technological development has radically changed our relationship with
audiovisual information. Images and videos have taken an important place in the flow of
information that we receive every day. The way we treat this flow of information would cer-
tainly affect our daily lives. The text documents (books, printed articles, patent documents,

� Hassan El Bahi
hassan.elbahi@edu.uiz.ac.ma

1 Laboratory of Metrology and Information Processing, Ibnou Zohr University, Agadir, Morocco
2 Laboratory of Applied Mathematics and Computer Science, Cadi Ayyad University,

Marrakech, Morocco

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-019-07855-z&domain=pdf
http://orcid.org/0000-0003-1889-2249
mailto: hassan.elbahi@edu.uiz.ac.ma

26454 Multimedia Tools and Applications (2019) 78:26453–26481

receipts, magazine pages, etc.) are one of the forms of presentation and organization of
information. Lately, taking photos of text documents in place of digitizing them with a scan-
ner has become more and more common due to the popularity and the rapid development
of smartphones. Several works have been proposed for the detection and recognition of
the text contained document images. Nevertheless, most systems, generally called Optical
Character Recognition (OCR) systems, have been dedicated to scanned text documents [61,
64, 65, 68] although the text document images acquired by mobile devices that represent
a large part of multimedia content. The processing and recognition of this last category of
document images is not a trivial task and represents a major challenge [40].

In general, the processing of an image obtained by a smartphone is affected by several
factors, such as the perspective distortion that can takes place when the text image plan to
capture is not parallel to the smartphone’s camera plane. The result of this distortion is that
the characters located farther appear smaller and the hypothesis of parallel lines of the edges
of the document page no longer fits to those in the captured image. We can also point out
that mobile devices have much less control over the lighting conditions of the acquisition
environment. The variation in illumination is common, due to the physical environment
such as shadows or reflective surfaces and lack of controlled lighting. Complex background
is also another problem that can constantly face when the scene to be captured is larger than
the text region. Blur distortion is another problem that appears on document images when

Fig. 1 Challenges of document images acquired by a mobile terminal [30]. a Document scanned using a
scanner. b: The same document captured by a mobile terminal

Multimedia Tools and Applications (2019) 78:26453–26481 26455

the smartphone’s camera is focused on the background rather than the text document, or may
be caused by the movement of the Smartphone’s camera during acquisition. The processing
of images obtained by smartphone is also affected by the variety of text properties from one
document text to another, such as: variety of sizes, fonts, styles, colors. Figure 1 presents
some examples of the problems posed after the acquisition of a document image by a mobile
device. All the aforementioned challenges have formed our motivation to propose a system
for text recognition in document images obtained by mobile terminals.

Text recognition can be defined as the ability of a smartphone or a computer to transform
text data contained in an image into its equivalent symbolic representation, in the form of
ASCII text. Typically, a text recognition system comprises three main phases: preprocess-
ing, features extraction and classification [43]. The preprocessing step is generally applied
to improve and enhance the quality of the document image for subsequent appropriate anal-
ysis. This step can itself be divided into smaller steps such as: text detection, perspective
correction, segmentation, skew correction, normalization and so on [39]. In the preprocess-
ing phase, a detection method takes a gray scale or color image as input and outputs an
image with a rectangle surrounding the text region. The methods proposed in the litera-
ture for this task can be classified into three categories [25]: connected component-based
methods [22, 62, 63], texture-based methods [16] and gradient-based methods [49, 58]. The
perspective correction step makes it possible to transform the geometry of the image into a
perspective different from that which was originally captured. Many works have been done
to accomplish this step. kim and al [26] use a discrete representation of text-lines and text-
blocks to correct image document perspectives. Castro et al. [9] propose a method that first
consists in detecting the text region in the image, and therefore the perspective correction is
performed using a transformation matrix. Liu et al. [31] present an approach that is based on
the segmentation of text into individual lines, and then perspective correction is performed
at each line of text [46]. With regard to segmentation, several approaches are reported in the
literature to ensure this step. They are categorized into three strategies: top-down, bottom-
up and hybrid [14]. Top-down strategies like projection profile [4], filtering techniques [6,
55] and Hough transform [46] take as input the entire image of text and attempt to divide it
into different text-lines images. In terms of the bottom-up strategies, they start from a small-
scale level of an image (i.e. pixels), and afterwards they use some technique like: clustering
[32, 69], function analysis [2] or active contours [42], in order to locate each text line area.
While other works [51, 56] are trying to combine the two strategies for segment the text
image into lines. The purpose of the next step is to detect and correct the skew of each
text-line image. Many methods have been developed to this end [15, 36]. Generally, these
methods are based on the following idea: first, they try to detect the angle of inclination,
and then the correction is performed using rotation by this angle. After skew correction,
size normalization is an important task which aims to minimize the variations between the
shapes of the characters and words in the different document images of a database. In the
case of text line images, normalization consists in forcing each line image to take the same
height while maintaining the width/height ratio of the images [23].

Extraction of representative and essential features from an input image is the main key to
improving the performance of a recognition system. According to the literature [33], feature
extraction methods can be divided into two groups: hand-crafted feature-based methods and
automatic learning feature-based methods. In the case of the first group, we can mention
the direct use of pixel intensity values as features [20, 35], number and positions of black
pixels [5] and statistical features [24, 41]. In addition, we can add other methods like: the
use of histogram of oriented gradients (HOG) as a descriptor [53], projections of oriented

26456 Multimedia Tools and Applications (2019) 78:26453–26481

gradients [44], principal component analysis (PCA) [27], etc. However, the traditional fea-
ture extraction methods are very limited as they require prior knowledge about information
on the position and relevance of features, and they are more sensitive to the variation of font
sizes, styles, colors and non-uniform lighting condition of document text [33]. In the last few
years, the automatic learning feature methods, particularly the deep convolutional neural
network (CNN), has shown better performance compared to hand-crafted features meth-
ods in various recognition problems such as: image classification [60, 67], cancer detection
[59], age estimation [10], Pedestrian Detection [29], etc. The deep convolutional neural net-
work is an alternative that does not suffer from the disadvantages already mentioned in the
previous group of methods. Their deep architecture allowed them to be able to learn auto-
matically the most relevant features, which makes it one of the most robust systems in terms
of translation, scaling and distortions. We can cite the adaptation of the CNN model as a
features extraction method in several text recognition systems such as: scene text recogni-
tion [50], offline handwriting recognition [54], video text recognition [66], and historical
handwriting recognition [17]. However, the only drawback of automatic learning feature-
based methods versus hand-crafted feature-based methods is that they require more time in
the training phase to find the most relevant features [57].

The feature vector extracted in the last phase is passed as input to an already trained clas-
sifier that predicts its class. Numerous approaches have been used to classify text in images.
They are categorized into two groups: segmentation-based approach and segmentation-free
approach. The approaches in the first group perform explicit segmentation of text-line image
into characters before employing a classifier like MLP or SVM [57] to recognize the class of
each individual character. However, the performance of these approaches is strongly related
to the results of decomposition of text-line into characters. Each segmentation error directly
decreases the recognition rate of the entire system. The segmentation-free approaches
present an alternative to overcome this limitation. They take as input the whole text-line
image as a sequence of images prepared by a sliding window, which allows recognizing
the text image without performing explicit segmentation. As a result, classification models
based on this group of approaches are the most used especially in the case where separations
between characters are difficult to determine, such as: handwriting, complex background,
overlapping characters, and so on. Furthermore, these approaches make it possible to use
the contextual information, which means that the output is calculated at each time step
according to the past and future contexts of a character or a word [20]. The two most
frequently used models are the Hidden Markov Model (HMM) and the Recurrent Neural
Network (RNN). The HMM model is used in many text recognition systems, for exam-
ple: English texts [45], Arabic text and [1]. In recent years, with the fast advancement of
computers and the use of GPU for calculation, the RNN model demonstrates better perfor-
mance than the HMM model in the task of text classification [18]. Numerous recent works
have taken advantage of the power of the RNN, for example and without limitation, recog-
nition of French text [36], recognition of English text [50], recognition of Arabic text [34].

