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Abstract
Copy-move forgery detection can generally be divided into two categories: block-based or
keypoint-based methods. However, the existing block-based methods are usually lack of efficiency
and the keypoint-based methods have not good detection performance. In this paper, a novel
method using the adaptive keypoint filtering and iterative region merging is proposed for copy-
move forgery detection. First, a feature extraction algorithm is presented to obtain the candidate
keypoint pairs. Subsequently, adaptive keypoint filtering involving adaptive nearest neighbor pair
filtering and outlier filtering is proposed to remove the outliers and obtain the inlier (authentic
keypoint) pairs. The iterative regionmerging involving adaptive region iteration and regionmerging
is proposed to iteratively generate more neighboring keypoint pairs and then merge the image
segmentations (superpixels) to implement the copy-move region matting. Compared with other
state-of-the-art methods, a series of experiments show that the proposed method can overcome
defects and achieve better efficiency while keeping the high detection precision in copy-move
forgery detection even under conditions that include various post-processing distortions.

Keywords Adaptive keypoint filtering . Iterative regionmerging . Copy-move forgery detection

1 Introduction

In recent years, ordinary people have acquired easy access to powerful and easy-to-use image
editing tools, such as Photoshop and so on. These convenient tools can add spice to people’s
lives. However, some malicious users abuse these powerful tools for their ends and tamper
with images without the authors’ permission. These forged images increasingly and negatively
burdened society [26]. One of the most active subtopics in forgery detection involves copy-
move forgery [9, 26], in which a part of an image is copied from single or multiple regions and
then pasted into other parts of the same image to obscure important content. In general, copy-
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move forgery operations are used not just in copying and moving (i.e., translation), but also
includes geometrical distortions and post-processing operations such as scaling, rotation and
compression. Detecting these imperceptible regions is difficult after such post-processing
operations. Because the copy and paste regions are sourced from regions of the same image,
their inner features are similar and compatible. Many proposed copy-move forgery detection
(CMFD) methods have focused on correlating the inner features of detected regions to detect
copy-move forgeries.

Based on previous research, CMFD methods can generally be divided into two categories
[9, 35]: block-based [5, 11, 13, 14, 16, 17, 19–22, 24, 25, 30–32] or keypoint-based methods
[1, 2, 4, 6–8, 10, 15, 18, 23, 27–29, 33]. The existing block-based and keypoint-based methods
both employ similar processing procedures [9].

The main difference between block-based and keypoint-based methods lies in feature
extraction. Block-based methods [9] divide the image into overlapped blocks that are typically
rectangular, but some improved methods have proposed circular blocks [14, 35]. Then, various
feature extraction algorithms have been applied to compute the feature vectors for each block.
Subsequently, relevant detected regions are matched based on feature vector coefficients. Over
the last fifteen years, numerous block-based methods have been proposed for CMFD. Fridrich
et al. [13] first proposed the quantized Discrete Cosine Transform (DCT) coefficients to extract
features of the overlapped and rectangular blocks. Popescu et al. [22] applied principal
components analysis (PCA) to reduce the dimension of DCT. The 8 × 8 DCT coefficient
blocks [19], DCT transform Domain [20], the sum of the pixel intensities [21] and the
histogram of orientated gradients [16] are proposed to extract block features. However, the
extracted features of these methods are lack of spatial invariances. They do not work well in
copy-move forgery detection. In recent years, to analyze intrinsic image features, some
invariant moment methods have been proposed for CMFD. Ryu et al. [24] employed the
magnitude of Zernike moments against rotation operation and constructed an algebraic rotation
moment invariant. Ryu et al. [25] further proposed constructing copy-rotate-move (CRM)
detectors for the overlapping blocks. Ustubıoglu et al. [30] proposed calculating RGB color
moments and entropy from the overlapping blocks. Yap et al. [31] proposed Polar Harmonic
Transforms (PHTs). PHTs encompass orthogonality and invariance. Moreover, the kernels of
PHTs are much simpler than are Zernike moments. Bi et al. [5] proposed the multi-level mask,
then used Polar Complex Exponential Transform (PCET) that belongs to PHTs to extract
features of the multi-level masks. The method has a good detection precision but in low
efficiency. Gan et al. [14] and Li et al. [17] proposed the Discrete PCET (DPCET) and
rotationally invariant Polar Cosine Transform (PCT) to extract block features, respectively.
Emam et al. [11] also employed DPCET to extract features of the segmented blocks. Then,
they used Locality Sensitive Hashing (LSH) to identify similar blocks. DPCET works well in
detecting translation and rotation distortions and can precisely indicate the contour of copied
regions. The LSH search also performs well in terms of accuracy but is not as fast as is
desirable. There are two serious problems in block-based methods. The first one is incompe-
tent to resist scaling distortions. The second one is due to its inefficiency. Zandi et al. [32]
proposed an iterative procedure to adjust the density of keypoints; however, as with other
block-based methods, this method also lacks scaling invariance.

To raise efficiency and handle the scaling distortion, the keypoint-based methods are
proposed to extract the image features from the entire image. The popular keypoint-based
methods are Scale Invariant Feature Transform (SIFT) [1, 4, 6, 8, 15, 18, 23, 29, 33] and
Speeded Up Robust Features (SURF) [7, 10, 27]. SIFT and SURF methods are the feature
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extraction algorithm of the image. However, both of them only show the extracted the local
maxima and minima as keypoints located on the detected suspicious regions but fail in
describing the contour of the regions. Therefore, they also fail to output satisfactory detection
results. To compare the method performances, we should employ some post-processed
procedures, such as filtering, classifying and matting, etc. to indicate the detected regions.
Pun et al. [23] proposed Simple Linear Iterative Clustering (SLIC) to segment the image into
superpixels. It provided an important clue for better image matting. But the fixed threshold of
SLIC did not adaptively segment the superpixels accurate.

In this paper, we present a new copy-move forgery detection scheme using adaptive
keypoint filtering and iterative region merging. The main contribution of the proposed method
is listed as follows:

1) The adaptive keypoint filtering procedure is the first time to measure the classification
errors of the extracted keypoints. It can correct the misclassified keypoints and then
sharply reduce the classification error of keypoints. It can obtain as many inliers as
possible to get the accurate affine matrices for the geometrical transformation evaluation
of the forgery regions.

2) Iterative region merging is proposed to iteratively generate more keypoint (inlier) pairs
and their suspected regions which are based on the invariant features and accurate affine
matrices, then merge the adaptive superpixels to implement the copy-move region
matting. The iteration and the merging algorithm can more precisely indicate the forgery
regions, no matter single or multiple forgeries.

The remainder of this paper is organized as follows. The related work is described in Section 2.
The proposed method using adaptive keypoint filtering and iterative region merging is
presented in Section 3. Section 4 presents the experiments and their discussions for CMFD,
and Section 5 provides concluding remarks and directions for future work.

