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Abstract
This paper proposes a novel rotation-invariant multi-spectral facial recognition approach
(RIMFRA) by using orthogonal polynomials. In the first step, a rotation, illumination and
noise invariant local descriptor (RinLd) is proposed to represent the texture patterns of a face
image. Color channels of the images embodies non-trivial information about the characteristic
of the image. Hence, the local descriptor matrices are extracted among the color channels. The
corresponding new descriptor matrices for the red, green and blue channels of the image are
extracted. Afterwards, co-occurrence matrices are obtained from the six combinations of the
corresponding color channel descriptor matrices, that are red-red, blue-blue, green-green, red-
blue, green-blue and red-green. Finally, these matrices are decomposed by using the orthog-
onal polynomials to achieve a more reliable and characteristic pattern extraction. The coeffi-
cients obtained as a result of the decomposition process are used as the ultimate features for the
classification of the images. Extensive simulations are conducted over benchmark datasets. As
presented by the simulation results, the ultimate features yield very high discriminating
performance as well as providing resistance to rotation and illumination variations.

Keywords Facial recognition . rotation invariant . multi-spectral . orthogonal polynomial

1 Introduction

Biometry has attracted a great deal of attention in recent years and has been widely used for its
high performance in many areas such as surveillance, identification, and human-computer
interaction [5, 15, 18, 30, 31, 34, 40, 50, 58, 60, 71]. Individuals have biological character-
istics, also called metrics, that distinguish them from others [27]. Extracting behavioral and/or
physiological characteristics of individuals to make discrimination is called as biometrics
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recognition. Face, iris, retina, ear, palm are the prominent common discriminative physiolog-
ical characteristics. Besides, voice, typing rhythm and gait are the behavioral characteristics,
which are called as behaviometrics [48].

Face is one of the leading biometrics preferred for individual discrimination because it can
distinguish individuals with high accuracy and less human participation. Face data can be
easily collected and processed in real time using remote devices such as cameras without the
need for any human intervention [14, 26].

As with many other images, face data are also exposed to disruptive external factors such as
noise, illumination, pose variations and rotation. Variations in the pose, illumination, direction
and the presence of random noise inhibit a pixel-by-pixel comparison among the images.
Therefore, facial recognition has attracted great interest from researchers to overcome the
above mentioned challenges. At the point where pixel-to-pixel comparison does not perform
well, texture helps in image classification. Texture plays a key role in computer pattern
recognition, especially in image related applications [32, 33]. Besides Although not a globally
accepted definition, texture can be defined as the result of recurring local patterns throughout
the picture [47]. As with other types of images, there is also a texture in the face images.
Features are extracted from the texture of the face images and then analyzed and classified to
distinguish individuals. To qualify a feature set as high quality, it must provide two criteria.
The first is that the need for computer processing complexity should be low, so it can be used
in real-time applications. The other criterion is that it should be able to express the properties of
the texture in the best possible way so that it can do the splitting well during classification
between the textures [41].

Numerous studies have been conducted to suggest a high-performance identifier for
low computational complexity and high representational power. These methods can
basically be grouped under two headings: holistic and local appearance features [39].
Holistic techniques analyze the entire face image and extract global information to
recognize a subject. This global information is obtained by analyzing pixel relationships
along the entire image and corresponding features are extracted. These features repre-
sent the global characteristic of the image that uniquely discriminates the face from
others [64]. The most well-known of the holistic approaches are Principal Component
Analysis (PCA) [65], Linear Discriminant Analysis (LDA) [7] and Independent Com-
ponent Analysis (ICA) [10]. The hallmark of PCA is that it reduces dimensionality by
transition from a high dimensional image space to a low dimensional orthogonal space.
The transition is performed by considering the lowest mean square reconstruction error
and also by applying a linear transformation. LDA focuses on finding linear transfor-
mation that maximizes inter-class variance and minimizes intra-class variation. ICA,
first adopted by Herault and Jutten [69], seeks for a linear transformation to minimize
the statistical dependencies of the components of a vector. Many of the following
studies [22, 23, 28, 29, 54, 56, 63, 72] are based on these fundamental methods and
have struggled to improve their performance by introducing new ideas among them.