The main contribution of this work is to address the problem of text recognition in images
obtained by a smartphone. This is realized by the proposal of a new system that consists of
three main parts. In the first one, a preprocessing operation is applied in order to detect text
region in document image, and then segment this region into individual text-line images.
This phase takes into consideration the problems mentioned above, often encountered dur-
ing the acquisition of images by mobile. Inspired by the great success achieved thanks to the
automatic learning feature-based methods [50], a deep convolutional neural network CNN
model is used in the second part to extract a sequence of feature vectors form each text-line
image. In this way, the system will be able to automatically extract the features that best

Multimedia Tools and Applications (2019) 78:26453–26481 26457

discriminate between the different classes of characters, rather than using a hand-crafted
feature-based technique. The last part of the system is dedicated to the classification phase
where we use a bidirectional recurrent neural network (BRNN) combined with the gated
recurrent units (GRU) block [11] and the Connectionist temporal classification (CTC) layer
[18]. The BRNN-CTC architecture takes as input the sequence of feature vectors and pro-
duces a sequence of characters representing the text contained in the text-line image. BRNN
offers the possibility to use past and future context information in the calculation, which is
useful and indispensable in the recognition of the image text sequences. Using a CTC layer
eliminates the need to segment the text line image into images of individual characters. It
takes as input the text line image and gives as an output the corresponding text transcrip-
tion without having to perform an explicit segmentation. The proposed system is evaluated
on the ICDAR2015 Smartphone document OCR dataset [7]. The main contributions of the
proposed system can be summarized as follows:

– We implement and compare different CNNs models to extract features from text-line
images according to different widths of a sliding window.

Fig. 2 Flowchart of the proposed text recognition system

26458 Multimedia Tools and Applications (2019) 78:26453–26481

– We explore various combination between a RNN or BRNN with LSTM [21] or GRU
[11] memory block to classify the sequence of feature vectors that extracted by CNN
model. As a results, the BRNN-GRU architecture outperforms the BRNN-LSTM
architecture and provides a better recognition rate.

– The experimental tests of the proposed system on the ICDAR2015 Smartphone doc-
ument OCR dataset [7] shows promising results compared to the state-of-the-art
systems.

The remainder of this paper is structured as follows: Section 2 describes the details
of each step of the proposed text recognition system, whereas Section 3 presents the
experimental results. Finally, Section 4 presents conclusion and discusses future works.

2 Proposed system

As shown in the Fig. 2, the general architecture of the proposed system includes five
major steps: preprocessing, baseline correction, normalization, feature extraction and
classification. This section details each step of the proposed system.

2.1 Preprocessing

The preprocessing phase is essential for detecting text, eliminating noise and segmenting
text into lines of text. Figure 3 shows all the operations used during the preprocessing phase.
These operations will be explained in detail in the following parts.

2.1.1 Text detection

In this part, we present the method used for the detection of the text region. The method
consists of several steps, the first of which consists of converting the original image into a
grayscale image (see Fig. 4b). The second step is to detect all the contours of the image, for
this reason we use Canny’s algorithm [8]. Figure 4c shows the result of this algorithm.

The goal of the next step is to help distinguish the text region from the background of the
image. For this reason, we apply the dilation technique. The main idea of this technique is
to connect and enlarge groups of nearby pixels in an image. In our case, this will merge the
characters and fill the spaces between the words to form bands corresponding to each line
of text (see Fig. 4d). At this point, the lines of text are clearly visible, but there are still black
areas between the lines of text and the outlines of the text region. Therefore, the next step is
to fill these areas with white pixels. This is done as follows: If a black region is surrounded
by white outlines, the pixels in that region will be transformed into white pixels. Figure 4e
shows the regions filled after the application of this operation.

Fig. 3 Preprocessing operations

Multimedia Tools and Applications (2019) 78:26453–26481 26459

Fig. 4 The steps for detecting the text region. a: Initial image. b: Gray scale image. c: Contour detection. d:
The dilated image. e: The filled image. f: Text region

The last step is the determination of the text region from the regions obtained in the
previous step. To achieve this result, we rely on the fact that the document page is the main
object in all images. Thus, we count the number of pixels in each region of the image, and
we choose the region that contains the largest number of pixels. Figure 4f shows the result
obtained after this last step.

2.1.2 Perspective correction

During the acquisition of an image, effect like perspective distortion is inevitable. This
effect can damage the image and decrease the performance of the recognition. Therefore,
perspective correction is a mandatory task to improve and reduce the complexity of an
image. To perform this task, we use our previous work [12]. The approach proposed is
designed to quadrilateral forms, especially the form of a document page. It is divided into
two phases involving the detection of the corners of the document page, and hence the use of

26460 Multimedia Tools and Applications (2019) 78:26453–26481

Fig. 5 The perspective correction of a document image. a Initial image. b Result

bilinear interpolation to correct the perspectives. Figure 5 shows an example of a document
image before and after perspective correction.

2.1.3 Noise removal

After the phases of text extraction and perspective correction, the noise appears on certain
areas of the image, especially at the edge of the text page.This can cause instability and
errors during the segmentation and classification phases. In this work, we use two opera-
tions to solve this problem: binarization and marginal noise suppression. The operation of
binarization is provided by using Sauvola algorithm. Then the projection histogram is cal-
culated to detect the noise of the horizontal (top and bottom) and vertical (left and right)
margins. In the case of the noise of the horizontal margin, we plot the horizontal projection
with the calculation of the number of black pixels along each line of the binary image. From
the obtained curve, it is possible to determine the location of the upper and lower zone of
the marginal noise according to the location of the first and last peak respectively. Then, we
look for the location where the top horizontal cut will be done, according to several exper-
iments, we opted to choose the location between the first and the second peak. In the same
way, we chose the location between the last and the penultimate peak for horizontal cutting
at the bottom. To remove noise from the vertical margin, we use the same way but this time
vertically by counting the number of black pixels along each column. Figure 6 illustrates
the results of binarization and marginal noise suppression.

2.1.4 Segmentation

In this part we are interested in the task of segmenting the text of the image into individual
lines images. The main problem encountered in this step is the inclination of the lines of
text with respect to the horizontal axis of the image, as shown in Fig. 7a.

To solve this problem, we use an algorithm that based on the idea that an image of the
text can be grouped as related components separated by white spaces along each line of text
[3]. The proposed algorithm works as follows: the input of the algorithm is the document
image, a threshold S which designates the minimum size of a connected component and the

Multimedia Tools and Applications (2019) 78:26453–26481 26461

Fig. 6 Removing the marginal noise. a Initial image. b Binarized image. c Result

parameter T which corresponds at the average distance which makes it possible to know if
two connected components belong to the same line or not. Then, the morphological dilation
is applied to extend and reinforce the connected components of text. his is very interesting
because it allows to group the words in each line of text (see Fig. 7b). After the previous
operation, all the CCs related components of the image are extracted (see Fig. 7c). These
CCs are grouped into large R components and small SR components (The size of a CC

is determined by the number of pixels it contains). afterwards, all the components of the R

group are sorted in decreasing order from top to bottom, and the SR group is eliminated
initially, since the small components are usually far from the main body of the words or
characters, making the segmentation process more difficult to accomplish.