2 Related work

In this section, we introduce some notable methods which are relevant to the proposed method.
Pun et al. [23] have presented SIFT to extract the image features (keypoints) effectively. Each
SIFT keypoint has 128-dimensional SIFT descriptors which contain localization information,
gradient amplitude, dominant orientation, and scale. Due to the low extraction efficiency of
SIFT, the improved local descriptor SURF [7, 10, 27] with only 64-dimensional descriptors
uses the Fast Hessian to extract keypoints. Christlein et al. [9] have demonstrated that SURF
descriptors have better feature extraction and detection performance than SIFT descriptors in
copy-move forgery detection scheme. The efficiency of SURF is also better than SIFT. The
local descriptors, no matter SIFT or SURF, are only some sparse keypoints. They cannot cover
the whole forgery regions. Zandi et al. [32] proposed iterating the interest points to obtain the
suspected regions, limiting the number of iterations to 4. The main defect of the method used
in [32] is similar to that of the block-based method [11] which is unable to address scaling
distortions-especially large-scale scaling. Pun et al. [23] proposed a similar iteration algorithm
around the keypoints. It can resist the scaling operation. However, the iterative keypoints
which are based on the RGB features do not have the rotation invariance [5], fail in resisting
rotation attacks. Besides that, the iteration is a random operation that it is not clear how many
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iterations of this is a satisfactory result. What is worse is that not all the keypoints are clustered
into the correct classifications. It will lead to iteration errors. Li et al. [18] employed Simple
Linear Iterative Clustering (SLIC) to segment the host image into meaningful blocks
(superpixels). Then, when the number of inliers in every block satisfies the threshold, the
corresponding superpixels pairs will be filled. However, this region-filling method has some
defects as described below. First, the threshold of the initial segmentation with a fixed
empirical value cannot get the satisfied segmentation. Second, SLIC is only an approximate
texture segmentation method. It cannot find precise locations for some forged regions.
Therefore, region-filling operations that rely only on SLIC segmentation with a fixed threshold
do not obtain satisfactory matting results.

3 The proposed method

To overcome the defects of methods mentioned above, we propose a new copy-move forgery
detection scheme which takes full advantage of the block-based and keypoint-based methods,
namely efficiency of keypoint extraction and accuracy of the block/region filling. The proposed
method contains three main stages: 1) keypoint extraction and matching (sub-section 3.1); 2)
adaptive keypoint filtering (sub-section 3.2); 3) iterative region merging (sub-section 3.3).

The framework for the proposed method is depicted in Fig. 1. First, we employ the image
pre-processing that contains the median filtering and color-to-gray conversion. Then, we
implement three main processing stages as follow: 1) In the keypoint extraction and matching

Input: Detected Image

Keypoint Pairs (Inliers)

Candidate Keypoint Pairs

Candidate Keypoint Pairs Extraction and Matching

Adaptive Keypoint Filtering

Iterative Region Merging

Output: Detected Forgery Regions

Fig. 1 The framework of the proposed CMFD scheme
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stage, we present Speeded Up Robust Features (SURF) to extract the candidate keypoints and
employ Best-Bin-First search and Nearest Neighbors test to match the candidate keypoint
pairs. 2) Subsequently, the adaptive keypoint filtering stage involving adaptive nearest neigh-
bor pair filtering and outlier filtering sub-stages is presented to remove the outliers and obtain
the inlier (authentic keypoint) pairs. The first sub-stage adaptively removes the nearest-
neighbor pairs by employing the Euclidean distance, while the second sub-stage evaluates
the rest keypoints and then corrects misclassified keypoints to obtain as many inlier pairs as
possible. Adaptive keypoint filtering can identify both single and multiple forgeries by
adaptively employing inliers to cover them. 3) Finally, an iterative region-merging stage
involving adaptive region iteration and region merging sub-stages is presented to obtain the
forged regions. The first sub-stage proposes a random sample consensus (RANSAC) and the
affine algorithm iteratively to generate the neighboring keypoints (NKs) for each correspond-
ing inlier. Discrete Polar Complex Exponential Transform (DPCET) is employed to extract the
circular block features corresponding to the above keypoints. The matching circular blocks
generate the suspected regions. The segmentations (superpixels) which are segmented by
Simple Linear Iterative Clustering (SLIC) are merged by iterating the suspected regions to
determinate the copy-move regions.

3.1 Keypoint extraction and matching

This section describes and discusses the detailed steps for the feature (keypoint) extraction and
matching algorithm. Detailed descriptions of the adaptive keypoint filtering and iterative
region-merging algorithm, which are the two main contributions of this paper, are provided
in Sub-sections 3.2 and 3.3, respectively.

Image feature extraction is an important task in CMFD. There are many types of feature
extraction methods, such as SIFT [6], SURF [27], PCET [11] and so on. Based on the analysis
of the above methods given in the introduction, we employ SURF methods [27] which is more
effiective than SIFT to extract the image features from the entire image. Then, the matching
algorithm is employed to match the feature descriptors. The extracted SURF image features are
expressed in the form of keypoints. Suppose there are a set of candidate keypoints P = {p1, p2,
⋯ pn} with their 64-dimensional SURF descriptors {Sdi, 1, Sdi, 2,⋯, Sdi, 128} in high-
dimensional feature space; each candidate keypoint has 64-dimensional feature including
rotation, scaling, orientation features, and so on. To distinguish different clusters and match
candidate keypoints into pairs, various clustering methods are presented in [9]. The kd-tree
algorithm [15, 18] and Best-Bin-First (BBF) [3] are the commonly used methods for obtaining
the approximate nearest neighbors. In our proposed method, we employ Euclidean distance to
measure the correlation between two candidate keypoints. To intuitively compare the correla-
tion between two candidate keypoints, their distance ratio is used as the estimated standard. A
2NN test [1] is normally employed as a ratio threshold when matching two candidate
keypoints as a pair. The list of the Euclidean distances between the ith keypoint and the other
keypoints is sorted in ascending order to identify similar feature vectors. We use a powerful
tool, like OpenCv, which can provide the FlannBasedMatcher function, for implementing the
SURF feature matching easily. The equation is given in (1), and the 2NN test is given in (2).

CDi ¼ cdi;1; cdi;2; :::; cdi;n
� � ð1Þ

where cdi,1 is the correlation distance of the closest neighbor between the no.i candidate
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keypoint and other keypoints, namely, the minimum Euclidean distance, while cli,2 is the
second-closest neighbor. To perform a more effective matching method, Amerini et al. [1]
suggested using the ratio of cdi,1 to cdi,2 to match the candidate keypoint pairs. Each matched
pair is normalized with Eq. (2):

cli;1=cli;2 < T1 ; where T1∈ 0; 1ð Þ ð2Þ
The number and distribution of the keypoints are also important. When T1 is close to 1, the
2NN test can obtain more candidate keypoint pairs. Otherwise, the small number of the
extracted keypoint pairs fails to detect the forged regions. A good matching algorithm should
find as many keypoints as possible to concentrate and cover the copy-move regions. Others,
namely, mismatched point pairs, should be kept to a minimum. Therefore, we suggest fixing T1
to 0.5 based on empirical findings. Figure 2 shows the process of the candidate keypoint
extraction and matching algorithm. After keypoint matching is complete, the goal was that the
matched keypoint pairs should be concentrated in the copy-move regions. It can be observed
from Fig. 2-(d) that there are some false keypoint pairs. Therefore, the adaptive keypoint
filtering to obtain the inliers is given a more detailed description in Sub-section 3.2.

