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Abstract

Common tracking algorithms only use a single feature to describe the target appearance,
which makes the appearance model easily disturbed by noise. Furthermore, the tracking per-
formance and robustness of these trackers are obviously limited. In this paper, we propose
a novel multiple feature fused model into a correlation filter framework for visual track-
ing to improve the tracking performance and robustness of the tracker. In different tracking
scenarios, the response maps generated by the correlation filter framework are different for
each feature. Based on these response maps, different features can use an adaptive weight-
ing function to eliminate noise interference and maintain their respective advantages. It
can enhance the tracking performance and robustness of the tracker efficiently. Meanwhile,
the correlation filter framework can provide a fast training and accurate locating mecha-
nism. In addition, we give a simple yet effective scale variation detection method, which
can appropriately handle scale variation of the target in the tracking sequences. We evalu-
ate our tracker on OTB2013/0TB50/OBT2015 benchmarks, which are including more than
100 video sequences. Extensive experiments on these benchmark datasets demonstrate that
the proposed MFFT tracker performs favorably against the state-of-the-art trackers.
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1 Introduction

Visual object tracking is one of the most fundamental and challenging research problems
in the computer vision area for its numerous applications in human-computer interac-
tion, video surveillance, driverless vehicle, etc. Despite having achieved enormous signs of
progress over the past decades, object tracking remains more challenges for designing a
tracker which can handle critical situations (such as illumination variation, scale variation,
deformation, occlusion, etc) perfectly.

There are many different tracking frameworks that attempt to improve tracking perfor-
mance in different ways. Sparse representation based trackers by finding the best candidate
with minimal reconstruction error using target templates [3, 4, 26]. DCFs-based trackers
approximate the dense sampling scheme by generating a circulant matrix, of which each
row denotes a circular shift of a base sample [12, 14, 23, 24, 60]. Deep learning based
trackers often use CNN features and neural network structure to improve tracking per-
formance [34, 37, 45, 47, 56]. Saliency depicts as an evaluation mechanism have been
introduced into detection and tracking tasks in recent years [27, 28, 49]. In [49], Wang et al.
present a salience-based tracking method, which can estimate object salience and environ-
ment salience of extracted visual features for robust visual tracking. For visual tracking, the
appearance model is a crucial factor for object representation. Various feature descriptors
with effective appearance models have been proposed in numerous literatures [21, 22, 43,
48, 51]. Single feature descriptor has been widely used in appearance based visual track-
ing models [10, 20, 24, 42, 44] for their computational convenience. The single feature is
easily disturbed by noise, however, can not describe the appearance of the object target
clearly. Due to different features can provide complementary information [18, 40, 52, 63],
this paper is desirable to combine multiple feature descriptors to improve visual tracking
performance.

Recently, several visual tracking methods based on multiple feature fusion have been
established. The famous ensemble tracking [2] combines the HOG and RGB by using
Adaboost algorithm. Ma et al. [41] using multiple feature fusion via weighted entropy to do
data-adaptive visual tracking problem. A multi-view correlation filters tracker for enhancing
the robustness of the tracker has been proposed in literature [33]. There are also some mul-
tiple feature fusion methods under the semi-supervised learning framework [62] and sparse
representation-based framework [25]. Although those methods achieved some success, all
of them are either limited by a larger computational cost or produce an unsatisfactory
tracking performance.

To relieve these problems, we propose a novel multiple features fused tracking method
into a correlation filter framework. This fusion method uses a simplest but effective adaptive
weighted average of each feature, and the weight adaptively determined by the maximum
response value of each feature. By using the complementarity among different features
under different tracking scenarios, our model can eliminate the disadvantage of single fea-
ture easily affected by noise, which can enhance the ability to represent the appearance of
a target. Based on the correlation filter framework, we can get the central coordinate of
the target by finding the maximum response value in the response map for each feature.
And then, through the adaptive weighted average calculation of the coordinates of the target
center in each feature, the specific position of the target can be obtained. Meanwhile, the
correlation filter framework provides a fast calculation mechanism, which can increase the
speed of our tracking method.

@ Springer



Multimedia Tools and Applications (2019) 78:27271-27290 27273

The main contributions of this paper are summarized below:

— Based on the correlation filter framework, we propose a novel multiple feature
fused model for visual object tracking. This model can adaptively combine these
advantages of different features perfectly, and handle the disadvantage of a single fea-
ture which is susceptible to noise interference effectively. Meanwhile, the correlation
filter framework is efficient for multiple feature fusion operation.