Fig. 7 Segmentation of a text image. a Initial image. b Dilated image. c Extraction of connected components.
d The final result

26462 Multimedia Tools and Applications (2019) 78:26453–26481

In the second part of the algorithm, we select the first connected component R1 which
will be located in the highest part of the image, and we assign it to line 1. After that, we
identify the nearest CC R2 next to CC R1. This is done as follows: assuming that (x1, y1)

and (x2, y2) are the coordinates of the centroids of CC R1 and CC R2 respectively. R2
belongs to the same line of R1 only if the condition |y2 − y1| < T is satisfied, where T

is the distance between the two CCs R1 and R1. The same process will be repeated until
all the connected components are assigned to lines of text. In the last part of the algorithm,
we affect each small component SRi to the line Li at which it has the shortest distance.
Figure 7d illustrates the result obtained using the proposed algorithm.

2.2 Baseline correction

The text-line inclination problem is often appears after the segmentation phase, (see Fig. 8a
below). This problem presents a difficulty in the classification phase in which we use a
sliding window to extract features. An inclined writing can lead to an overlap and instability
of characters and words within the sliding window. As a result, correcting the angle of
inclination of each line of text is a necessary step before moving to the next steps.

The inclination correction of a line of text (also called skew correction), consists in
straightening and putting horizontally the line of the inclined writing. In this work, we
adopted the technique described in the reference [37], to correct the angle of inclination.
This technique converts the text line image to an image composed of black block strips
having a rectangle shape all along the text line, and then it uses these blocks to identify
the candidate points to plot the approximation of the baseline (see Fig. 8b). Next, a fourth
degree polynomial is used to draw the baseline approximately by fitting a curve through the
extracted candidate points. Figure 8c and d below illustrate the baseline plot result with the
curve fit operation.

After the baseline estimate, the average inclination angle for each block is calculated
using the location of the candidate points (pixels) and the location of the baseline intersec-
tion points with the block. Then each block presented in the text line image is rotated by the

Fig. 8 Baseline correction of a text-line image. a: Initial image. b: Painted strips image. c: Baseline estimate.
d: Baseline tracing on the initial image. e Estimation of the angle of inclination of the word “accepted”. f:
Correction of inclination of the word “accepted”. g: Image results after correction of the angle of inclination

Multimedia Tools and Applications (2019) 78:26453–26481 26463

corresponding inclination angle in order to horizontally set the baseline of the image (see
Fig. 8e and f). Figure 8g shows the result of the technique used for the inclination angle
correction of the text line image.

2.3 Normalization

The size of a text image may vary from one writer to another, from one font to another and
within the same font after enlarging or decreasing in size, which can cause instability in
performance of recognition. Therefore, the normalization is an important task that aims to
minimize variations between the shapes of characters and words in different images. In the
case of text line images, the normalization phase consists in forcing the images of lines with
an arbitrary dimension to have the same height. The width of the resized image is determined
relative to the height of the original image; this operation is performed without affecting
the height-to-width ratio of the text line image. We have observed that the normalization of
all text-line images to a fixed height (32 pixels) does not have much influence on system
performance. The results obtained after normalization of the size of some text-line images
are shown in Fig. 9.

2.4 Features extraction

Features extraction is the process of taking a dataset of images and building explanatory
variables (Features). After that, these features will be employed in order to train a machine
learning or a deep learning model for a classification problem. In particular, the features
extraction step aims to obtain the most relevant features of a text line image, while avoiding
the loss of important and significant information of the image, and subsequently represents
this information as a of one-dimensional vector. Inspired by the system proposed in [50], we
adapt the CNN model in the features extraction step in order to build a text-line classifier.
The model will be able to automatically extract the features that best discriminate between
the different classes of characters; this is done using a large training set of text-line images.
In general, a deep CNN architecture consists of convolution layers, nonlinear layer (The
ReLU layer), pooling, and fully connected layers [28]. The rest of this section gives the
concept of each layer and the adaptation methodology of CNN in our work.

Fig. 9 Normalization of text-line images size to a height of 32 pixels while maintaining the aspect ratio

26464 Multimedia Tools and Applications (2019) 78:26453–26481

Fig. 10 Example of the convolution operation. a: Initial image. b: Image with padding of 1 pixel. c: Filter.
d: The convolution between the filter I and each part of the image with a stride of 1 pixel

2.4.1 Convolutional layers

The convolution layer is the key component of CNN, and is always the first layer. Its purpose
is to locate the presence of a set of features in the image received as input. This is thanks
to a succession of filters also called kernels, transforming the initial image into a set of
images called feature maps (or activation maps). In fact, each filter Fj of size (WFj

,HFj
)

is started from the top-left corner and traverses the entire input image I (WI ,HI). In every
location an element wise multiplication is performed between the image patch and the filter.
The sum of this multiplication is then constituted one of the pixels of the feature map. In
addition to the number and the size of filters, there are two common hyperparameters for
convolution layer: stride and padding. Stride indicates the number of pixels with which the
filter shifts horizontally or vertically on the input image. For example, a stride of one pixel
means moving the filter one pixel at each time step to compute the next convolution output.
The padding (Zero-padding) indicates how many rows and columns of 0 are added around
the input image, which allows to control the size of the output. It is sometimes desirable to
keep the same size as that of the input image. For better understanding the convolution layer,
Figure 10 illustrates an example of the convolution operation. In the example, an image I

of a size of (5, 5) (see Fig. 10a) is used with a padding of 1 pixel (see Fig. 10b). The image
is convoluted with a filter F of a size of (3, 3) (see Fig. 10c). Figure (see Fig. 10d) shows
the convolution product calculation between the filter I and each portion of the image I. The
filter traverses the entire image with a stride of 1 pixel. The result at each step is one of the
elements of the feature map matrix.

2.4.2 Nonlinear layer

After each convolution layer, a rectified Linear Units (ReLU) layer is added. It goal is to
introduce and increases non-linearity in CNN by applying an activation function defined as
follows: f (x) = max(0, x) for each pixel in the feature map. The concept of this function
is fairly simple: every time there is a negative value in a pixel, it is replaced by a 0. ReLU
has been widely used due to its ability to learn fast and works better compared to traditional
non-linear functions (tanh or sigmoidal) [38]. An example of using the function ReLU is
shown in Fig. 11.

Multimedia Tools and Applications (2019) 78:26453–26481 26465

Fig. 11 Functionality of the Rectified Linear Units layer. a: Feature map. b: Rectified feature Map

2.4.3 Max-pooling layers

Another very powerful tool used by CNNs is called Pooling. It’s a layer often placed
between two convolution layers designed to take a large image and reduce its size while pre-
serving the most important information it contains. This serves two purposes; first it makes
the CNN less sensitive to the position of features and robust against noise and distortion.
Second, it improves the efficiency of the CNN and avoids overfitting [28]. There are differ-
ent manners to do pooling, but in practice the most effective is max pooling [47]. It consists
of taking a kernel and passing it over the rectified feature map as in convolution, but this
time we take the maximum value in every image patch that the kernel convolves around. In
practice, a kernel of (2 × 2) pixels is often used with a value of 2 pixels for the stride and
without any padding. Figure 12 illustrates an example of the Max Pooling application on
the rectified feature map that has been obtained in the previous layer.

2.4.4 Fully connected layerss

After several layers of convolution and max-pooling, the last layer is called fully connected
layer. Each neuron in this layer is connected to all the neurons of the previous layer. This

Fig. 12 Example of a max-pooling operation with a kernel of (2 × 2) pixels, a stride of 2 pixels and without
any padding. a: Rectified feature Map. b: Result

26466 Multimedia Tools and Applications (2019) 78:26453–26481

Fig. 13 Representation of the sliding window approach and the CNN architecture that includes five
convolutional layers and five max pooling layers

layer gathers all the information processed separately in the previous layers, and provides
the final result (vector of probabilities) using a sigmoid or softmax activation function. The
size of the result vector is equal to the number of classes of classification.