3.2 Adaptive Keypoint filtering

Various filtering algorithms have been proposed to remove weak and false keypoint pairs
(matches). Euclidean distance and correlation coefficients are the most common filtering methods
[9]. However, the fixed threshold involved in the Euclidean distance and correlation coefficient
filtering methods limits their ability to obtain ideal filtering results. In this section, the adaptive
filtering algorithm, which fuses the state-of-the-art algorithms, is proposed to enable better
keypoint filtering. Figure 3 shows a flowchart of the adaptive keypoint filtering method that is
divided into two sub-stages: adaptive nearest neighbor pair filtering and adaptive outlier filtering.
The purpose of the first sub-stage is to remove the nearest neighbor pairs and obtain as many the
correct keypoint pairs as possible. First, Euclidean distance with a fixed threshold is employed to
filter out the neighboring keypoints pairs in which both members are close to each other. Then, a
new filtering threshold based on average distance of the remaining keypoint pairs and the low-
frequency distribution PLF of an image is employed to adaptively remove the nearest neighbor
keypoint pairs once again. After the first sub-stage filtering, most of the unwanted outliers have
been removed. Then, the second filtering sub-stage is undertaken to adaptively correct
misclassified keypoints and address the multiple forged regions. Random sample consensus
(RANSAC) is proposed to repeatedly evaluate the keypoint clusters and obtain the inliers,
remove outliers. Finally, the authentic inliers of the ith cluster are obtained. After the second
filtering sub-stage, the inliers are preserved and the outliers are removed.

Fig. 2 The process of candidate keypoint extraction and matching: (a) shows the host image, (b) is the ground-
truth region, (c) illustrates the extracted maxima and minima, and (d) illustrates the candidate keypoint pairs of
the image
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3.2.1 Adaptive nearest neighbor pair filtering

Euclidean distance [9] is a commonly used method for filtering out mismatched keypoint pairs,
especially for the nearest neighbor pairs. The Euclidean distance of the no.i keypoint pairs is
defined as follows.

Edi ¼ mi;1;mi;2
�� ��

2
> Tb; ð3Þ

where || ||2 is the L-2 norm, Edi represents the ith candidate keypoint pairs, and mi,1 and mi,2 are the
two candidate keypoints in a single matched pair. Here, Tb = (H +W)/200 is the filtering distance,
where H and W are the height and width of the detected image, respectively. The 1st Euclidean
distance is employed to filter out the nearest neighbor matches. Then, the adaptive threshold of the
Euclidean distance is applied to the 2nd filtering. The weight of the adaptive filtering distance is a
sensitive research point. Some initial threshold of image segmentation methods can provide
important cues. Pun et al. [23] proposed an adaptive over-segmentation algorithm to segment
the image into non-overlapped blocks. The segmentation algorithm is based on the four-levels of
Discrete Wavelet Transform (DWT), using the ‘Haar’ wavelet. Zheng et al. [34] employed the
Haar wavelet to set the initial size of the segmentation. The candidate keypoint pairs in the same
block are considered as mismatched pairs and the initial size is considered as the threshold for the
Euclidean distance [34]. The Haar coefficient is defined as follows:

ELF ¼ ∑jCA4j ð4Þ

EHF ¼ ∑
i

∑jCDij þ ∑jCHij þ ∑jCVijð Þ ð5Þ

PLF ¼ ELF

ELF þ EHF
� 100%; ð6Þ

Input: Candidate Keypoint pairs

Output: Keypoint Pairs (Inliers)

Remove Nearest Neighbor Pairs

Adaptive Nearest Neighbor Pair Filtering

Adaptive Outliers Filtering

Fig. 3 A flowchart of the adaptive keypoint filtering process
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where i = 1, 2, 3, 4 and CA4 denotes the approximated coefficients at the 4th level of DWT,
while CDi, CHi, and CVi denote the detailed coefficients at the ith level of DWT. PLF is a
reflection of the image low-frequency distribution. When PLF is close to 1, the energy of the
detected image is strongly concentrated in the low-frequency band or the low resolution. When
the speed of change is low and smooth, the distribution of the keypoint pairs may be more
widely spread and the number of the keypoint pairs is more likely to be sparse or fewer.
Therefore, PLF is near to 1, and the filtering threshold is set to a higher distance. Pun et al. [23]
and Zheng et al. [34] recommended using the above setting. These methods provide a good
scheme for adaptive segmentation but consider only the frequency distribution to segment the
image. The threshold is also set to a fixed value based on empirical findings. In Fig. 4-(a3), the
candidate keypoint pairs are all filtered out by employing the threshold setting used in [23].
There are no keypoint pairs in the detected image; therefore, the detection algorithm failed. A
fixed threshold that either too large or too small does not achieve satisfactory results.
Therefore, we propose an adaptive threshold to obtain improved filtering results. The average
distance is considered as another factor for adaptive segmentation. The average Euclidean
distance of the remaining keypoint pairs is defined as follows.

Edp ¼ 1

m
∑
m

i¼1
pi;1; pi;2

�� ��
2
; ð7Þ

where Edp is the average distance of all matched pairs, and pi,1 and pi,2 are the candidate
keypoints of the no.i pair.

The adaptive algorithm contains two steps. Figure 4 shows an example of the filtering
algorithm. First, the nearest neighbor pairs are filtered using the low threshold. Then, the
average distances of the remaining keypoint pairs are calculated. The average distance Edp
with PLF as the weight-coefficient is used to adaptively filter the candidate keypoint pairs. The
adaptive filtering threshold is defined as (8):

Tp ¼ P4=3
LF � Edp; ð8Þ

The images in Fig. 4-(a1)~(a5) show the filtering results of the fixed filtering algorithm [23,
34]. Figure 4-(b1)~(b5) show the filtering results of the adaptive nearest neighbor filtering
algorithm. Note that Fig. 4-(a1), (a2), (a4) and (a5) have similar filtering performances
compared to Fig. 4-(b1), (b2), (b4) and (b5), respectively. In Fig. 4-(a3), the fixed threshold

(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

Fig. 4 The comparison results for the filtering algorithm. The top row shows the filtering results of the fixed
filtering algorithm [23, 34], while the bottom row shows the filtering results of the adaptive nearest neighbor
filtering algorithm
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will filter out all the keypoint pairs. The size of the image in Fig. 4-(a3) is 3888 × 2592 and
PLF = 0.4075. In Fig. 4-(b3), it can be observed that the adaptive filtering algorithm removes
the nearest neighbor pairs effectively while preserving other correctly matched pairs. Com-
pared to other fixed algorithms, filtering the candidate keypoints using the proposed filtering
algorithm can cover the copy-move regions more precisely.