Local approaches, unlike the holistic ones, reveal local distinctive features that are more
resistant to changes in expression and illumination. In this aim, several research studies (LBP
[2, 59], LPQ [73], LDP [25], LDN [52, 53], HoG [11], LTP [62], Gabor [43, 74]) have been
performed to satisfy the task of obtaining a high level of distinctive and proper texture
representation [8]. Among these, LBP has been a promising pioneer for follow-up studies
due to its high performance and calculation efficiency [12]. LBP identifies local textures by
comparing each pixel with its 3 × 3 local neighborhood. Each pixel is then replaced by the
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eight-bit-stream-result of the comparison step. Each bit in the bit stream represents the
magnitude-comparison-result of the corresponding neighbor to the reference pixel. If the
intensity value of the reference pixel is less than the neighboring pixel, the corresponding
bit is assigned to zero, otherwise assigned to one.

One of the most obvious concerns in facial recognition is undoubtedly the failure of the
proposed feature descriptors when the image is rotated. A robust descriptor, regardless of local
or holistic, should work independently of the direction of the image, i.e. reflect the same image
characteristics in all conditions. As is known, basic LBP does not consider rotational varia-
tions, thus, a number of follower improvements [70, 78] have been proposed to gain resistance
to rotational variations. Furthermore, color channels contain significant information yet a great
deal of the studies to date have derived characteristics from the monochrome images. In this
paper, we propose a compound method that blends three main distinguishing subjects. First, a
rotationally invariant local identifier is proposed which is also resistant to variations of light
and facial expression. Second, the power of the color channels is used to investigate the
statistical properties of matrices created by taking into account the occurrences of the local
identifier in the multi-spectral area. Finally, the information stored in the multi-spectral
occurrence matrices is represented by the orthogonal polynomial coefficients to reinforce the
discriminative power of the proposed method.

The rest of this paper is organized as follows. Section II briefly describes the proposed
method and gives basic information about pioneering ideas. Section III shows the results of the
simulations and also refers to the discussions. Finally, Section IV completes the paper.

2 RIMFRA

This section describes the details about the proposed method in detail. The main steps of
the general process are given in the following. At the outset, the multi-spectral rotation
invariant local descriptor matrices are calculated from the RGB bands of the raw image.
After the formation of the descriptor matrices, multi-spectral co-occurrence matrices are
calculated. In the last step, orthogonal polynomial coefficients are obtained from each
co-occurrence matrix. Finally, the coefficients obtained from the co-occurrence matrices
are concatenated to form the ultimate feature vector for each facial image. Figure 1
depicts the operation of the complete process.
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Fig. 1 The block diagram of the entire process
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2.1 RinLd

The local texture descriptors, the prominent ones of which have been mentioned in
the previous section, have provided promising discriminatory performances. However,
the two of the most critical issues expected from these descriptors are that they should
be rotationally invariant and resistant to changes that may occur in illumination. As
mentioned earlier, LBP is one of the basic and leading local descriptors that figures
out the local structure of the images. As is known, LBP defines the relationship
between the central pixel and its neighboring pixels in an NxN block (N indicates the
width and length of the block). However, the initial LBP does not concern with the
rotational variations. That is, the value of the descriptor calculated from a sub-portion
of the image changes when the image is rotated. Another deficiency of LBP is that it
does not consider the intensity value of the central or reference pixel. Therefore, it is
possible for some pixels with different intensity values to be represented by identical
values in the new domain. The state of this undesirable identical representation of the
different pixels may be fixed by taking into account the intensity of the reference
pixel.

In this paper, we propose a new local descriptor that is resistant to rotational and
illuminative variations. Instead of working on monochrome images, the method we
offer here operates on RGB images. The three color bands of the image are divided
into NxN blocks. Subsequently, the adjacent pixels of any reference pixel are sorted
on a vector in descending order relative to their density values, as shown below:

SINxN ¼ sortdsc INxNð Þ ð1Þ

where SINxN and INxN express the sorted and unsorted neighboring pixels’ intensity
values respectively. The intensity value of the reference pixel is subtracted from each
element of the sorted vector. If the absolute value of the result is greater than the
threshold value (T), a 1, otherwise a 0, is assigned to the corresponding position of a
new binary vector.