—  We present a simple but effective scale variation detection mechanism based on the
different response value between adjacent frames. This mechanism can enhance the
robustness of our tracker in scale variation tracking sequences.

—  On OTB evaluation benchmarks, our proposed algorithm achieves robust and promising
tracking performance.

The rest of this paper is organized as follow. We first review some related works in
Section 2, and present an adaptive weighted multiple features fused tracker via the corre-
lation filter framework in Section 3, which includes the fundamental introduce about the
KCF tracker, the adaptive weighted multiple features fused model, and the scale evalu-
ation mechanisms. Section 4 describes the implementation details, the evaluation of our
approach on comprehensive benchmark datasets and the comparison with some correlative
and representative trackers. Finally, we give a brief conclusion about our work in Section 5.

2 Related works

As an extensive review on multi-feature learning and correlation filter framework beyond
the scope of this paper, we review the works related to our approach including multiple
feature based trackers and correlation filter based trackers.

2.1 Multiple feature based trackers

To deal with the limitations of one single feature in object visual tracking, several multiple
feature fusion based visual tracking methods are established [15, 32, 33, 35, 46, 53, 54].
Galoogabhi et al. [15] propose a multi-channel detector/filter in the frequency domain, which
can improve the tracking performance obviously. In [46], Tang et al. derive a multi-kernel
correlation filter based tracker which fully takes advantage of the invariance-discriminative
power spectrums of various features to further improve the performance. Yin et al. [53] pro-
pose a generic likelihood map fusion framework to combine some different features into a
fused soft segmentation which is suitable for mean-shift tracking. Li et al. [33] give a multi-
view correlation model to enhances the robustness of the tracker. Qi et al. [45] suggest a
hierarchical CNN based tracking framework, which takes full advantage of different fea-
tures and uses an adaptive Hedge way to hedge these trackers into a stronger one. Literature
[30] formulate the tracking problem as some basic observation and motion models corre-
sponding to several features. The multiple basic models are constructed by SPCA and each
of them is integrated with an interactive Markov Chain Monte Carlo scheme. These trackers
achieved some good or robust performances, however, brought high computational costs.

2.2 Correlation filter based trackers

Correlation filter has been widely used in object detection, recognition, etc. Since Bolme
et al. [7] propose the MOSSE tracker, correlation filters have been studied as a robust and
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efficient method to object visual tracking problem. Most improvements for the MOSSE
tracker include the incorporation of kernel skill and HOG features [23, 59], the color name
features [5, 12], the sparse representation [58], adaptive scale [10, 31, 35], and the inte-
gration of deep features [47, 56]. Henriques et al. [23] propose a CSK tracker and it can
provide pretty performance and high calculation speed. In literature [24], the KCF method
further improves the efficiency of CSK tracker by using HOG features and using kernel
skill to transform the non-linear regression problem into linear regression. In [58], Zhang
et al. exploit circulant structure property of target template to improve sparse representation
based trackers. Yuan et al. [55] suggest a particle filter re-detection model in correlation fil-
ter framework, which can effectively reduce the occurrence of target loss by the tracker. In
[11], a spatially regularized correlation filters method have been proposed to learn the filters
from training examples with large spatial supports. Some local patches or parts based corre-
lation filters trackers also have been developed [36, 38, 39] to improve the robustness of the
trackers. Li et al. [36] introduce a reliable patch to exploit local contexts for tracking task.
Liu et al. [38] propose a part based structural correlation filter to preserve the target structure
for visual tracking. Although the correlation filter based trackers get better performance at
current benchmarks and remaining computationally efficient, one single feature has its lim-
itations and easily interfered by the noise, which cannot locate the object target accurately.
In this paper, we propose an adaptive multi-features fused tracker via the correlation filter
framework. Compared with these single feature correlation filter based trackers, our tracker
exploits multiple features to enhance the robustness in dealing with various changes of the
moving target and selects more discriminative features to ensure the tracking accuracy.

3 The adaptive weighted multiple features fused tracking method

According to use a single feature, the target tracking is always easy to be disturbed by noise,
so that the tracking performance cannot reach the ideal state. In order to achieve a pretty
tracking performance, we propose a novel multiple features fused tracker in correlation
filters framework in this section.