3.2.2 Adaptive outliers filtering

The first filtering stage is simply a preliminary filtering step in the scheme. After filtering,
some unwanted outliers remain, as shown in the top left of Fig. 4-(b2). To eliminate the effect
of these unwanted outliers, random sample consensus (RANSAC) [9, 12], the state-of-the-art
method, is introduced to find an affine matrix H to estimate the best correlation coefficient
among a certain number of trials. The goal is to filter out the falsely matched pairs (outliers) to
obtain the correctly matched pairs (inliers). RANSAC has been shown to perform well in
filtering operations for single forgeries, such as in Fig. 4-(b1) and (b2). However, RANSAC is
not suitable for correctly filtering multiple copy-move forged regions. As shown in Fig.
4-(b1)~(b5) and Fig. 5-(a), another serious problem is that the keypoint classifications obtained
by employing SURF and 2NN test are not entirely correct. Some candidate keypoints rightly
belong to the A class but are assigned to the B class of the same cluster. The candidate
keypoints belonging to the A class are denoted in green, while the candidate keypoints of the B
class are denoted in red in Fig. 5-(a). Therefore, the classification and filtering must be re-
estimated using RANSAC and the affine matrix to correct the misclassifications of the
keypoint pairs. First, we employ the 1st RANSAC to filter out the candidate outliers and
obtain the estimated candidate inliers used to obtain the affine matrix H1. Then, the candidate
outliers are re-evaluated by employingH1 to measure whether these outliers truly belong to the
inliers. When these outliers have been misclassified, they must be corrected to become inliers.
This step eliminates misclassifications and obtains the A1 class and B1 class of the 1st correct
cluster (inliers). The A1 class and B1 class of the 1st correct cluster are shown in Fig. 5-(b).
When multiple copy-move forged regions exist, the rest of the outliers are re-estimated as the
sources of the 2nd keypoint cluster. When the number of non-collinear outlier pairs falls below
3, the re-estimation algorithm is terminated. Otherwise, the cluster filtering is continually
updated using the iteration steps described above. When the image contains only one forged
region, the number of iterations is 1. The adaptive filtering method fuses the affine transform
and RANSAC to obtain superior performance. Figure 5 shows the steps of the keypoint
filtering algorithm. It can be observed that a portion of the candidate keypoint pairs in Fig.
5-(a) are misclassified. Figure 5-(b) shows the A1 class and the B1 class from the adjusted 1st
clusters, namely, the 1st correct inliers. Figure 5-(c) shows the adjusted 2nd clusters, namely,
the 2nd correct inliers. Figure 5-(d) shows the two correct clusters in the same image.

Fig. 5 The image output of the steps of the adaptive outliers filtering algorithm
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To conduct the second stage filtering, the RANSAC is employed to estimate the results of
clusters. The number k for each RANSAC is defined as follows:

k ¼ log 1−pð Þ=log 1−wmð Þ: ð9Þ
where the number k ≤ 200, the confidence p is set to 0.995, w is the inliers ratio of all estimated
pairs, m is the number of the estimated samples, and m > 3. There are two problems when
using RANSAC. The first is that multiple copy-move regions may exist. RANSAC can obtain
the 1st inliers but abandons the rest as outliers, meaning that the 2nd inliers or other inliers will
be not obtained. The second problem is that some candidate keypoints are incorrectly classified
by SURF extraction. These incorrect classifications will be regarded as outliers and aban-
doned. Smaller-sized regions with a limited number of candidate keypoint pairs cannot be
easily detected. To obtain more inliers for the estimation and matting, the results of RANSAC
should be analyzed. The affine matrix H1 can be easily obtained by calculating the inliers.
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where X1 = [x1, 1, x1, 2, … , x1, m1]and Y1 = [y1, 1, y1, 2 , … , y1, m1]are the coordinates of the
class A1 of the inliers obtained by the 1st RANSAC, m1 is the number of candidate inlier pairs,

X ’
1 ¼ x

0
1;1; x

0
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are the coordinates of class B1.

According to the least-squares method, the affine matrix H1 can be obtained as follow.

H1 ¼ X 1 Y 1 1½ �T X 1 Y 1 1½ �
h i−1

X 1 Y 1 1½ �T X
0
1 Y

0
1 1

h i� �T
: ð11Þ

Then, the 1st candidate outliers are evaluated as to whether they belong to the misclassified
keypoints. The coordinates of the keypoints of the outliers in a pair are exchanged to adjust
possible misclassifications. The inverse transform of the affine matrix H1 can be employed to
estimate the relationship between the inliers and the adjusted outliers. The exchanged coordi-
nates of outliers are measured as follows.
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where X2 = [x2, 1, … , x2, m2] and Y2 = [y2, 1, … , y2, m2] are coordinates of the class A
0
1 of the

1st candidate outliers, The coordinates of the outliers of the A
0
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where j represents the no.j exchanged outlier, if it satisfies the threshold. Specifically, this
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outlier pair satisfies the H−1
1 affine transform, when the two candidate keypoints of an outlier

pair keep the exchanged coordinates, namely, point A
0
1 x2; j; y2; j
� �

is exchanged to point B
0
1

x
0
2; j; y

0
2; j

� �
and classified to class B1, and point B

0
1 x

0
2; j; y

0
2; j

� �
is exchanged to point A

0
1

x2; j; y2; j
� �

and reclassified as class A1. Others pairs that do not satisfy the threshold will keep

their original coordinates. Figure 5 shows the exchange process. In Fig. 5-(b), the A1 and B1

classes are denoted as green and red color points, respectively. Others are regarded as the 1st
outliers. All the outliers are re-estimated and redistributed to the correct classes. Then, the 1st

redistributed inliers are estimated to modify an affine matrix H1
$
.

When a copy-move image exists in multiple forged regions, the iterative loop will continue
until it meets the termination condition defined earlier. The filtered processing of multiple
forgeries is shown in Fig. 5. The adaptively filtered algorithm accurately distinguishes the inliers.

3.3 Adaptive Region Iteration & Merging

Fig. 5-(d) shows the copy-move regions covered by the filtering keypoints (inliers). However,
most of the inliers only roughly describe the suspected regions without exact region matting.
Therefore, the region-filling algorithm must be performed to indicate the copy-move regions
more clearly. Therefore, we proposed an iterative region-merging algorithm that contains
adaptive region iteration and region merging for region filling. Figure 6 shows a flowchart
of the iterative region-merging algorithm.

To precisely describe the contours and contents of the forged regions, a high-density of
matched inlier pairs are needed to cover the forged regions. First, the inlier pairs are loaded as
labeled keypoints (LKs). The 8 neighboring keypoints (NKs) of the LKs belonging to the A1

Input: Keypoint Pairs (Inliers)

Output: Detected Forgery Regions

Suspected Regions (SRs)

Adaptive Region Iteration

Region Merging

Fig. 6 The framework of the iterative region-merging algorithm
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class are generated. The affine matrix obtained from sub-section 3.3.2 is employed to calculate
the 8 NKs of each matched LK of the B1 class. The LKs of the A1 and B1 classes are
respectively denoted as green and red color points in Fig. 5-(b). The labeled keypoints of A1

and B1 classes represents 1st clusters (LK1). The circular block of each LK and NK is
calculated with DPCET to determine whether the NK pairs match. The circular block of the
matched NK is filled to generate the 1st suspected regions. Then the 1st matched NKs are
loaded as new 2nd labeled keypoints. The preceding steps are repeated iteratively until the
termination condition is reached. Second, to accurately display the copy-move forged regions,
a morphological operation, SLIC with an adaptively initial threshold, is employed to segment
the host image into superpixels. Then, the pixel percentage of suspected regions to the
corresponding superpixels is calculated to measure whether the ratio satisfies the criterion.
Finally, the superpixels are not only used to fill the whole but also merged with suspected
regions to locate the copy-move regions accurately.