BIc
1 if jSI i−I cj > T ; i ¼ 1; 2;…N−1
0 otherwise

�
ð2Þ

The threshold value is not held constant throughout the image, in the contrary, is
dynamic and depends on the mean intensity value in the block. The intensity of the
reference pixel is also taken into account while calculating the mean value in the
block. T is calculated as follows:

T ¼ jIc− ∑N
i¼1SI i
N

j ð3Þ

The resulting binary vector represents the comparison between the reference pixel and its
neighbors in terms of intensity levels yet it does not solve the challenge of multiple pixels
having different intensity values to be represented with identical values in the new domain.
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Thus, the resulting value is recalculated by taking into account the intensity value of the
reference pixel as follows:

SBIc ¼ BIc � Ic=255ð Þ ð4Þ
The basic LBP and some of its derivatives do only consider the relationship between
the reference pixel and its neighbors. However, the information concealed in the
magnitude of the difference is being discarded in this way. Because of that, it is
possible to encounter the challenge of two pixels with different intensities having
identical values in the new domain. The most competent way to address this situation
is to take into account the intensity value of the reference pixel. RIMFRA remedies
the expressed challenge in two separate steps by calculating the value scaled accord-
ing to the intensity value of the reference pixel while keeping the threshold value
dynamic. Figure 2 illustrates the challenge of having the same binary patterns for
pixels with different intensities and how RIMFRA handles this situation.

For each image, a total of three local descriptor matrices ((RinLd)R, (RinLd)G, and
(RinLd)B) are created, one for each color band of the image. Following this stage, the
constructed matrices are fed into the next step in the process described in the next section.

Fig. 2 a Identical LBP codes assigned to different patterns b RIMFRA overcomes the miss-assignment situation
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2.2 Multi-spectral co-occurrence matrices

The modern image acquisition and processing systems are capable of expressing and
operating on colors in different spaces, namely RGB (Red, Green, Blue), HSV (Hue,
Saturation, Value) and CIE Lab. Commonly, color images are represented as RGB. In
fact, the information carried in the image is the brightness level of each band.
Although many applications require RGB to be converted to other color domains,
such as HSV or others, RGB based computer vision systems are simpler and more
economical than others. Although the RGB color space is machine-dependent, which
seriously disrupts uniformity [49], it still performs very successfully in areas such as
calibration and classification [24]. For example, researchers have analyzed the images
of apples and have successfully estimated the amount of fruit they contain [61]. In
addition, some researchers have correctly predicted some of the geometric properties
of different crop species by applying RGB-based image processing techniques [19, 35,
37, 45, 46, 68]. Moreover, it has been verified that methods based on color analysis
are a reliable way of discrimination and retrieval in facial detection and monitoring.
Furthermore, although humans vary according to skin color, the main distinguishing
parameter has been shown to be density rather than chrominance [77].

Gray-level co-occurrence matrix (GLCM), which was introduced firstly by Haralick
[21] at the beginning of 1970s, has been proven an efficient way of texture repre-
sentation [13]. GLCMs are formed by considering the number of occurrences of
intensity value patterns in the image. Haralick proposed a set of statistical features
obtained from GLCMs that achieved a success rate of %84 at a higher operational
speed [3, 20]. Although it is an ancient method, it has been the reference and
inspiration in many fields such as iris recognition [75], image segmentation [1] and
CBIR [9, 36] in videos. However, base GLCM runs on gray-level images and discards
the information carried by color bands. Arvis et al. [6] have proposed a method,
which incorporates the color bands of the pixels during the construction of the co-
occurrence matrices. As is known, GLCM contains information on the spatial rela-
tionships of intensity values and their formation amounts. Let f is an image whose
intensity values vary in the range [0, L-1]. The value on row i, column j in GLCM
indicates the number of times that the pixel pair (zi, zj) occurs in f with orientation Q.
The orientation represented with Q eventually refers to a displacement vector
d = (dx,dy | dx = dy = dg), where dg is the number of gaps between the pixels of
interest. For the situation of adjacency, dg = 0. The orientation can also be represented
with two parameters as the distance d that the intensities zi, zj apart from each other
with angle α. d theoretically can take values from 0 to L-2. The orientation of the
pixel pattern can be in four different directions as 0°, 45°, 90° and 135°. That is, each
image can have four different GLCMs (for each angle 0°, 45°, 90° and 135°) for a
given d. The size of a GLCM matrix depends on the discrete intensity values in the
image. That is, if the intensity values of the image vary in the range [0, L-1], then
the size of the GLCM is (L-1) × (L-1). With the basic GLCM method, four separate
matrices are formed, one for each of the directions 0°, 45°, 90°, 135°. Considering the
color bands of the image, a total of twenty-four GLCMs are generated, six at a time
for each direction. In RIMFRA, local descriptive matrices generated for each band of
the first stage image are fed into the multi-spectral-co-occurrence matrix construction
process, rather than directly entering the raw image as done in previous studies. The output
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of the process is the multi-spectral co-occurrence matrices, i.e. CM(RinLd)R(RinLd)R,
CM(RinLd)G(RinLd)G, CM(RinLd)B(RinLd)B, CM(RinLd)R(RinLd)G, CM(RinLd)R(RinLd)B, and
CM(RinLd)G(RinLd)B.