2.4.5 Methodology adaptation

In this paper, we directly extract the features from the text-line image based on deep con-
volutional neural networks. Before that, a sliding window approach vertically scans the text
line image from left to right using a fixed-length window; this will allow dividing the image
into sub images, called frames. The use of this approach requires adjusting two parameters:
the shift s and the size of the windows (W ×H) (see Fig. 13). In fact, we use a shift of 4 pix-
els and the height H of the window is corresponding to the height of the image (32 pixels).
After decomposing the images into a set of overlapping frames, the features of each frame
(2D) are extracted using a CNN model in order to form the corresponding feature vector
(1D). A visualization of the sliding window approach and the CNN model is illustrated in
Fig. 13.

In this work, we implement and compare three different CNNs models applied to a dif-
ferent width. These models are built according to the size of three frames: 4×32, 8×32 and
16 × 32, and are referred to hereinafter as CNN4×32, CNN8×32 and CNN16×32. Table 1
presents the architecture of each of these modules. The three CNNs are composed of 5 con-
volutional layers and 5 max pooling layers (the fully connected layer is removed). Every
convolution filter has a filter size of 3×3 pixels with stride of 1×1 pixels and a zero padding
of 1 × 1 pixels. The number of feature maps in these layers is 64, 128, 256, 512 and 512. To
introduce non-linearity, a ReLU activation function is applied after each convolution layer.
A rectangular kernel of 1 × 2 pixels is applied at the 1st , 2nd and 3rd max-pooling layers
for the CNN4×32 model, at the 1st and 2nd max-pooling layer for the CNN8×32 model and
only at the 1st max-pooling layer for the CNN16×32 model. A square kernel of 2 × 2 pixels
is used for the remaining max-pooling layers. All the max-pooling layers used a stride of

Multimedia Tools and Applications (2019) 78:26453–26481 26467

Table 1 The structure of each CNN model. The output, maps, F, K, S and P are respectively: the size of
feature map, the feature maps number, filter, kernel, stride and padding

Layer CNN models

CNN4×32 CNN8×32 CNN16×32

Convolution 1 Output: 4×32 maps: 64 Output: 8×32 maps: 64 Output: 16×32 maps: 64

S: 1×1 P: 1×1 F: 3×3 S: 1×1 P: 1×1 F: 3×3 S: 1×1 P: 1×1 F: 3×3

Max-pooling 1 Output: 4×16 maps: 64 Output: 8×16 maps: 64 Output: 16×16 maps: 64

S: 1×2 K: 1×2 S: 1×2 K: 1×2 S: 1×2 K: 1×2

Convolution 2 Output: 4×16 maps: 128 Output: 8×16 maps: 128 Output: 16×16 maps: 128

S: 1×1 P: 1×1 F: 3×3 S: 1×1 P: 1×1 F: 3×3 S: 1×1 P: 1×1 F: 3×3

Max-pooling 2 Output: 4×8 maps: 128 Output: 8×8 maps: 128 Output: 8×8 maps: 128

S: 1×2 K: 1×2 S: 1×2 K: 1×2 S: 2×2 K: 2×2

Convolution 3 Output: 4×8 maps: 256 Output: 8×8 maps: 256 Output: 8×8 maps: 256

S: 1×1 P: 1×1 F: 3×3 S: 1×1 P: 1×1 F: 3×3 S: 1×1 P: 1×1 F: 3×3

Max-pooling 3 Output: 4×4 maps: 256 Output: 4×4 maps: 256 Output: 4×4 maps: 256

S: 1×2 K: 1×2 S: 2×2 K: 2×2 S: 2×2 K: 2×2

Convolution 4 Output: 4×4 maps: 512 Output: 4×4 maps: 512 Output: 4×4 maps: 512

S: 1×1 P: 1×1 F: 3×3 S: 1×1 P: 1×1 F: 3×3 S: 1×1 P: 1×1 F: 3×3

Max-pooling 4 Output: 2×2 maps: 512 Output: 2×2 maps: 512 Output: 2×2 maps: 512

S: 2×2 K: 2×2 S: 2×2 K: 2×2 S: 2×2 K: 2×2

Convolution 5 Output: 2x2 maps: 512 Output: 2x2 maps: 512 Output: 2x2 maps: 512

S: 1×1 P: 1×1 F: 3×3 S: 1×1 P: 1×1 F: 3×3 S: 1×1 P: 1×1 F: 3×3

Max-pooling 5 Output: 1×1 maps: 512 Output: 1×1 maps: 512 Output: 1×1 maps: 512

S: 2×2 K: 2×2 S: 2×2 K: 2×2 S: 2×2 K: 2×2

1 × 2 or 2 × 2 pixels without padding. Finally, the CNN model generates 1 × 1 × 512 fea-
ture maps, which will be concatenated into a single vector. This later contains the features
extracted from the input frame. To avoid the training problems of the deep convolutional
layers, the batch normalization [61] technique is used. Two batch normalization layers are
added after the 3rd and 4th convolutional layers respectively. This technique speeds up the
training process and reduces overfitting. This operation will be repeated for the remaining
frames. At the end of this step, a sequence of feature vectors will represent each text line
image, which is the input of the recurrent neural network employed in the classification step.

2.5 Classification

The classification and recognition phase is often the last step, which involves assigning a
label, or class, to the features vector. Generally, in recognition systems the classification
process requires a preliminary training stage, also called learning, where the classifier learns
from the training samples, allowing it in the classification phase to predict classes of new
samples. In this work, the sequence of feature vectors obtained in the previous step is used
in the classification process. The latter makes it possible to assign the appropriate transcrip-
tion to the sequence of vectors. In this paper, we propose an architecture that consists of a
bidirectional recurrent neural network (BRNN) with the gated recurrent units (GRU) block
[11] and the Connectionist temporal classification (CTC) layer [18]. This architecture will
allow to build a model that can learn how to classify each sequence of vectors.

26468 Multimedia Tools and Applications (2019) 78:26453–26481

The Recurrent Neural Network (RNN) is a deep learning architecture built from artifi-
cial neural networks originally proposed by J.L. Elman [13]. RNN differs from the classical
neural network because it includes cyclic connections, which can model contextual infor-
mation of a sequence dynamically. The output of an RNN is calculated using both the input
at the current instant t and the output of the hidden layer at the instant t − 1. Specifically,
consider an RNN with X input neurons, H hidden neurons, and Y output neurons. At a time
t, the state of the hidden layer h(t−1) at the time t − 1 and the input xt at time t are passed
to an activation function in order to calculate the state of the hidden layer ht at time t . The
following equation formalizes this function:

ht = f (whhht−1 + wxhxt + b) (1)

Where f (.)is a nonlinear activation function (Sigmoid, Tanh, Relu, . . .), whh is the weight
matrix that links the hidden layer at time t − 1 and the hidden layer at time t , and wxh is
the weight matrix that links the input layer with the hidden layer at time t , and b is the bias
vector of the hidden layer at time t . Then, the output yt at time t is calculated as follows:

yt = f (whyht + b) (2)

Where why correspond to the hidden-to-output weights matrix. One of the ideas introduced
in the literature to improve the amount of context information is to exploit at time t the time
dependencies of both the past and the future. Indeed, this is done using an RNN model with
two hidden layers; one traverses the input sequence from left to right, while the other runs
it in the opposite direction. This model is known as bidirectional recurrent neural network
BRNN [48]. The states of the hidden layer and the output layer in this model are calculated
as follows:

hb
t = f (whbhbh

b
t−1 + wxhbxt + b) (3)

h
f
t = f (whf hf h

f

t+1 + wxhf xt + b) (4)

yt = f (whbhh
b
t−1 + wxhf x

f
t + b) (5)

Where h
p
t and h

f
t respectively represent the hidden layers in the backwards forwards

directions.
The BRNN is trained in the same way as a classical neural network, with the use of

the backpropagation algorithm. However, whatever the learning algorithm used, the main
disadvantage of a BRNN is the disappearance of the gradient [19] (Vanishing Problem).
Indeed, we see a very rapid decrease of the gradient during the retro-propagation, which
makes learning long-term dependencies very difficult. One solution proposed to avoid this
problem is to add the memory block mechanism to the BRNN. This block is positioned at
the hidden layer, and includes one or more memory units that give the network the ability
to memorize or forget about long-term or short-term information. Two types of block are
found in the literature: the first is LSTM (Long Short-Term Memory) [21] and the second
is GRU (Gated Recurrent Unit) [11].