3.3.1 Adaptive region iteration

Assume that LKi ¼ LKi;1; LK
0
i;1

� �
; :::; LKi;mi; LK

0
i;mi

� �n o
, LKi represents the labeled

keypoint pairs of the ith cluster, LKi, j and LK
0
i; j are the Ai class and Bi class of the ith cluster,

respectively. An illustration is shown in the upper part of Fig. 6, where i = 1,2, …,n, and n is
the number of clusters, and j = 1,2,… mi is the number of keypoint pairs of the ith cluster. The
1st neighboring keypoints (NK1, j) of labeled keypoints (LK1, j) are defined as shown in (14).

NK1; j ¼ ∪NK1; j;θ; ð14Þ
where θ = (0o, 45o, 90o, 135o, 180o, 225o, 270o, 315o), and the distance between the LK1, j and
NK1, j, 90 is r. Equation (10) is employed to calculate the NKs coordinates of the Bi class that
correspond to the NKs of the Ai class. The radius r of the circular block is a multiple of 10. The
definition of r is given as follows:

r ¼ INT M � N=106
� �� 10; others

10 ; M � N < 106
;

	
ð15Þ

where M and N are the dimensions of the host image. The circular block is shown in Fig. 7.
The center pixel of the circular block represents the corresponding labeled keypoint (LK) or
neighboring keypoint (NK). When the calculated values of the NK pairs matched each other,
the circular block is filled to generate a suspected region. Emam et al. [11] and Gan et al. [14]
proposed using Discrete Polar Complex Exponential Transform (DPCET) to extract the
rotation features of the image. DPCET is an algorithm effective against rotation distortions,
but it fails to detect scaling operations. To detect scaling operations, DPCET is employed to
calculate the features of the circular block with a variable radius [14, 35]. DPCET is defined as
follows [11]:

Mkl ¼ 4

πr2
∑
r

y¼−r
∑
r

x¼−r
exp i� 2πkr2 þ lθ

� �� �
 �T
f x; yð Þ; x; yk k2≤r; ð16Þ

jMklj ¼ jMROT
kl j; ð17Þ
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where Mkl is the DPCET with kth order and lth repetition, θ = arctan (y/x), ‖x, y‖2 ≤ r, r
is the radius of the circular block and MROT

kl represents the DPCET coefficients of the
rotation operation. Equation (16) gives the rotation invariant for extracting the rotation
features of the circular block. Equation (15) defines the circular block radius of the Ai

class. To better calculate the circular block feature of the corresponding to Bi class,
the scaling dimension is defined as λ, where λ is equal to mean value of h11 and h22
in (10). When λ is not greater than 0.7, the λ is scale-invariant to prevent the
calculated errors of the too small circular block. When λ is greater than 0.7, the
initial radius r of the circular block is defined as shown in (18).

r ¼ Int 10� λð Þ; ð18Þ

A circular block example and an illustration of neighboring keypoint (NK) are
shown in Fig. 7 and Fig. 8, respectively. The Eq. (14) yields the 1st NK of each
keypoint. Equations (15)~(18) provide the extracted geometrical features of the

Fig. 7 The circular block example

Fig. 8 The illustration of a labeled
keypoints and 8 neighboring
keypoints
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circular block. The local color feature of the corresponding circular block is calculated
using (19) and (20).

M−NK1; j;θ ¼ 0:3R NK1; j;θ
� �þ 0:59G NK1; j;θ

� �þ 0:11B NK1; j;θ
� �

; ð19Þ

M−NK
0
1; j;θ ¼ 0:3R NK

0
1; j;θ

� �
þ 0:59G NK

0
1; j;θ

� �
þ 0:11B NK

0
1; j;θ

� �
; ð20Þ

where R(), G(), and B() respectively denote the red, green and blue components of the
corresponding circular block, M−NK1, j, θ and M−NK

0
1; j;θ are the RGB feature of the neighbor-

ing keypoint (NK) in the A1 and B1 class, and 1 means the 1st NK. The circular block of each
NK pair will be filled when they meet the criterion defined in (21):

jM−NK1; j;θ−M−NK
0
1; j;θj < TNK � jM−NK1; j;θj; ð21Þ

where TNK is the threshold to measure the similarity between the compared NK pair. This paper
proposes that TNK be set 0.04 based on the experiments.

Assume that 1st suspected region denotes the A1 and B1 classes of the 1st effective
neighboring keypoints (NK1), that the features of the circular block satisfy (19) and (20),
and that i = 1,2,…,n1, where n1 is the number of NK1. Then, repeat the above steps to achieve
the optimal region matting. The NK is iterated until it satisfies the termination condition of Eq.
22. It is noted that the neighboring keypoints located in the filled blocks of the other keypoints,
did not need to repeat the calculation.

Termination ¼ no:ith NK

no: iþ 1ð Þth NK < 1; ð22Þ

It can be observed from Fig. 6 that the suspected regions cover the ground-truth regions
precisely.

3.3.2 Region merging

To visually display the copy-move forged regions and restrict the suspected regions of the
neighboring keypoint (NK), a morphological operation, Simple Linear Iterative Clustering
(SLIC), is employed to segment the image into superpixels. The Tp in (8) is an adaptive
coefficient based on calculating the distribution of keypoints and is used as the initial
segmentation coefficient of SLIC. Then, the pixel percentage of the suspected region to the
corresponding superpixel is calculated to measure whether the ratio satisfies the criterion.
Finally, the superpixels and suspected regions are merged to fill the regions in three modes: the
superpixel is completely filled, completely abandoned, or the suspected region preserves the
pixels in its superpixel. These three filling modes are employed to indicate the detected region
more accurately. The filling criterion is shown in (23).

If Percentage
> 70%; Fill the whole superpixel
< 20%; Abandon the superpixel
others; Keep neighboring keypoints in superpixel

;

8<
: ð23Þ

When the pixel percentage of the suspected region to the corresponding superpixel is over
70%, the entire superpixel is filled. When the pixel percentage of the suspected region to the
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corresponding superpixel is below 20%, the superpixel is abandoned. In the other case, the
pixels of the suspected region will be preserved in its superpixel. Some small holes and
isolated pixels are also eliminated by employing mathematical morphological operations. The
superpixels are merged with the suspected regions to implement the copy-move region-filling
operation as shown in Fig. 10-(a1)~(a5).

4 Experiments and analysis

In section 4, a wide variety of experiments are conducted to evaluate the performances of the
proposed method and the state-of-the-art methods under the geometric transform and multiple
region forgeries.