Correlation filter based tracker using the information of image / and a filter w to get
the center coordinate x (i, j) of object target. The image is obtained from the m-th feature,
and the target center coordinates are denoted as x,, (i, j). In general, according to the Bayes
formula, we know that:

M
P(x|I) = / P(x|B)P(B|I)dB ~ Zme(x|Bm), (1)

m=1

where M represents the number of features, w,, demotes confidence in characteristic
likelihood distributions, w,, = P(By|I), and Y_ w, = 1.

3.1 Kernelized correlation filter tracker

The KCF [24] tracker is a representative of tracking by detection. It trains a classifier with
all sub-windows of an image by dense sampling. Using kernel trick can make the data matrix
of samples become highly structured. Meanwhile, using a fast Fourier transform can make
the convolution of two images computed by an efficient element-wise product in the Fourier
domain.
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The KCF tracker uses a filter w, which is trained on an image patch x of M x N pix-
els with HOG features to model the appearance of the target. Let the circular shifts of
Xmn, (mn) € {0,1,..M — 1} x {0, 1, ..., N — 1} as training samples for the filter with
Gaussian function label y,, ,. Minimizing the error between the training sample x,, , and
the regression label y,, ,, we can get the filter w as:

w = argmin ) | (¢ Wnn), w) = y(m, m)* + dy ], &)

where ¢ represents the mapping to kernel space, (.) denotes the inner product, and A is a
regularization parameter. Since the label y;, , is not binary, the filter w learned from the
training samples contains the coefficients of Gaussian ridge regression.

Using Fast Fourier Transform (FFT) to compute the Gaussian ridge regression problem,
the objective function can rewrite as w = Zm!n am, n)¢(xm, ), thus (2) can be acquired

by:
_ -1 F) >
o=F (]—'(kx) i) ©)

where F and F~! denotes denotes FFT and its inverse transformation (IFFT), respectively.
In Fourier domain, the kernel correlation k¥ = « (x,, ,, x) is computed by Gaussian kernel.
The vector « contains all the «,, , coefficients.

In the tracking process, an image patch z with the same size of x is cropped out in the
new frame. And then, the response score can be calculated by:

f@) = F (FG) o F@), “)

where f(z) denotes the response map of patch z, © denotes the element-wise product,
k* = Kk (zmn, X) and the X is the learned target appearance. When get f(z), we can find the
position of maximum response value in the map and let the position as the center coordinate
of the target. Train new filter and update parameters according to the current position. After
that, the steps are repeated so that the target tracking can be achieved in the entire sequence.

Although, with the circulate data matrices and the efficient element-wise product, the
KCEF achieves a fast and satisfactory performance. The single feature has its limitation in
dealing with various changes in tracking sequences yet. In order to obtain a robust and pretty
performance, we propose a novel multiple feature fused model in the efficient KCF tracking
framework.

3.2 Adaptive weighted multiple features fused model

A multiple features fused model should exploit the complementary information of different
features. The selection of features and fusion method directly affect the performance of the
multiple feature fused model. For the correlation filter, the different features are suitable for
fusion, due to the maximum response value which is used to determine the coordinates of
the target. The simplest tracking instance of ¢-th frame can be seen in Fig. 1.

We propose to unify different feature under a probabilistic framework. For each feature ¢
(wheret = 1, 2, ..., k), its probability distribution is pl?j and ) pfj =1,Gj)€{l,2,..M}x
{1,2...., N}, where M x N is the size of an image patch. By using the correlation filter
framework for visual tracking, we can get the coordinates (i, j) of the center of object
target. Next, we choose these centers coordinates from the response map of each feature
to determine the center coordinates of the target. For the sake of simplicity, we acquire
the final coordinates of the target by the adaptively weighted average of each coordinate
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Fig. 1 The tracking framework of our approach. For ¢-th frame, different features are extracted from the
original image within the preset search window(in our approach, we exploit HOG, CN, Gray features to do
fusing). With correlation filtering, we can obtain the response maps of the three features. Different response
maps show different maximum response values, due to each feature has different discriminatory powers in a
variety of tracking scenarios. After the three response maps are fused with the fusion model, a more accurate
and discriminative response map can be obtained, and the object target can be located accurately

position [24]. After multiple features fused, the center coordinates of the target are showed
as follows:

pi = A1 * pil + A2 % pia + ... + Ay * pin,

5.3 0 =1, 5)