The LSTM block consists of a memory cell for storing information and three control
gates: an input gate, an output gate and a forget gate (see Fig. 14a). The input gate controls
the importance of the state of the current input. A state is considered relevant if this gate
gives a value close to 1. The importance of the previous state on the current state of the
memory cell is controlled by the forget gate. The output gate controls the importance of
the current state on the rest of the network (higher layers and next time steps). Generally,
LSTM introduces a linear dependence between the memory cell ct and its previous c(t−1)

Multimedia Tools and Applications (2019) 78:26453–26481 26469

Fig. 14 Visualization of Long short-term memory (LSTM) and Gated Recurrent Unit (GRU) architecture
[11]. a: LSTM gates: input (I), forget (f) and output (o). b: GRU gates: update (z) and reset (r)

at each hidden layer in order to control the information flow in the network. The operations
of a RNN with LSTM block are written as follows:

it = σ(whiht−1 + wxixt + bi) (6)

ft = σ(whf ht−1 + wxf xt + bf) (7)

ot = σ(whoht−1 + wxoxt + bo) (8)

gt = tanh(wxgxt + whght−1 + bg) (9)

ct = ft � ct−1 + it � tanh(whhht−1 + wxhxt + bc) (10)

ht = ot � tanh(ct) (11)

Where it , ft , ot and ht respectively denote the values of input gate, output gate, forget gate
and output hidden layer state at time t . The symbol � represents the element-wise product
of vectors. w denote the weight matrices connecting different gates and layers, and b denote
the corresponding bias vectors.

The GRU [11] block has recently been proposed as a simpler alternative to the LSTM
unit, while sharing the same objective of avoiding long-term dependency problems. It con-
tains two gates that make it possible to estimate the flow of information inside the block,
but, it does not contain a separate memory cell. The gates of a GRU are: the Update Gate
and Reset Gate (see Fig. 14b). The update gate role is similar to the role of the LSTM’s for-
get gate, it controls the importance of the previous state on the current state of the network,
while, the reset gate allows the GRU block to ignore information that is not relevant in the
next time steps. The GRU block is usually defined by the following equations:

zt = σ(whzht−1 + wxzxt + bz) (12)

rt = σ(whrht−1 + wxrxt + br) (13)
∼
ht = tanh(wxhxt + whh(rt � ht−1) + bh) (14)

ht = zt � ht−1 + (1 − zt) � ∼
ht (15)

Where zt , rt ,
∼
ht and ht are respectively the update gate, the update gate, the current block

state and the output hidden layer state.
A typically RNN contains a very large number of parameters; the bad adjustment of these

parameters can drive to overfitting. This means that the network work effectively on the

26470 Multimedia Tools and Applications (2019) 78:26453–26481

training data, but does not generalize well on the testing data. To remedy this problem, the
dropout layer has been introduced [52]. This layer is used during learning. At each iteration,
a certain percentage of neurons of a layer are randomly disabled to artificially reduce the
number of parameters. This way allows the RNN to learn more generalized parameters that
do not focus on the details of the learning dataset. Once the learning is complete, all the
neurons are reactivated.

Even if an RNN with a GRU or LSTM memory block is able to model long-term depen-
dencies, it requires a pre-segmented training data to allow the network to learn to provide
the correct output at every time step. Therefore, the input feature vector xt at each instant
t has to be assigned to the corresponding output target (corresponding character class).
However, in the case of text recognition, no character segmentation is performed, and the
feature sequences that are extracted with a sliding window are not separated. Gravex et al.
[18] provided a solution to this problem by introducing a specific layer, termed connection-
ist temporal classification (CTC) layer, which extends the use of an RNN for the case of
an unsegmented data sequence. The essential role of the CTC layer is to calculate at each
time-step the posterior probability of an output (character class) for each unsegmented input
sequence. It only requires presenting the feature vectors sequence side by side the target
sequence of characters during the training phase.

Figure 15 shows the general architecture used in the classification step. It takes as input
the text line image and gives as an output the corresponding text transcription without having
to perform an explicit segmentation

3 Experimental results

This section is devoted to presenting the results. We start by giving an overview of the
database and the evaluation measures used. Next, we study the impact of different param-
eters and configurations on the results of the recognition. Finally, we compare the results
obtained with those obtained by other existing systems on the same database.

3.1 Datasets and evaluationmeasures

In order to evaluate the performance of the proposed system, we perform the experiments
on the ICDAR2015 Smartphone document OCR dataset [7]. This database contains 12100
images, which are separated into two sub-bases: the sample database (3630 images) and
the test database (8470). The text format is grouped as a single column with a font and a
particular size in each image of the database. The images are acquired by Two smartphones
(Samsung Galaxy S4 and Nokia Lumia 920) in diverse conditions of lighting, blur and
perspective. In our study, the training phase is carried out on the Sample dataset, which have
a total of 162186 lines after segmentation, while the testing phase is performed using test
set (335740 lines).

All our experiments were performed on an Ubuntu 16.04 LTS (64 bit) operating sys-
tem installed on a computer with Intel Core i7 − 4770 CPU, 16 Go RAM and NVIDIA
GeForce GTX 980 4GO. Matlab r2014 environment is used to implement the steps of pre-
processing, baseline correction and normalization. In respect of the features extraction and
classification step, we have used the powerful deep learning framework T orch7.

The recognition accuracy percentage (CRA %) metric is used to evaluate the performance
of the proposed system. The CRA is determined using the editing distance (Levenshtein
Distance). This distance is estimated by counting the minimum number of characters that

Multimedia Tools and Applications (2019) 78:26453–26481 26471

Fig. 15 Figure 7: General overview of the CNN-BRNN architecture. The architecture includes three main
parts: 1) CNN model that extracts a sequence of feature vectors from the input text-line image; 2) BRNN
network (input, hidden and output layers), which predicts the corresponding class of each feature vector at
each time step; 3) CTC layer, which transforms the sequence of output predictions into the final sequence of
characters

can be inserted, deleted, and substituted to correct the result text of the recognition phase
and have the same text of the corresponding terrain truth. Therefore, the CRA is calculated
as follows:

CRA = n − ED

n
× 100 (16)

Edit distance = ED = I + D + S (17)

Where n represent the total number of characters in the ground truth text, I , D and S

are respectively the numbers of characters inserted, deleted and substituted in the output
sequence of text of the proposed system.

3.2 Parameter Setup

The optimal performance of a system implies a rigorous selection of parameters. In our
case, four parameters are to be adjusted to obtain optimal values. The first parameter refers
to the CNN model used in the features extraction step. The following parameter is related
to the architecture of RNN (unidirectional or bidirectional) used in the classification step.
The other two are related to the type of the memory block (GRU or LSTM) and the number
of memory units in the hidden layer of RNN.