4.1 Evaluation criteria

In our experiments, to evaluate the performance of the compared CMFD methods, we use two
main parameters, precision and recall [11, 18, 23, 27] as the two criteria to analyze of the
experimental results. Precision and recall are defined in Eqs. (24) and (25), respectively.

Precision ¼ Tp= Tpþ Fpð Þ; ð24Þ

Recall ¼ Tp= Tpþ Fnð Þ; ð25Þ
Using (24) and (25), precision and recall are employed to test the CMFD methods at both image
and pixel levels. The image-level evaluation distinguishes the performance of the method in
detecting overall image forgeries, while the pixel-level evaluation is localized to detect the
performance at the forged region area. Tp represents True Positive. At the image level, Tp
represents a forged image that is correctly identified. At the pixel level, Tp represents that the
correct number of detected copy-move pixels were detected as forged pixels. Fp means False
Positive. At the image level, Fp represents detection errors in which a real image or authentic
region was incorrectly detected as a forgery. In pixel level, Fp represents the ratio of authentic
pixels erroneously detected as forged pixels. Fn means False Negative. At the image level, Fn

represents undetected forged images or regions incorrectly detected. At the pixel level, Fn

represents the proportion of forged pixels that are undetected. To comprehensively measure the
performance of the CMFD methods, the F1 score combines both precision and recall:

F1 ¼ 2� Precision� recall
precisionþ recall

ð26Þ

The closer F1 is to 1, the better the performance obtained by the CMFD method is.

4.2 Benchmark database for CMFD evaluation

Standard benchmark databases are used as uniform assessment criteria to compare the
performance of different CMFD methods. The benchmark databases used here were compiled
by the Department of Computer Science at Friedrich-Alexander University [9]. The basic
dataset is composed of 48 high-resolution base images as well as copied and pasted snippets
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from these images to create copy-move forged images. The benchmark dataset contains rotated
copies, scaled copies, down-sampled copies, splices with JPEG image compression, and so on.
In our experiments, the existing state-of-the-art block-based method [11], keypoint-based
method [1, 18, 23, 27] and the iterative interest-point method [32] were all tested to evaluate
their performances. Figure 9 depicts the process used in the proposed method and Fig. 10
shows the detected results for the proposed method and the compared methods [11, 18]. The
copy-move images contain several types of objects such as plants, animals, man-made objects
and combinations of these. Figure 9-(a1)~(a5) shows the copy-move host images.
Figure 9-(a1) shows the red tower image where the copied portion is rotated by 10°.
Figure 9-(a2) shows the wood carvings image with a scaled-up 20% distortion.
Figure 9-(a3) shows the fisherman image that contains multiple copy-move forged regions
implemented by scaled-down 20% distortions. Figure 9-(a4) shows the jellyfish image with
multiple copy-move regions in which each forged region is implemented a 20° rotation.
Figure 9-(a5) shows the Christmas hedge image with multiple copy-move regions each of
which is implemented by scaled-down 20% distortions. Figure 9-(a1) and (a2) show the single
forged region. Figure 9-(a3) shows two separated copy regions corresponding to the two
different forged regions. Figure 9-(a4) shows three separated copy regions corresponding to
the three different forged regions respectively. Figure 9-(a5) shows one copy region corre-
sponding to three forged regions. Figure 9-(b1)~(b5) shows the candidate keypoint pairs using
a matching threshold of 0.5. Figure 9-(c1)~(c5) shows the results of the adaptive keypoint
filtering. Figure 9-(d1)~(d5), (e1)~(e5) and (f1)~(f2) show the 1st, 3rd and ultimate iteration
results of suspected regions, respectively. Figure 9-(g1)~(g5) show the relationship between
the ultimate suspected regions and the superpixels. Figure 10-(a1)~(a5), (b1)~(b5), (c1)~(c5)
shows the detected forgery results of the proposed method, the methods from [11, 18],
respectively. Figure 10-(d1)~(d5) shows the ground-truth regions corresponding to the images
in Fig. 9-(a1)~(a5), respectively. From the results shown in Fig. 10, it can be observed that our
proposed method (shown in (a1) to (a5)) can achieve much better results. Figure 10-(a1)~(a3)
and (a5) show that the matching between the iterative region-merging areas and the ground-
truth areas can reach 90%. Figure 10-(a4) shows the correct region filling that occurred on the
two forged regions, but the method missed the third forged region. It is shown in
Figure 10-(b2), (b3) and (b5) that the method of [11] (block-based method) with the extracted
feature from the unified block is unable to detect the large scaling transform. It is shown in
Fig. 10-(c1)~(c5) that the method in [18] with a large segmentation easily ignores or misses the
small-region forgeries. Therefore, The detection results from the method [18] can detect
scaling transform forgeries, but its detection performance for small-region forgeries is weak.

4.3 Detection results under plain copy-move and authentic images

In this sub-section, the experimental results present a comparison of the performance of the
proposed method with those of state-of-the-art methods at both the image level and the pixel
level. The precision, recall and F1 scores are employed to evaluate the plain copy-move
forgeries and the authentic image. These experiments were based on the orig and nul1 sub-
datasets. The orig sub-dataset contains authentic images with no copy-move operations. The
nul1 sub-dataset contains copied regions attacked by translation operations. The PCET method
[11], SIFT [1, 18, 23] and SURF [27] method results are also provided to evaluate their
performances quantitatively. Tables 1 and 2 show the detection results of precision, recall and
F1 for the CMFD at the image and pixel levels, respectively.
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Table 1 shows the detection results of the authentic image and plain copy-move image at
the image level. As listed in Table 1, the proposed method achieves relatively high precision,

Fig. 9 The process of the proposed method for CMFD. The first row shows the copy-move forged images. The
second row shows thematching results of the candidate keypoint pairs. The third row shows the results of the adaptive
keypoint filtering. The fourth through the sixth rows show the 1st, 3rd and ultimate iteration results of suspected
regions, respectively. The seventh row shows the relation between the ultimate suspected regions and superpixels
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recall and F1. Our proposed method achieved a precision of 96.9%, a recall of 93.8% and an
F1 score of 95.3% at the image level. The precision of our proposed method was the best
compared to the state-of-the-art methods, while the methods from [23, 27] tied for second
place. The precision of the other methods all exceeded 90%. The recall of the methods in [5,
23] achieved the best performance; however, our proposed method is a bit lower than methods
in [5, 23]. The F1 score of our proposed method was only slightly below that of the method
from [23]. It was due to the proposed method may abandon some matched pairs, which is an
isolated pair or fewer than 3 pairs. So the proposed method may miss some small-sized forgery
regions and lower the recall score. Table 2 shows the detection results based on the same
datasets described in Table 1 and our proposed method achieved the best recall score. It is due
to the adaptive keypoint filtering procedure which corrects the misclassified keypoints and

(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

(d1) (d2) (d3) (d4) (d5)

Fig. 10 The CMFD results of the proposed method. The first to third rows show the detected forgery results of
the proposed method, the method from [11] and the method from [18], respectively. The fourth row shows the
ground-truth regions

Table 1 Detection results of the plain copy-move and authentic image in image level

Methods Precision (%) Recall (%) F1 (%)

Bi [5] 88.9 100 94.1
Emam [11] 92.7 87.5 90.0
Li [18] 92.1 84.9 88.4
Amerini [1] 88.4 79.2 83.5
Pun [23] 95.8 100 97.9
Shivakumar [27] 95.8 91.7 93.7
Proposed method 96.9 93.8 95.3
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then sharply reduces the classification error of keypoints. It can obtain as many inliers as
possible to get the accurate affine matrices for the accurate regions matting. The proposed
method achieves a precision of 93.8% and the best F1 score of 90.5% at the pixel level. The F1

score reflects the overall quality and performance of a CMFD method. The method from [23]
captured the highest precision and the second-best performance for recall and F1. Analysis of
the above experiment was performed at both the image and pixel-level, the proposed method
achieved the best performance at the pixel level and high quality at the image level.