2.3 Orthogonal polynomial decomposition

In the proposed framework, the final stage of the feature extraction is the orthogonal
polynomial decomposition process. Orthogonal polynomials, such as Tchebichef, have
been shown to be an efficient means of representation of 2D functions [57]. In
addition, some orthogonal polynomials such as Hermite and Zernike have also been
used in previous studies during texture extraction and classification [38, 67]. However,
Tchebichef polynomials have been identified to pose better performance compared to
others [4]. Previous studies fed the raw image as input directly to the orthogonal
polynomial decomposition process. However, as described in the simulation results
section, inputting multi-spectral co-occurrence matrices instead of the raw image
provides higher performance in terms of facial discrimination. Since the majority of
information about the image and structure is concealed in the first few moments and
the details are thought to be expressed in higher order moments, the second order
statistical data, which does not have a high degree of importance can be eliminated by
means of the limited opening. Thus, unnecessary complexity is eliminated.

The decomposition of the input matrix into moment orders Mpq is given in the
following:

Mpq ¼ 1

ρ pð Þρ qð Þ ∑
N−1
x¼0∑

N−1
y¼0mp xð Þw xð Þmq yð Þw yð Þ f x; yð Þ ð5Þ

where 0 ≤ p, q, x, y ≤N-1; mn(x) represents a set of orthogonal polynomials, w(x) and ρ()
denote the weight function and rho respectively.

The mathematical representation of the Tchebichef orthogonal polynomials is given in the
following equation:

mn xð Þ ¼ n!∑n
k¼0 −1ð Þn−k N−1−k

n−k

� �
nþ k
n

� �
x
k

� �
ð6Þ

ρ nð Þ ¼ 2nð Þ! N þ n
2nþ 1

� �
ð7Þ

w xð Þ ¼ 1 ð8Þ
where mn(x), ρ(n), w(x) denote the nth Tchebichef polynomial, rho and weight func-
tions respectively. In this study, the number of coefficients calculated for a single
input matrix with the size NxN is equal to 2 N-2, hence, a signature comprising
6(2 N-2) coefficients is generated ultimately. Figure 3 depicts the orthogonal polyno-
mial decomposition of a sample matrix:
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3 Simulation results and discussions

Various experiments are conducted to measure and analyze the performance of the
proposed framework under different circumstances. The evaluation of the proposed
framework is performed on five benchmark databases, namely, Face94 [16], JAFFE
[42], YALE (http://vision.ucsd.edu/content/yale-face-database), CAS-PEAL-R1 [17],
ORL [55].

To ensure uniformity, some preprocessing is applied to each image. Each image is
first scaled to a size of 64 × 64. Following the scaling stage, the face extraction is
performed using the Viola Jones [66] algorithm to eliminate the effect of unnecessary
background and foreground factors. To accurately measure and analyze the perfor-
mance of the proposed framework and compare to the state-of-the-art methods in the
area, hold out testing is utilized. That is, if an individual has N images in a data set,
%80 of them and their average image are used for training. The rest is used for
testing. When creating the average face image, each individual’s images are aligned
taking the individual’s eyes into consideration. The sample average face calculation of
an individual is given in Fig. 4:

The performance analysis of the proposed framework is performed in two folds. In the first
step, the stability and resistance of the method to rotation, illumination changes and noise
effects are clarified. Later, the recognition performance of the proposed method is analyzed
and compared to the the-state-of-art methods such as LBP, LDP, LDNP (Local Directional
Number Pattern) [51], Gabor Features, HoG (Histogram of Gradients), LTP, LTeTP (Local
Tetra Pattern) [44] and LDrvP (Local Derivative Pattern) [76] by conducting extensive
simulations.