26472 Multimedia Tools and Applications (2019) 78:26453–26481

Table 2 Comparison of character recognition accuracy with different CNN models and RNN architectures

Features extraction Classification Training (%) Test (%)

CNN4×32 RNN 86.40 78.16

BRNN 90.73 84.96

CNN8×32 RNN 92.32 88.03

BRNN 95.80 94.49

CNN16×32 RNN 90.59 87.21

BRNN 95.18 92.13

The first evaluation focuses on the two first parameters. Indeed, we have evaluated and
compared three CNN models: CNN4×32, CNN8×32 and CNN16×32. The three models are
used in the features extraction phase, and each one of the three was combined in the classi-
fication stage with either a unidirectional recurrent neural network RNN or a bidirectional
recurrent neural network BRNN. Therefore, we will have 6 architectures that will be eval-
uated on the training and testing datasets. Results obtained by different architectures are
presented in Table 2. On the basis of these results, we can notice that the model CNN8×32
has achieved the best performance compared to the models CNN4×32 and CNN16×32. More
precisely, the first model CNN4×32 combined with RNN or BRNN has achieved a CRA

of 78.16% and 84.96% respectively. The second model CNN8×32 combined with RNN
or BRNN has reached a CRA of 88.03% and 94.49% respectively. While the third model
(CNN16×32) that has combined with RNN or BRNN has achieved a CRA of 87.21% and
92.13% respectively. These results clearly demonstrate that applying a deep convolutional
neural network on a frame with a size of 4 × 32 pixels not perform better. This is due to the
fact that this frame is small in size and poor in content, which will generate features that
wouldn’t aid to discriminate correctly the classes of characters in the classification step. We
can also note that increasing the size of a frame will not necessarily improve significantly
the CRA, and can demand a large amount of computation. Regarding the classification
step, the results prove that unidirectional RNN perform worse than bidirectional BRNN.
This confirms that using the past context side by side with the future context is important
to predict the appropriate transcription of the input sequence of feature vectors. Therefore,
we decide to combine the CNN8×32 model with BRNN architecture to carry out the next
experiments.

The main purpose of the second experiment is to study the influence of choice of the
memory block (GRU or LSTM) and the number of memory units in the hidden layer (size of
the hidden layer) on both the character recognition accuracy and the time consuming during
the training phase. For this reason, we conducted a series of four tests with two models of a
BRNN; one model contains the GRU memory block, and the other LSTM. For each model,
we test various hidden layer sizes: 100, 150, 200 and 250. These sizes are chosen on the one
hand to minimize the recognition error rate of a BRNN − GRU or BRNN − LST M , and
on the other hand to find the optimal size.

Figure 16 illustrates the comparison of the recognition error rate curves of the BRNN −
GRU and BRNN − LST M models with different sizes. The training time after 20000
iterations with respect to the size of the hidden layer is shown in Fig. 17.

From the results, it can be noted that the type and number of the memory blocks in the
hidden layer affect the recognition accuracy in the different tests, and it improves with the
increase of the size of the hidden layer. Indeed, we can deduce from Figs. 16 and 17 two

Multimedia Tools and Applications (2019) 78:26453–26481 26473

(a) 100 Blocks (b) 150 Blocks

(c) 200 Blocks (d) 250 Blocks

Fig. 16 Recognition error curves as a function of the type of memory block and the size of hidden layer

Fig. 17 Training time as a function of the type of memory block and the size of hidden layer

26474 Multimedia Tools and Applications (2019) 78:26453–26481

Table 3 Character recognition accuracy on training and test dataset using CNN8x32 BRNN-LSTM or
CNN8x32 BRNN-GRU architecture with different hidden layer sizes

Architecture Hidden layer size Training (%) Test (%)

CNN4x32 BRNN-LSTM 100 91.98 88.79

150 94.66 93.84

200 96.54 95.36

250 96.71 95.52

CNN4x32 BRNN-GRU 100 94.50 90.92

150 98.40 95.44

200 98.69 97.26

250 98.90 97.28

remarks; first, the BRNN − GRU model outperforms the BRNN − LST M model and
achieves better results in recognition rate. Second, the GRU block converges faster than the
LSTM block and makes it possible to obtain a high recognition rate with less iteration. In
addition, we note that increasing the size of the hidden layer decreases the error rate, but at
the same time, this will lead to increasing the time required for the training phase.

Table 3 shows the results of all experiments on the Sample dataset after 20000 iterations.
The best result is achieved by the model BRNN − GRU that contains a hidden layer of
size 250 units with a CRA of 97.28%, without any significant improvement with more units.
Therefore, we decided to choose the memory block GRU and 200 as the optimal size of the
hidden layer for the rest of this work.

3.3 Comparison with Existing Systems

In this experiment, we evaluate the capacity and robustness of the proposed system by
comparing it to the results of the groups that participated in the ICDAR2015 competi-
tion of smartphone documents OCR [7]. We conducted this comparison by using the same
CNN8×32 − BRNN − GRU system that was evaluated in the previous experiments. The
character accuracy obtained by the proposed system as well as the participated systems in
the ICDAR2015 challenge, are presented Table 4.

The CCC system uses a RNN −LST M model that was trained on both sharp and blurry
text-line image. A RNN − LST M model that trained only on binary text line image has
been employed in the A2iA method. The methods proposed by LDRE and Digiform use the
Abbyy Finereader Engine, whereas CartPerk use the Tesseract OCR Engine to perform the

Table 4 Comparison of the
proposed architecture and
existing methods in terms of
character accuracy

System Character accuracy (%) # Errors per Page

CCC 99.93 2

LRDE 95.85 120

Digiform 95.33 135

A2iA 93.84 178

CartPerk 91.19 254

Finereader 87.61 357

Proposed system 97.28 78

Multimedia Tools and Applications (2019) 78:26453–26481 26475

recognition. All the above-mentioned methods perform the recognition task after applying
the preprocessing stage, while the Finereader method carry out the recognition with Abbyy
Finereader Engine 11 without applying any pre- or post-processing method. All method use
non-learned features that are extracted using hand-crafted feature-based methods.

Table 5 Successful examples. For each example, we show the input text-line image from the original docu-
ment image (input), the result after the preprocessing stage (Pre-p.), the output after the classification stage
(output) and the ground truth (G.T.)

26476 Multimedia Tools and Applications (2019) 78:26453–26481

We notice from the results of all participated methods that the CCC method provides the
best character rate with 99.93% compared to our method which reached 96, 76%. The high
rate of the CCC method can be explained by the fact that the RNN − LST M employed is
trained use a data augmentation technique. Which mean that the classifier is trained using
both the images before and after the preprocessing step. However, as we mentioned ear-
lier the a high computational cost will be required to train the LSTM in addition, it has
trained more times with two types of images and thus would make it computationally very
demanding. The proposed method is more precise compared to the other methods that use
an OCR engine tools (LRDE, Digiform, CartPerk, Finereader) and also the A2iA method

Table 6 Failure examples. For each example, we show the input text-line image from the original document
image (input), the result after the preprocessing stage (Pre-p.), the output after the classification stage (output)
and the ground truth (G.T.)

Multimedia Tools and Applications (2019) 78:26453–26481 26477

that perform the recognition with a RNN −LST M model. In addition, we show the advan-
tage of using the learned features that are extracted by a CNN model. CNN extracts more
efficiently and automatically provides the most relevant features thanks to its deep architec-
ture. It achieves better performance than other methods which incorporate hand-crafted and
non-learned features.

Tables 5 and 6 illustrate some examples of preprocessing and recognition results when
the proposed system is applied to various input text-line images. In Table 5, the text con-
tained in the image-lines has been successfully preprocessed and recognized in different
cases of sizes, colors, styles, lights, perspective distortions and presence of skewed or
slanted degradation. In Table 6, the input images are affected by focus or motion blur
because of unfocused camera. Consequently, the recognition errors are occurred due to
degraded text quality.