4.4 Detection results under various post-processing conditions

Image-level detection is conducted to automatically detect copy-move forged images, while
pixel-level detection is employed to measure the quality a CMFD achieves when detecting the
copy-move regions. Therefore, performance at the pixel level is mainly employed to evaluate
the performance of CMFD methods. To quantitatively evaluate the performance of the
proposed method and the state-of-the-art methods, the measures precision, recall and F1 were
employed to evaluate the algorithms’ performances on down-sampled images with, rotation
transforms, scaled transforms and JPEG compression operations at the pixel level.

1) Detection results of down-sampling

These experiments were based on the nul_sd, scale_sd, and rot_sd sub-datasets. The copied
regions were attacked only by translation (plain) or rotation or scaling distortions. The scaling
factors employed in the scale_sd sub-dataset are 91%, 95%, 99%, 101%, 105% and 109%.
The rotation factors employed in the rot_sd sub-dataset are 2°, 4°, 6°, 8° and, 10°. The host
images in the sub-datasets down-sampled to 50% of the size of the original images. There were
48 × 12 = 576 tested images. Table 3 shows the down-sampling detection results of precision,
recall and, F1 for the CMFD methods at the pixel level.

Table 2 Pixel-level detection results of the plain copy-move forgery

Methods Precision (%) Recall (%) F1(%)

Bi [5] 87.2 89.7 88.4
Emam [11] 88.5 77.1 82.4
Li [18] 83.1 56.3 67.1
Amerini [1] 60.8 71.5 65.7
Pun [23] 96.9 83.3 89.6
Shivakumar [27] 68.7 76.1 72.2
Proposed method 93.8 87.5 90.5

Table 3 Detection results of down-sample

Methods Precision (%) Recall (%) F1 (%)

Bi [5] 83.8 88.0 85.8
Emam [11] 81.3 72.7 76.6
Li [18] 80.2 52.6 63.5
Amerini [1] / / /
Pun [23] 83.6 73.5 78.2
Shivakumar [27] 56.5 62.5 59.3
Proposed method 84.4 79.2 81.7

Multimedia Tools and Applications (2019) 78:26313–26339 26331



2) Detection results of rotation transform

These experiments were based on the rot, rotExtra and rotExtra2 sub-datasets. The copied
regions are attacked by rotation distortions. The attack angles are rotated by 2°, 4°, 6°, 8°, 10°,
20°, 60°, and 180°. There were 48 × 8 = 384 tested images in total. Figure 11 shows the
detection results of the CMFD methods against rotation transforms.

3) Detection results of scaling transform

These experiments were based on the scale and scaleExtra sub-datasets. The copied regions are
attacked by scaling distortions, and the attacked regions are scaled by 80%, 91%, 93%, 95%, 97%,
99%, 101%, 103%, 105%, 107%, 109% and 120%. There were 48 × 12 = 576 tested images in
total. Figure 12 shows the scaling detection results of theCMFDmethods against scaling transforms.

4) Detection results of JPEG compression

These experiments were based on the jpeg_sd sub-dataset. The copied regions are attacked
by the JPEG compression distortion. The quality factor of the forged images reflects com-
pression levels between 20% and 100% with a step size of 10%. There were 48 × 9 = 432
tested images in total. The copied regions are attacked by translation distortions. Figure 13
shows the detection results of the CMFD methods against JPEG compression.

Table 3 shows the detection results on down-sampled images at the pixel level. The ‘ / ’means
the result is not available. Compared to the other methods, our proposed method achieved the best
precision of 84.4% and took second place in recall andF1 scores. Themulti-level dense descriptor
method [5] achieved the best recall and F1, but at the expense of running times. However, in the
following experiments under various geometric distortions and post-processed operations, the
performances of method [5] were weaker than the proposed method in pixel level. The SURF
method [27] resulted in the weakest performance because it identifies too few keypoints to
indicate the ground-truth region. Compared to Table 2, the performance of our proposed method
decreases only slightly on down-sampled images. It is because the high matching threshold
described in (3) can obtain sufficient keypoints to match the images.

Fig. 11 Detection results of the compared CMFD methods against rotation transform at the pixel level. (a)
Precision; (b) Recall; (c) F1
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In Figs. 11, 12, and 13, the curve drawn in purple and marked ‘Bi [5]’ represented dense
multi-level descriptor of block-based method. The curve drawn in light blue and marked
‘Emam [11]’ represented the results of the block-based PCET method. The curve drawn in
dark blue and marked ‘Zandi [32]’ represented the results of the iterative interest-point method.
The curves drawn in khaki and black were marked as ‘Li [18]’ and ‘Pun [23]’, respectively,
and represented the results of the SIFT methods. The curve drawn in pink and marked
‘Shivakumar [27]’ represented the results of the SURF method. Finally, the curve drawn in
red and marked ‘Proposed’ represented the results of the proposed method. The X-axis
coordinates represented the rotation degree, scaling factor, and quality factor, respectively.
As shown in Fig. 11-(a), the proposed method achieved the best performances in some cases,
such as 2°, 4°, 6°, and 10° rotation factors. In other cases, the method from [32] achieved the
best performances. The precision of our proposed method and the method from [32] both
achieved approximately equal performances and achieve the best performance in most of the
cases. The method from [11] was slightly weaker than the proposed method and took second
place. The proposed method and method [11] both achieved good performances because they
used rotation-invariant features. In Fig. 11-(b), the recall of our proposed method and that of
the method from [32] were much better than those of the other compared methods. The SIFT-
based method [18] took third place. In Fig. 11-(c), the F1 score (which combined both
precision and recall) of both our proposed method and the method from [32] achieved a
superior performance compared to the other state-of-the-art methods. It was because these
methods fuse the invariance of SURF and the rotation-invariant extraction of PCET. Figure 12

Fig. 12 Detection results of the compared CMFD methods against scaling transform at the pixel level. (a)
Precision; (b) Recall; (c) F1