Fig. 3 Tchebichef signature of a sample matrix

I1 I2 I3 I4 Iavg

Fig. 4 Sample face images of an
individual and his average face
image
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3.1 The stability analysis

As mentioned earlier, rotational changes, variation of illumination and noise signifi-
cantly affect recognition performance. Hence, the proposed local descriptor and the
overall architecture should not fail under challenging circumstances and should remain
intact to fulfill the recognition task satisfactorily. First, it is shown how the recom-
mended local identifier remains intact against rotation changes. Following this,
RIMFRA’s performance analysis is carried out to verify its resistance with extensive
simulations against lighting changes. The last section in this section shows the analysis
results of the simulations performed to see the behavior of RIMFRA under changing
noisy conditions.

3.1.1 Rotation-variation resistance analysis

A solid texture descriptor should be stable and produce similar features even if the
original image is rotated, because the content of the image does not change and
belongs to the same person. It is therefore important to demonstrate and verify the
behavior of the proposed method if the image is subject to rotational changes.
Figures 5 and 6 show the stability performance of RIMFRA. In Fig. 5, a sample
matrix, which symbolizes a block of an image is demonstrated. As depicted in the
figure, the local descriptor content extracted from the block does not change even if
the matrix is rotated 90° counter clockwise.

Figure 6 shows the face images of two people in the Face94 database and 90° rotated
versions thereof.

Similarity performance analysis of the proposed method under rotational variation is made
and compared with the state-of-the art methods in the literature. Firstly, the resulting textural
features of RIMFRA and other methods are obtained from the face images and their 90°
variants. Next, the similarity analysis is done by calculating the Mean Square Error (MSE)
between these sets of features. Figure 7 shows the histograms of the feature sets produced by
RIMFRA for the face images of two sample individuals in the Face94 database and 90° rotated
versions thereof.

Histograms presented in the first column belong first individual’s face images and
histograms in the right column belong to the second individual. Obviously, the histograms
in the same column are very similar, which is the desired situation that confirms the
robustness of RIMFRA against rotational changes. The similarity analysis is conducted on
images from different databases to verify and compare the results fairly. Tables 1, 2, 3, 4
and 5 and Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 demonstrate the
results of the similarity and correlation values between the feature sets of the sample
images and their 90° rotated versions that are selected from different datasets. No image
adjustment or enhancement technique is applied to images to see the performance of the
methods used in raw images.

Figure 9 shows the face images and their 90° rotated versions of two individuals in the
YALE database.

Figure 10 shows the histograms of the feature sets produced by RIMFRA for the face
images of two sample individuals in the YALE database and 90° rotated versions thereof.

Figure 12 shows the face images and their 90° rotated versions of two individuals in the
CAS-PEAL-R1 database.
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Fig. 5 Demonstration of the robustness of the proposed method to the rotational changes in an exemplary matrix

(a) Face1 (b) Face1_90° (c) Face2 (d) Face2_90°

Fig. 6 Sample images and their rotated versions of two individuals in the Face94 database

Fig. 7 RIMFRA feature set histograms of the images given in Fig. 6(a-d)

26546 Multimedia Tools and Applications (2019) 78:26537–26567



Table 1 The MSE values calculated in the Face94 sample images

Method MSE1 MSE2 MSE3 MSE4

RIMFRA 0.010 0.018 0.990 0.826
LTrnP 0.701 0.990 0.010 0.396
LDNP 0.990 0.881 0.010 0.336
LDrvP 0.010 0.990 0.737 0.514
LDP 0.990 0.268 0.685 0.010
LBP 0.010 0.990 0.597 0.597
LTetP 0.010 0.990 0.812 0.483
Gabor 0.010 0.568 0.990 0.990
HoG 0.701 0.990 0.010 0.031

Table 2 MSE values calculated in the YALE sample images

Method MSE1 MSE2 MSE3 MSE4

RIMFRA 0.011 0.010 0.990 0.940
LTrnP 0.990 0.990 0.010 0.138
LDNP 0.990 0.632 0.010 0.259
LDrvP 0.869 0.990 0.056 0.010
LDP 0.774 0.990 0.010 0.044
LBP 0.519 0.990 0.010 0.010
LTetP 0.519 0.990 0.029 0.010
Gabor 0.515 0.990 0.010 0.010
HoG 0.571 0.990 0.088 0.010