where p; denotes the i-th frame’s center coordinates, p;; is the i-th frame’s center
coordinates of j-th feature, A ; is the corresponding weighting factors of j-th feature.
Traditionally, a good feature can obtain large response values in correlation filtering
relatively, so the quality of the feature is very significant for determining the final target
position. Based on this opinion, we adopt the maximum response values of each feature in
the correlation filter to adaptively acquire its corresponding weight to get the target position,
and the corresponding weight can calculate as:
a = R 6)
J = Zm Rj ’
where m R denotes the maximum response value of j-th feature.
Since the weights obtained by simple weighted averaging can lead to excessive positional
weights determined by the interference characteristics, we employ a simple penalty term

1 : .
I to solve this problem:

ij
ek XmR;
!
3 = gi ©
J

where )L;’ denotes the modified adaptive weighting factor of j-th feature, n denotes the

[
Ay =

penalty term coefficient. The purpose of the penalty item is to obtain a large weight

r]*rll R;
for the feature with a large response value, and to obtain a small weight for the feature with
a small response value, respectively.

In this approach, we select the features from edge, color and intensity, which correspond
to features of HOG [24], Color Names [9] and gray value. The HOG features are robust
to illumination and deformation, which obtains excellent results in human detection and
tracking [19, 24]. Color Names and gray value are robust to motion blur, which gives good

results in image retrieval [9]. Given ¢-th frame image and the correlation filters F', we can
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get the center coordinates of the target with each feature: p. = F.(1), pp = Fp(I), pg =
Fg(I). After the fusion of color feature and HOG feature, the corresponding coordinates of
the center are:
Deh = he * Fe + Ap * Fp, ®)
where p., denotes the center coordinates by the fusion of color features and HOG features.
After adaptively weighting, the noise of a single feature is filtered out by the response
of another feature, so that the original nature of the target can be better represented. The
other kinds of fusion are given by: pce = A¢ * Fe + Ag % Fy, pen = Ag * Fg + Ap % Fy,
correspondingly. From 5 to 8, we can obtain the objective function of the adaptive weighted
multiple feature fusion model:

Fii(I)mR;
pi = Z ]l( m Ji . 9)
(7 + SmRji) ¥
nxmRji It L —+Y mRj;

”*'"Rji

From the previous description, we can see that the algorithm of multiple feature fusion
only needs an adaptive weighted average of the selected features. From the intuitive point
of view, the corresponding noise of target center position of each feature achieves good
filtering. To fuse the maximum response values of each response map of corresponding
features, we can determine the ultimate goal of the target position. In Fig. 1, it is obvious
that the center point after fusion is more robust. Therefore, the model based on adaptive
weighted multiple feature fusion can effectively improve the robustness of the algorithm.

3.3 Scale evaluation mechanism

Based on the correlation filter tracking framework, by finding the maximum value of the
response map in each image frame, we can only obtain the center position of the object
target. In visual tracking, scale change is one of the most common challenging aspects, how-
ever, which influences the tracking performance directly. In this section, we give a simple
but effective scale evaluation mechanism based on the multiple feature fused model.

For correlation filter based framework, the initial target size set as size; = [k, wi]. And
then, we use the relationship of maximum response value between the current 7-th frame
and previous ¢t — 1-th frame to determine the size of the target in the current frame. In the
case of not affecting the result, simply determine the magnitude of the maximum response
value of the adjacent frame to determine the direction of the target change. By the property
of the Gauss function, we can see that the other conditions remain constant, there is a nega-
tive correlation between the target size and the maximum response value. If the maximum
response value of the current z-th frame is higher than the previous ¢ — 1-th frame, then the
target size decreases. If the maximum response value of the current 7-th frame is lower than
the previous ¢t — 1-th frame, then the target size increases. If the maximum response value of
the current ¢-th frame is the same as the previous ¢t — 1-th frame, then the target size remains
unchanged. Using the change of the target size corresponding to the three features is taken
as the weight to get the size change of the target, and the rate of change is expressed by c.
So, for the size of the target in ¢-th frame can be determined by ¢ — 1-th frame target’s size:

size; = sizej_1 %,
1
= g*(cc'f'ch'i‘cg)’ (10)

where size; denotes the size of target in #-th frame, c, c¢; and ¢, denotes the rate of change
of color feature, HOG feature and gray feature, respectively.
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The scale change of the target will not be too obvious between the adjacent two frames,
so the simple scale reduction is used to update the target scale.