Fig. 13 Detection results of the compared CMFD methods against JPEG compression at the pixel level. (a)
Precision; (b) Recall; (c) F1
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shows the scaling detection ability of the compared method. It can be observed that the
precision, recall, and F1 score of the proposed method represented the best performance in
most cases, especially for large-factor scaling. The recall performance greatly exceeded that of
the block-based method from [11], the SIFT method from [23] and the other SURF from [27].
Figure 12 also shows that our proposed method was not sensitive under scaling attacks. Its
good performance is because the proposed method calculated the affine matrix and then
adaptively adjusts the radius of the circular block to resist scaling transforms. The method
from [11] performed poorly on the scaling transforms as shown in Fig. 12-(a), (b) and (c); it
was not able to address scaling transform especially for large-factor scaling. Figure 13 shows
the detected results under JPEG compression attacked as the image quality factor varies. In
Fig. 13-(a), the precision of our proposed method achieved the best performance when the
quality factor is high. When the quality factor is below 70, the recall of our proposed method
was similar to the precision results. Our proposed method achieved its best performance when
the quality factor was high. However, even when the quality factor was low, our method took
second place only to the method from [32]. As shown in Fig. 13-(c), the F1 scores of the
proposed method were similar to its precision and recall scores. The F1, Precision, and recall
of our proposed method all exceeded 70% against JPEG compression attacks, and it achieved
the best performance in most cases. Even when the quality factor is below 60, our method
achieved second place. Adaptive keypoint filtering algorithm of the proposed method can filter
most of the outliers and get as many inliers as possible. The inliers can accurately locate the
copy-move forgery regions. The affine matrices which are obtained from a large number of the
inliers, accurately indicate the geometrical transformations of the forgery regions or the
geometrical correlations between the pixel pairs. The iterative region algorithm uses the
superpixels to complement the region matting. It is a precise region filling algorithm. There-
fore, under various post-processing conditions, our method achieves superior performance
compared with other state-of-the-art methods.

4.5 The experiments under CMH dataset and other evaluation criteria

There are some other evaluation criteria proposed in the state-of-the-art methods. The evalu-
ation criteria contain True Positive Rate (TPR), False Positive Rate (FPR) and Accuracy (ACC)
[28]. TPR is the same case to recall. FPR describes the ratio of the authentic pixels with
incorrect detection to all authentic pixels. ACC describes the ratio of the pixels with correct
detection to all pixels. ACC is defined in Eq. (27).

ACC ¼ TPRþ 1−FPRð Þ
2

¼ TP þ FN

TP þ FP þ TN þ FN
ð27Þ

The Copy-Move Hard (CMH) dataset proposed in [28] has four sub-dataset with total 108
(23 + 25 + 26 + 34) forgery images. TPR, FPR and ACC were proposed to evaluate the
performances of the compared methods under CMH dataset. The compared results of the
proposed method against other five methods were described in Table 4.

Table 4 shows the detection results under CMH dataset. Compared to the other methods,
FPR of the proposed method was a little bit weak, but the proposed method achieved the best
ACC of 90.8% and TPR of 83.3%. The method from [28] captured the second-best ACC and
TPR. The proposed method also got the superior performance to the-state-of-the-art methods at
TPR, FPR and ACC criteria.
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4.6 Comparison of running times

From the above analysis, the proposed method comprehensively achieved the best perfor-
mances under various distortions with different datasets. Now, we turn on the attention for an
analysis of the computational complexities between the proposed method and the state-of-the-
art methods. To improve efficiency and reduce computational times, the proposed method was
implemented by mixed-language programming based on MATLAB and C++. We have
implemented the method by using MATLAB 2016b, VS2015 and Opencv 3.2 tools. The
experiments were performed on a computer with one Intel(R) Xeon(R) E5–2650 @2.20 GHz
CPU with 12 cores and 64 GB RAM.We chose the datasets of Friedrich-Alexander University
[9] which were larger than the ones in CMH dataset. We have divided the proposed method
into three parts which are feature extraction, adaptive keypoint filtering, and iterative region
merging stage, respectively. Table 5 shows the average running times of the 3 stages and total
times of the proposed method.

There are two difficult problems for complexity comparison between the proposed method
and each analyzed method. First, most of the state-of-the-art methods have not provided the
running times. Second, each compared method was not performed on a unified platform. It
was hard to compare the time of each method exactly. We have tried to provide the running
times of the compared methods with the available codes. We have also cited the running times
of paper [28] and normalized the running time of the proposed method based on the
approximate criteria of the method [28]. Table 6 shows the compared results.

Table 6 clearly shows that the running times of the keypoint-based methods ([7, 23, 28], the
proposed method) were generally less than the block-based methods ([5, 11, 22, 25]). The
block-based methods took expensive times for feature extraction and matching of each block
(or each pixel). The keypoint-based methods extracted local image features as keypoints and
only filtered the extracted keypoints as matches. As for the proposed method, the extracted
feature stage and keypoint filtering stage occupied a small portion of the total time. It was
owing to the mixed-language programming with various effective tools. The iterative region
needed to iteratively calculate each neighboring keypoints feature. So the iterative region
merging took the relatively expensive time.

Table 5 Running time of the pro-
posed method using dataset [9] Stage or the total method Running times (s)

Feature extraction 6.49
Adaptive keypoint filtering 13.54
Iterative region merging 50.56
Total method 70.59

Table 4 Detection results of CMH dataset

Methods ACC (%) TPR (%) FPR (%)

Popescu [22] 49.5 0.02 0.09
Ryu [24] 65.5 34.3 0.15
Ryu [25] 64.5 34.3 5.35
Xu [27] 82.4 65.8 0.19
Sliva [28] 83.4 71.9 1.22
Proposed method 90.8 83.3 1.63
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5 Conclusions

In this paper, the proposed method fused the advantages of the keypoint-based and block-based-
methods to perform CMFD. This novel method mainly involves the local maxima, minima
extraction and matching algorithm, an adaptive keypoint filtering algorithm, an iterative region-
merging algorithm and so on. First, the local maxima and minima are extracted as candidate
keypoint pairs by Speeded Up Robust Features (SURF). The Best-Bin-First search (BBF) is
employed to obtain the correlation between each pair of candidate keypoints. The candidate
keypoints are thenmatched as pairs by employing theNearest Neighbors (2NN) test. The adaptive
keypoint filtering algorithm based on random sample consensus (RANSAC) is proposed to filter
out the outliers and obtain the inlier (keypoint) pairs. The first sub-stage of the filtering algorithm
removes nearest neighbor keypoint pairs. The second sub-stage evaluates the inliers and corrects
keypoint misclassifications. The adaptive keypoint filtering can identify both single forgeries and
multiple forgeries. Finally, the iterative region-merging algorithm is proposed to obtain the forged
regions. Neighboring keypoints (NKs) are generated to obtain additional inliers to cover the
forged regions, andDPCET is employed to extract the circular block features corresponding to the
NKs and filter out any mismatched NKs. The suspected regions are generated by the circular
blocks of thematchedNKs. Simple Linear Iterative Clustering (SLIC) is employed to segment the
host image into superpixels. The superpixels and suspected regions are merged to fill the detected
regions more precisely. Compared with the state-of-the-art methods, a series of experiments
demonstrated that our proposed method achieves the best performance for CMFD under various
post-processing operations. In future work, the adaptive keypoint filtering and iterative region-
merging of our proposed scheme will be applied to wider fields, focusing not only on CMFD but
also other types of forgery detection such as splicing and image morphing.
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