Table 3 MSE values calculated in the CAS-PEAL-R1 sample images

Method MSE1 MSE2 MSE3 MSE4

RIMFRA 0.010 0.010 0.990 0.977
LTrnP 0.834 0.990 0.422 0.010
LDNP 0.377 0.990 0.067 0.010
LDrvP 0.010 0.990 0.151 0.266
LDP 0.682 0.990 0.010 0.347
LBP 0.990 0.010 0.877 0.882
LTetP 0.120 0.010 0.990 0.896
Gabor 0.063 0.010 0.990 0.990
HoG 0.129 0.990 0.174 0.010

Table 4 MSE values calculated in the JAFFE sample images

Method MSE1 MSE2 MSE3 MSE4

RIMFRA 0.010 0.027 0.927 0.990
LTrnP 0.990 0.658 0.010 0.044
LDNP 0.727 0.990 0.010 0.203
LDrvP 0.778 0.990 0.010 0.100
LDP 0.841 0.990 0.041 0.010
LBP 0.990 0.209 0.010 0.010
LTetP 0.990 0.256 0.089 0.010
Gabor 0.010 0.990 0.093 0.093
HoG 0.990 0.834 0.028 0.010
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Figure 13 demonstrates the histograms of the feature sets produced by RIMFRA for the
face images of two sample individuals in the CAS-PEAL-R1 database and 90° rotated versions
thereof.

Figure 15 shows the face images and their 90° rotated versions of two individuals in the
JAFFE database.

Figure 16 demonstrates the histograms of the feature sets produced by RIMFRA for the
face images of two sample individuals in the JAFFE database and 90° rotated versions thereof.

Figure 18 shows the face images and their 90° rotated versions of two individuals in the
ORL database.

0.0

0.5

1.0

corr1 corr2 corr3 corr4

RIMFRA LTrnP LDNP LDrvP LDP
LBP LTetP Gabor HoG

Fig. 8 Graphical representation of the correlation between feature sets of sample images and their 90° rotated
versions in Face94 dataset

(a)Face1 b)Face1_90° (c) Face2 (d)Face2_90°

Fig. 9 Sample images and their rotated versions of two individuals in the YALE database

Table 5 MSE values calculated on the ORL sample images

Method MSE1 MSE2 MSE3 MSE4

RIMFRA 0.010 0.010 0.973 0.990
LTrnP 0.010 0.990 0.223 0.245
LDNP 0.690 0.990 0.589 0.010
LDrvP 0.990 0.982 0.010 0.307
LDP 0.530 0.990 0.010 0.732
LBP 0.347 0.010 0.990 0.990
LTetP 0.353 0.010 0.617 0.990
Gabor 0.990 0.086 0.010 0.010
HoG 0.297 0.990 0.231 0.010
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Fig. 10 RIMFRA feature set histograms of the images given in Fig. 9(a-d)

0.0

0.5

1.0

corr1 corr2 corr3 corr4

RIMFRA LTrnP LDNP LDrvP LDP
LBP LTetP Gabor HoG

Fig. 11 Graphical representation of the correlation between feature sets of sample images and their 90° rotated
versions in YALE dataset

(a) Face1 (b) Face1_90° (c) Face2 (d) Face2_90°

Fig. 12 Sample images and their rotated versions of two individuals in the CAS-PEAL-R1 database
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Fig. 13 RIMFRA feature set histograms of the images given in Fig. 12(a-d)

0.0

0.5

1.0

corr1 corr2 corr3 corr4

RIMFRA LTrnP LDNP LDrvP LDP
LBP LTetP Gabor HoG

Fig. 14 Graphical representation of the correlation between feature sets of sample images and their 90° rotated
versions in CAS-PEAL-R1 dataset

(a) Face1 (b) Face1_90° (c) Face2 (d) Face2_90°

Fig. 15 Sample images and their rotated versions of two individuals in the JAFFE database
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Figure 19 demonstrates the histograms of the feature sets produced by RIMFRA for
the face images of two sample individuals in the ORL database and 90° rotated
versions thereof.