4 Experiments

In order to evaluate the proposed tracker objectively and comprehensively, we test our
tracker on a standard visual tracking benchmark. First, we introduce the algorithm flow and
the experimental environment and details. And then, we give the details and standards of the
experimental evaluation. Finally, the performance of our tracker is validated mainly based
on the OTB2013/0TB50/OBT2015[50, 51] benchmarks, which contains more than 100 test
video sequences.

Our method is implemented in MATLAB and the experiments run on a PC with an Intel
Core-i3-4170 CPU (3.70 GHz) and 8 GB RAM.

4.1 Implementation details

In this section, we give a description of the whole tracking process and parameter settings.
First, we can extract different features from the given initial bounding box in the first frame
and trains the corresponding filters. And then, we run the tracker iteratively on each frame
in the tracking sequences. In each iteration, we can determine the appropriate scale size and
locate the center position of the target through the multiple features fused model, succes-
sively. Finally, we update the correlation filter models in a linear way. The whole process of
our method can be seen in Algorithm 1.

Algorithm 1 The multiple feature fused tracking framework(MFFT).

1: Inputs: the initial target bounding box b , the target size sz, the search window sz-
window,the penalty term coefficient ), the initial tracking frame /; , the model learning
rate y.
Outputs: The position and scale of target in each frame.
Extract the target features from /1 with area by;
Train the initial models mod; of with (3) and by;
if 1 < T then
(where ¢ is the number of current frame, 7 is the totally number of the tracking frames)
Evaluate the scale change and get the optimal scale factor ¢’ with (12);
Crop out the search window with sz-window * ¢’ from the current frame I, and
extract the features from the search window;
9: Compute the correlation filter response maps of each feature with (4);
10: Calculate objectifunction of multiple feature fusion model with (8), Eq. (10) and
Eq. (11);
11: Get the target position of the current frame ¢ and the current target size with (12);
12: Get the current correlation filter model mod, with the current target and update the
correlation model of each feature as mod;, = (1 — y)mod;— + ymod,:;
13: end if

A A

Parameters setting as follows: The search window size is twice of the target set as sz-
window = 2 % sz, the scale change ratios are set as ¢ = [0.98, 1, 1.02] which depend on
the scale change ratios of different features, and the penalty term coefficient set as n = 25.
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We use the same parameters about the correlation filter as in [24] and the same parameters
about the features as in [33].

4.2 Evaluation criterion

We use central location error (CLE) and Pascal VOC overlap ratio (VOR) to evaluate the
effectiveness of our proposed tracking algorithm [8, 13].

Central position error (CLE): the mean Euclidean distance between the target center loca-
tion coordinates determined by the algorithm and the true values of the artificial markers.
The mean central position error of all frames in the sequence is used to evaluate the overall
performance. In order to rank the performance of each tracking algorithm, authors usually
used 20 pixels as the threshold with central position error are to measure the score. Pascal
VOC overlap rate (VOR) can calculate as:

VOR = Area{BRﬂBg}7 an
Area{Bgr U Bg}
where Bg denotes the bounding-box of the tracking result, Bg denotes the real bounding-
box of the tracking target.

Under the VOR framework, we choose the number of those frames which VOR larger
than the threshold value 6 as the successful frames. The success plot figure shows the
success threshold varies from O to 1 of the ratio of the success number of frames. By com-
paring the area under the success rate curve (AUC), the corresponding algorithms are sorted
accordingly.

In order to evaluate the performance of the algorithm, we use three classes of evaluation
indexes given by OTB2013 [51]: one-pass evaluation (OPE), temporal robustness evaluation
(TRE), and spatial robustness evaluation (SRE). The OPE means for each test sequence in
the evaluation set, only run the tracking algorithm one time, and statistics are over a certain
threshold percentage of heart error and overlap. The TRE means runs 20 times with different
start frames on each video sequence. The SRE means runs 12 times with different spatial
perturbations.

4.3 Evaluation with OTB benchmarks

Datasets The OTB2013 [51] dataset contains 51 different video sequences and categorizes
these sequences with 11 attributes. OTB2015 [50] dataset is an extension of the OTB2013
dataset, which contains 100 different video sequences. OTB50 is a collection of 50 most
challenging sequences selected from the OTB2015 dataset. The 11 attributes including:
out-of-plane rotation (OR), in-plane rotation (IR), occlusion (OCC), scale variation (SV),
illumination variation (IV), background cluster (BC), deformation (DEF), fast motion (FM),
motion blur (MB), out of view (OOV) and low resolution (LR). Each of them has different
sequences.