4 Conclusion

In this paper, we have presented a novel system based on a combination of Deep Convo-
lutional Neural Network (CNN) and Recurrent Neural Network (RNN) in order to build a
text recognition architecture in the document images obtained by a smartphone. The sys-
tem begins with a preprocessing step that detects and prepares the text-lines images. Then,
different CNN models were explored to extract discriminative features from each text-
line image. Moreover, we utilize a BRNN that integrated a GRU or LSTM memory block
and compare the character recognition accuracy results with the various size of hidden
layer. The experiments indicate that the CNN8×32 performs better when combined with the
BRNN − GRU architecture and achieves a high recognition rate with less iteration and
computation time.

In the future work, we would like to improve the recognition results by adding more
efficient methods to address the problem of blur distortion. We are also planning to propose
a language model and a dictionary, which will be integrated into the post-processing phase
and will lead to increased recognition rates as well.

References

1. Ahmad I, Rothacker L, Fink GA, Mahmoud SA (2013) Novel sub-character hmm models for arabic text
recognition. In: 2013 12th International Conference on Document Analysis and Recognition (ICDAR),
IEEE, pp 658–662

2. Antonacopoulos A, Clausner C, Papadopoulos C, Pletschacher S (2015) Icdar2015 competition on
recognition of documents with complex layouts-rdcl2015. In: 2015 13th International Conference on
Document Analysis and Recognition (ICDAR), IEEE, pp 1151–1155

3. Bahi HE, Zatni A (2017) Segmentation and recognition of text images acquired by a mobile phone.
International Journal of Tomography & SimulationT M 30(4):95–107

4. Banumathi KL, Jagadeesh Chandra AP (2016) Line and word segmentation of kannada handwritten text
documents using projection profile technique. In: 016 international conference on Electrical, Electronics,
Communication, Computer and Optimization Techniques (ICEECCOT), IEEE, pp 196–201

5. Bertolami R, Bunke H (2008) Hidden markov model-based ensemble methods for offline handwritten
text line recognition. Pattern Recogn 41(11):3452–3460

6. Bukhari SS, Shafait F, Breuel TM (2011) Improved document image segmentation algorithm using
multiresolution morphology. In: Document Recognition and Retrieval XVIII, vol 7874. International
Society for Optics and Photonics, pp 78740D

26478 Multimedia Tools and Applications (2019) 78:26453–26481

7. Burie J-C, Chazalon J, Coustaty M, Eskenazi S, Luqman MM, Mehri M, Nayef N, Ogier J-M, Prum S,
Rusiñol M (2015) Icdar2015 competition on smartphone document capture and ocr (smartdoc). In: 2015
13th International Conference on Document Analysis and Recognition (ICDAR), IEEE, pp 1161–1165

8. Canny J (1987) A computational approach to edge detection. In: Readings in Computer Vision, Elsevier,
pp 184–203

9. Castro DMR, Revel A, Ménard M (2015) Document image analysis by a mobile robot for autonomous
indoor navigation. in: 2015 13th International Conference on Document Analysis and Recognition
(ICDAR), IEEE, pp 156–160

10. Chen S, Zhang C, Dong M (2018) Deep age estimation: From classification to ranking. IEEE
Transactions on Multimedia, 20(8)

11. Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks
on sequence modeling. arXiv:1412.3555

12. El Bahi H, Zatni A (2016) Pre-processing of document images obtained with a smartphone. International
Review on Computers and Software 11(12):1187–1198

13. Elman JL (1990) Finding structure in time. Cogn Sci 14(2):179–211
14. Eskenazi S, Gomez-Krämer P, Ogier J-M (2017) A comprehensive survey of mostly textual document

segmentation algorithms since 2008. Pattern Recogn 64:1–14
15. Espana-Boquera S, Castro-Bleda MJ, Gorbe-Moya J, Zamora-Martinez F (2011) Improving offline

handwritten text recognition with hybrid hmm/ann models. IEEE Trans Pattern Anal Mach Intell
33(4):767–779

16. Gllavata J, Ewerth R, Freisleben B (2004) Text detection in images based on unsupervised classification
of high-frequency wavelet coefficients. In: ICPR 2004. Proceedings of the 17th International Conference
on Pattern Recognition, 2004, vol 1. IEEE, pp 425–428

17. Granell E, Chammas E, Likforman-Sulem L, Martı́nez-Hinarejos CD, Mokbel C, Cı̂rstea B-I (2018)
Transcription of spanish historical handwritten documents with deep neural networks. Journal of Imaging
4(1):15

18. Graves A, Fernández S, Gomez F, Schmidhuber J (2006) Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International
Conference on Machine Learning, ACM, pp 369–376

19. Graves A, Schmidhuber J (2005) Framewise phoneme classification with bidirectional lstm and other
neural network architectures. Neural Netw 18(5-6):602–610

20. Graves A, Schmidhuber J (2009) Offline handwriting recognition with multidimensional recurrent neural
networks. in: Advances in Neural Information Processing Systems, pp 545–552

21. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
22. Huang W, Yu Q, Tang X (2014) Robust scene text detection with convolution neural network induced

mser trees. in: European Conference on Computer Vision, Springer, pp 497–511
23. Keysers D, Deselaers T, Gollan C, Ney H (2007) Deformation models for image recognition. IEEE Trans

Pattern Anal Mach Intell 29(8):1422–1435
24. Keysers D, Deselaers T, Rowley HA, Wang L-L, Carbune V (2017) Multi-language online handwriting

recognition. IEEE Trans Pattern Anal Mach Intell 39(6):1180–1194
25. Khare V, Shivakumara P, Raveendran P (2015) A new histogram oriented moments descriptor for multi-

oriented moving text detection in video. Expert Syst Appl 42(21):7627–7640
26. Kim BS, Koo HI, Cho NI (2015) Document dewarping via text-line based optimization. Pattern Recogn

48(11):3600–3614
27. Kozielski M, Doetsch P, Ney H (2013) Improvements in rwth’s system for off-line handwriting recog-

nition. In: 2013 12th International Conference on Document Analysis and Recognition (ICDAR), IEEE,
pp 935–939

28. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436
29. Li J, Liang X, Shen SM, Xu T, Feng J, Yan S (2018) Scale-aware fast r-cnn for pedestrian detection.

IEEE Trans Multimedia 20(4):985–996
30. Liang J, Doermann D, Li H (2005) Camera-based analysis of text and documents: a survey. Int J Doc

Anal Recognit (IJDAR) 7(2-3):84–104
31. Liu C, Yu Z, Wang B, Ding X (2015) Restoring camera-captured distorted document images. Int J Doc

Anal Recognit (IJDAR) 18(2):111–124
32. Liu X, Wang W (2015) An effective graph-cut scene text localization with embedded text segmentation.