In all tables and figures, columns 1 and corr1 values represent the similarity
analysis and correlation results between the first image and its 90° rotated version
respectively. Columns 2 and corr2 indicate the similarity analysis and correlation
results between the second image and its 90° rotated version respectively. Columns
3 and corr3 values refer to the similarity analysis and correlation results between the
first image and the 90° rotated version of the second image respectively. Columns 4
and corr4 values represent the similarity analysis and correlation results between the
second image and the 90° rotated version of the first image respectively. Inherently, a

Fig. 16 RIMFRA feature set histograms of the images given in Fig. 15(a-d)

0.0

0.5

1.0

corr1 corr2 corr3 corr4

RIMFRA LTrnP LDNP LDrvP LDP
LBP LTetP Gabor HoG

Fig. 17 Graphical representation of the correlation between feature sets of sample images and their 90° rotated
versions in JAFFE dataset
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high-representative texture descriptor of an individual’s face image should remain
similar even when the image of that individual is rotated. Furthermore, the dissimi-
larity between the images belonging to two different individuals should be high to
differentiate the individuals. In addition, the correlation value between images of the
same individual is high, but should be low among the images of different individuals.
As clearly shown in the tables representing the results of the different datasets,
RIMFRA achieves consistent and highly accurate performance, producing results that
meet the above-mentioned considerations.

3.1.2 Illumination-variation resistance analysis

The second stage of the analysis process involves the performance test under illuminating
variations and the comparison of the proposed method with other texture descriptors. Two
types of analysis are performed to investigate the performance of our method. First, tests are
performed on the face images in the CAS-PEAL-R1 data set (Fig. 21) exposed to natural
lighting variations.

Table 6 and Fig. 22 show the MSEs and correlation values between the feature sets of the
first image and others. Although CAS-PEAL-R1 is one of the most demanding data sets due to

(a) Face1 (b) Face1_90° (c) Face2 (d) Face2_90°

Fig. 18 Sample images and their rotated versions of two individuals in the ORL database

Fig. 19 RIMFRA feature set histograms of the images given in Fig. 18(a-d)
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facial images containing compelling variations for texture descriptors, RIMFRA competes
with the most modern descriptors proposed in the literature.

In the second stage of the illumination robustness analysis, an artificial, non-linear
and non-uniform, third-order polynomial-based artificial illumination effect is created
and included in the images in each dataset. Table 7, 8, 9, 10 and 11 and Fig. 23, 24,
25, 26 and 27 demonstrate the MSEs and correlation values calculated between the
feature sets of the original image of an individual from each dataset and its artificially
illuminated versions.

As presented in the tables above, RIMFRA offers promising performances in comparison to
the latest technology in terms of robustness against illuminating variations.

3.1.3 Noise resistance analysis

Another compelling to consider during performance analysis of a texture descriptor is
how it is resistant to noise effects without applying any noise filtration. Therefore,
any pre-treatment method to mitigate the effects of noise is not applied in simulations
in order to accurately analyze the resistance to noise. Two types of noise, i.e. salt-
pepper and Gaussian, are applied to the images in each database. Firstly, the salt-

0.0
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1.0

corr1 corr2 corr3 corr4

RIMFRA LTrnP LDNP LDrvP LDP
LBP LTetP Gabor HoG

Fig. 20 Graphical representation of the correlation between feature sets of sample images and their 90° rotated
versions in ORL dataset

Fig. 21 Sample images of an individual in the CAS-PEAL-R1 database under different lighting conditions
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pepper noise is handled. Figure 28 shows an exemplary image, salt-pepper-noise
exposed version, as well as RIMFRA feature set histograms of both. Clearly, the
histogram of the multiple spectral-orthogonal signature of the original image and the
histogram of the multiple spectral-orthogonal signature of the noisy version are very
similar.

Table 12 and Fig. 29 show the similarity and dissimilarity values between a sample
image in each dataset and their versions affected by the salt-pepper noise. For a method
that is confirmed to be resistant to salt pepper noise, the MSE which expresses the
difference between the feature sets of the image and the feature sets of the salt pepper
noisy version should be low. In contrast, the correlation between the feature sets of the
image and the feature sets of the salt pepper noisy version should be high. As a result,
low MSE and high correlation values inherently points how the method is resistant to
noise. As clearly seen, RIMFRA is one of the bests among the methods in terms of low
MSE and high correlation.