Baseline evaluation We compared our tracker with all the 29 trackers in OTB2013 bench-
mark including: Frag [1], MIL [3], ASLA [26], TLD [29], Struck [17], L1IAPG [4], CSK
[23], SCM [61], etc. Besides five other representative trackers DSST [10], KCF [24],
MvCFT [33], SAMF [35] and KCF_MTSA [6], are also compared with our tracker. The
KCF [24] tracker is basically using a kernelized correlation filter operating on the HOG
features. The DSST [10] tracker is extending the MOSSE tracker through the robust scale
estimation and obtaining the top rank in performance by outperforming 19 state-of-the-art
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trackers on OTB and 37 state-of-the-art trackers on VOT2014. The MvCFT [33] tracker
based on correlation filters proposed a multi-view model under a unified probabilistic
framework. The SAMF tracker and the KCF_MTSA tracker are two widely used multi-
feature fusion based trackers. The codes and settings are all the same with OTB2013
benchmark, which is widely approved. The comparison results are shown in Fig. 2. Com-
pared with the KCF, MvCFT and DSST tracker, the tracking performance of our proposed
algorithm is significantly improved. Moreover, compared with the SAMF and KCF_-MTSA
tracker, our proposed tracker is very closed to the best tracker both in precision and success
plots. This demonstrates the effectiveness of our designed multi-feature fusion model.

Evaluation per attribute The success and precision plots of each attribute gives in Figs. 3
and 4. As we can see in Fig. 3, our tracker achieves the best performance in the attributes
of MB, DEF, 1V, OCC and OPR. It also achieves close to the best performance in other
attributes. For Fig. 4, our tracker achieves the best performance in the attributes of FM, BC,
DEEF, IV, OCC and OPR. Meanwhile, it achieves the second or third performance in the
attributes of MB, IR, OOV, LR and SV. These advantages benefit from the multiple fea-
ture fused model. For scale variation, our result is very close to the best result (DSST) who
mainly considers the scale evaluations both in success and precision plots. It also shows the
effectiveness of our scale estimation mechanism. For low resolution, our algorithm com-
bines multiple features but the feature has a poor characterization ability, which caused the
unsatisfactory results. Generally speaking, our proposed tracker achieves the best or close
to the best results in almost all the attributes.

Robustness to initialization In order to give sufficient experimental contrast results to ver-
ify the robustness of our tracker, we evaluated it towards different spatial and temporal
initialization using two robustness metrics: TRE and SRE. Fig. 5 shows the overall com-
parison performance on SRE and TRE. From Fig. 5b, we can see that our tracker achieves
the second best performance on AUC success plots, which is close to DSST and better than
KCEF. On precision plots Fig. 5a, our MFFT tracker gets the best performance. From Fig. Sc,

0o , Precision plots of OPE , 0o ‘ Succe;s plots of OPE ,
08 ==KCF_MTSA[0.785]® . == SAMF [0.571]
A= SAMF [0.778] : =~ Ours [0.564]
=== Ours [0.769] o7 \ DSST [0.554] ]
= KCF [0.740] @06 \—MVCFT [0.538] 1
& == DSST [0.737] g 05l (== KCF_MTSA [0.532]|
2 MVCFT [0.728] ﬁ KCF [0.514]
& == Struck [0.656] g %[ —=SCM [0.499]
== SCM [0.649] N o3 == Struck [0.474]
TLD [0.608] 02 TLD [0.437]
==\/TD [0.576] == ASLA [0.434]
0.1 >
0 1’0 26 36 4‘0 50 00 0.‘2 0.4 0.6 0.8 1
Location error threshold Overlap threshold
(a) (b)

Fig.2 Precision and success plots on OTB2013. a The precision plots; b The success plots. The numbers in
the legend indicate the representative precision at 20 pixels for precision plots, and the average area-under-
curve scores for success plots. To illustrate the problem, we only given the top 10 trackers
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Fig. 3 The precision plots of fast motion (FM), background cluster (BC), motion blur (MB), deformation
(DEF), illumination variation (IV), in-plane rotation (IR), low resolution (LR), occlusion (OCC), out-of-plane
rotation (OR), out of view (OOV) and scale variation (SV)

d, we know that both the precision and the success plots show our tracker achieving the
best performance. The results on TRE shows the robustness of our tracker on initialization
in the first frame by shifting or scaling the ground truth. In summary, our MFFT tracker is
effective and achieve a promising result in the visual tracking OTB2013 [51] benchmark.