Multimed Tools Appl 74(13):4891–4906
33. Liu Z, Zhang C, Tian Y (2016) 3d-based deep convolutional neural network for action recognition with

depth sequences. Image Vis Comput 55:93–100
34. Maalej R, Tagougui N, Kherallah M (2016) Online arabic handwriting recognition with dropout applied

in deep recurrent neural networks. In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS),
IEEE, pp 417–421

http://arxiv.org/abs/1412.3555

Multimedia Tools and Applications (2019) 78:26453–26481 26479

35. Messina R, Louradour J (2015) Segmentation-free handwritten chinese text recognition with lstm-rnn.
In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), IEEE, pp
171–175

36. Morillot O, Likforman-Sulem L, Grosicki E (2013) New baseline correction algorithm for text-line
recognition with bidirectional recurrent neural networks. J Electron Imaging 22(2):023028

37. Nagabhushan P, Alaei A (2010) Tracing and straightening the baseline in handwritten persian/arabic
text-line: a new approach based on painting-technique. Int J Comput Sci Eng 2(4):907–916

38. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings
of the 27th International Conference on Machine Learning (ICML-10), pp 807–814

39. Namboodiri AM, Jain AK (2007) Document structure and layout analysis. In: Digital Document
Processing, Springer, pp 29–48

40. Nayef N, Luqman MM, Prum S, Eskenazi S, Chazalon J, Ogier J-M (2015) Smartdoc-qa: a dataset for
quality assessment of smartphone captured document images-single and multiple distortions. in: 2015
13th International Conference on Document Analysis and Recognition (ICDAR), IEEE, pp 1231–1235

41. Naz S, Umar AI, Ahmad R, Ahmed SB, Shirazi SH, Siddiqi I, Razzak MI (2016) Offline cursive urdu-
nastaliq script recognition using multidimensional recurrent neural networks. Neurocomputing 177:228–
241

42. Razak Z, Zulkiflee K, Idris MYI, Tamil EM, Noor MNM, Salleh R, Yaakob M, Yusof ZM, Yaacob M
(2008) Off-line handwriting text line segmentation: a review. International Journal of Computer Science
and Network Security 8(7):12–20

43. Rehman A, Saba T (2014) Neural networks for document image preprocessing: state of the art. Artif
Intell Rev 42(2):253–273

44. Retsinas G, Louloudis G, Stamatopoulos N, Gatos B (2016) Keyword spotting in handwritten documents
using projections of oriented gradients. In: 2016 12th IAPR Workshop on Document Analysis Systems
(DAS), IEEE, pp 411–416

45. Roy PP, Bhunia AK, Das A, Dey P, Pal U (2016) Hmm-based indic handwritten word recognition using
zone segmentation. Pattern Recogn 60:1057–1075

46. Saha S, Basu S, Nasipuri M (2015) ilpr: an indian license plate recognition system. Multimed Tools Appl
74(23):10621–10656

47. Scherer D, Müller A, Behnke S (2010) Evaluation of pooling operations in convolutional architectures
for object recognition. In: Artificial Neural Networks–ICANN 2010, Springer, pp 92–101

48. Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Trans Signal Process
45(11):2673–2681

49. Shekar BH, Smitha ML, Shivakumara P (2014) Discrete wavelet transform and gradient difference based
approach for text localization in videos. In: 2014 fifth International Conference on Signal and Image
Processing (ICSIP), IEEE, pp 280–284

50. Shi B, Bai X, Yao C (2017) An end-to-end trainable neural network for image-based sequence recogni-
tion and its application to scene text recognition. IEEE Trans Pattern Anal Mach Intell 39(11):2298–2304

51. Smith RW (2009) Hybrid page layout analysis via tab-stop detection. In: 2009 10Th International
Conference on Document Analysis and Recognition, IEEE, pp 241–245

52. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to
prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

53. Su B, Lu S (2014) Accurate scene text recognition based on recurrent neural network. In: Asian
Conference on Computer Vision, Springer, pp 35–48

54. Sueiras J, Ruiz V, Sanchez A, Velez JF (2018) Offline continuous handwriting recognition using
sequence to sequence neural networks. Neurocomputing 289:119–128

55. Tang Y, Wu X, Bu W (2014) Text line segmentation based on matched filtering and top-down grouping
for handwritten documents. In: 2014 11th IAPR International Workshop on Document Analysis Systems
(DAS), IEEE, pp 365–369

56. Tran TA, Na IS, Kim SH (2016) Page segmentation using minimum homogeneity algorithm and adaptive
mathematical morphology. Int J Doc Anal Recognit (IJDAR) 19(3):191–209

57. Ullah A, Ahmad J, Muhammad K, Sajjad M, Baik SW (2018) Action recognition in video sequences
using deep bi-directional lstm with cnn features. IEEE Access 6:1155–1166

58. Wang X, Song Y, Zhang Y, Xin J (2017) A hierarchical recursive method for text detection in natural
scene images. Multimed Tools Appl 76(24):26201–26223

59. Wang X, Yi G, Wang Y, Yu J (2017) Automatic breast tumor detection in abvs images based on
convolutional neural network and superpixel patterns. Neural Comput Applic, pp 1–13

60. Wei Y, Xia W, Lin M, Huang J, Ni B, Dong J, Zhao Y, Yan S (2016) Hcp: a flexible cnn framework for
multi-label image classification. IEEE Trans Pattern Anal Mach Intell 38(9):1901–1907

26480 Multimedia Tools and Applications (2019) 78:26453–26481

61. Yan C, Xie H, Chen J, Zha Z, Hao X, Zhang Y, Dai Q (2018) Cross-modality bridging and knowledge
transferring for image understanding. IEEE Trans Multimedia Early Access

62. Yan C, Xie H, Chen J, Zha Z, Hao X, Zhang Y, Dai Q (2018) A fast uyghur text detector for complex
background images. IEEE Trans Multimedia 20(12):3389–3398

63. Yan C, Xie H, Liu S, Yin J, Zhang Y, Dai Q (2018) Effective uyghur language text detection in complex
background images for traffic prompt identification. IEEE Trans Intell Transp Syst 19(1):220–229

64. Ye Q, Doermann D (2015) Text detection and recognition in imagery: a survey. IEEE Trans Pattern Anal
Mach Intell 37(7):1480–1500

65. Yin X-C, Zuo Z-Y, Tian S, Liu C-L (2016) Text detection, tracking and recognition in video: a
comprehensive survey. IEEE Trans Image Process 25(6):2752–2773

66. Yousfi S, Berrani S-A, Garcia C (2017) Contribution of recurrent connectionist language models in
improving lstm-based arabic text recognition in videos. Pattern Recogn 64:245–254

67. Zhang Y-D, Dong Z, Chen X, Jia W, Du S, Muhammad K, Wang S-H (2017) Image based fruit category
classification by 13-layer deep convolutional neural network and data augmentation. Multimedia Tools
and Applications, pp 1–20

68. Zhu Y, Yao C, Bai X (2016) Scene text detection and recognition: recent advances and future trends.
Front Comp Sci 10(1):19–36

69. Zhu Y, Zhang K (2017) Text segmentation using superpixel clustering. IET Image Process 11(7):455–
464

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Hassan El Bahi received a Ph.D. degree in the field of Artificial Intelligence and Image Processing, as well as
a Master’s in Software Engineering of Distributed Systems from the Faculty of sciences University Ibn Zohr,
Agadir, Morocco. He is currently an assistant professor in the national school of business and management at
Cadi Ayyad University, Marrakech, Morocco. His research interests involve machine learning, deep learning,
document image processing and recommender systems.

Multimedia Tools and Applications (2019) 78:26453–26481 26481

Abdelkarim Zatni was educated at the Telecom Bretagne University France; He obtained a PhD at the
National School of Engineers of Brest France in 1994. He has been teaching for 28 years. He is currently
a Professor in the department of physics of the faculty of sciences, Ibn Zohr University. He conducts his
research and teaches in computer science and Telecommunications.

	Text recognition in document images obtained by a smartphone based on deep convolutional and recurrent neural network
	Abstract
	Introduction
	Proposed system
	Preprocessing
	Text detection
	Perspective correction
	Noise removal
	Segmentation

	Baseline correction
	Normalization
	Features extraction
	Convolutional layers
	Nonlinear layer
	Max-pooling layers
	Fully connected layerss
	Methodology adaptation

	Classification

	Experimental results
	Datasets and evaluation measures
	Parameter Setup
	Comparison with Existing Systems

	Conclusion
	References