Comparison to state-of-art trackers To put the tracking performance into perspective, we
compare our tracker with the most recent state-of-the-art trackers including: 1) deep learning
based trackers: HDT [45], CNT [56], CFNet-conv1 [47]; 2) correlation filter based track-
ers: KCF [24], DSST [10], CSK [23], STC [57]; 3) multi-feature based trackers: MvCFT
[33], SAMF [35], KCF_MTSA [6]; and 4) representative trackers: TGPR [16], SCM [61],
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Fig. 4 The success plots of fast motion (FM), background cluster (BC), motion blur (MB), deformation
(DEF), illumination variation (IV), in-plane rotation (IR), low resolution (LR), occlusion (OCC), out-of-plane
rotation (OR), out of view (OOV) and scale variation (SV)

Struck [17]. We analyze the performance of our MFFT tracker with other nine state-of-
the-art tracking algorithms under different attributes in OTB2015 [50]. Table 1 shows the
comparison results on these 11 attributes. From this table, we can know that both in dis-
tance precision rates (DPR) and overlap success rates (OSR), our MFFT tracker achieves
the best or closes the best results under all 11 attributes.

In addition, we use the OTB2013/OTB50/0OTB100 datasets to a quantitative comparison
of distance precision rate (%) (DPR) at a threshold of 20 pixels and overlap success rate
(%) (OSR) at an overlap threshold of 0.5 in Table 2. From this table, we can see that our
MFFT tracker achieves the best or close the best tracking results. Comparing with the corre-
lation filter based trackers: KCF [24], DSST [10], CSK [23], and the representative trackers:
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Fig.5 SRE and TRE precision and success plots on OTB2013. a The precision plots of SRE. b The success
plots of SRE. ¢ The precision plots of TRE. d The success plots of TRE. The numbers in the legend indicate
the representative precision at 20 pixels for precision plots, and the average area-under-curve scores for
success plots. To illustrate the problem, we only given the top 10 trackers

TGPR [16], SCM [61], Struck [17], our tracker have achieved better tracking performance
than these trackers. Comparing with the multi-feature based trackers: MvCFT [33], SAMF
[35], KCF_.MTSA [6], our trackers have achieved similar tracking performance as these
trackers. Even compared with the deep learning based trackers, the tracking performance of
our tracker is also better than the CNT [56] tracker. These advantages are due to our adap-
tive weighted multi-feature fusion model. All the experimental results show that our MFFT
tracker is comparable to other state-of-the-art trackers.

Qualitative comparison Our approach significantly improves the performance compared
with the single feature based trackers in some complex cases. Figure 6 shows a qual-
itative comparison of our approach with some existing methods on some challenging
tracking sequences. Whether the target scale changes (e.g., Carl and Human6) or the tar-
get is occluded (e.g., Girl2 and Tiger2), our tracker can give a better tracking result than
other trackers. Despite no explicit illumination variation handling component, our tracker
performs favorably in cases with illumination variation (e.g., Human?2).
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—Ours =—DSST =——KCF=—=MvCFT =——CNT ~—— TGRP

Fig. 6 Qualitative comparison of our approach with state-of-the-art trackers on the Carl, Girl2, Human2,
Human6, Human7 and Tiger2 videos. Our approach provides consistent results in challenging scenarios, such
as occlusions, fast motion, illumination variation, background clutter and target rotations

5 Conclusion

In this paper, we propose a multiple feature fused tracker in the correlation filter framework
to achieve a pretty performance on OTB2013/0OTB50/0TB2015 benchmarks. The multiple
feature fused model can apply different features to deal with various changes of the target
in the tracking sequences. This method can adaptively exploit the complementary infor-
mation between different features to handle the weakness of a single feature that is easily
susceptible to noise. And the correlation filter can provide an efficient fusing and tracking
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framework. Besides, we give a novel scale evaluation mechanism to deal with the moving
target with scale change in the tracking sequences. The experiment results with different
attributes show the competitive performance of our tracker.
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