The second noise resistance analysis is performed by incorporating Gaussian noise.
Gaussian noise with different variance (σ2) values is applied to the images in each
dataset. As in the salt-pepper noise effect analysis, the similarity and correlation values
are measured between the feature sets of images and feature sets of their Gaussian
noise exposed versions. Tables 13, 14, 15, 16 and 17, Figs. 30, 31, 32, 33 and 34
demonstrate the dissimilarity and correlations between the feature sets of the original
images and noisy ones respectively.

Table 6 MSE values calculated on the CAS-PEAL-R1 sample images

Method MSE1 MSE2 MSE3 MSE4 MSE5 MSE6 MSE7 MSE8 MSE9 AvgMSE

RIMFRA 0.010 0.678 0.900 0.294 0.116 0.265 0.643 0.197 0.442 0.394
LTrnP 0.400 0.574 0.707 0.058 0.392 0.900 0.010 0.151 0.718 0.435
LDNP 0.900 0.695 0.569 0.012 0.572 0.663 0.010 0.438 0.722 0.509
LDrvP 0.627 0.429 0.756 0.063 0.504 0.900 0.010 0.169 0.455 0.435
LDP 0.900 0.515 0.473 0.433 0.701 0.765 0.010 0.282 0.834 0.546
LBP 0.233 0.856 0.900 0.010 0.294 0.694 0.154 0.255 0.644 0.449
LTetP 0.010 0.900 0.268 0.390 0.123 0.158 0.453 0.190 0.269 0.307
Gabor 0.052 0.148 0.145 0.010 0.252 0.603 0.180 0.204 0.900 0.277
HoG 0.107 0.222 0.456 0.010 0.301 0.900 0.085 0.334 0.752 0.352

Fig. 22 Graphical demonstration of the correlation between the feature sets of a sample individual’s self-
illuminated images in CAS-PEAL-R1 dataset
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3.2 The recognition performance analysis

The recognition performance analysis of RIMFRA is done in two ways: 1- Training-
based recognition performance analysis 2- Similarity-based recognition performance
analysis. Since RIMFRA runs on color images, all images in each non-colored dataset
are initially converted to RGB color space. To do this, a conversion map is generated
by taking a reference colored image and its non-colored version. A best possible map
is tried to be created for the conversion purpose. As is known, it is not possible to

Table 7 MSE values calculated between the feature sets of the image of a sample individual in the Face94 data
set and the feature sets of the artificially illuminated versions of this image

Method MSE1 (α = 0.1) MSE2 α = 0.2) MSE3 (α = 0.3) MSE4 (α = 0.4) MSE5 (α = 0.5)

RIMFRA 0.010 0.010 0.010 0.010 0.990
LTrnP 0.010 0.010 0.010 0.010 0.990
LDNP 0.010 0.010 0.010 0.010 0.990
LDrvP 0.010 0.010 0.010 0.010 0.990
LDP 0.010 0.010 0.010 0.010 0.990
LBP 0.010 0.010 0.010 0.010 0.990
LTetP 0.010 0.010 0.010 0.010 0.990
Gabor 0.010 0.010 0.010 0.010 0.990
HoG 0.010 0.010 0.010 0.010 0.990

Table 9 MSE values calculated between the feature sets of the image of a sample individual in the CAS-PEAL-
R1 data set and the feature sets of the artificially illuminated versions of this image

Method MSE1 (α = 0.1) MSE2 α = 0.2) MSE3 (α = 0.3) MSE4 (α = 0.4) MSE5 (α = 0.5)

RIMFRA 0.010 0.010 0.010 0.010 0.990
LTrnP 0.010 0.010 0.010 0.010 0.990
LDNP 0.010 0.010 0.010 0.010 0.990
LDrvP 0.010 0.010 0.010 0.010 0.990
LDP 0.010 0.010 0.010 0.010 0.990
LBP 0.010 0.010 0.010 0.010 0.990
LTetP 0.010 0.010 0.010 0.010 0.990
Gabor 0.010 0.010 0.010 0.010 0.990
HoG 0.010 0.010 0.010 0.010 0.990

Table 8 MSE values calculated between the feature sets of the image of a sample individual in the YALE data set
and the feature sets of the artificially illuminated versions of this image

Method MSE1 (α = 0.1) MSE2 α = 0.2) MSE3 (α = 0.3) MSE4 (α = 0.4) MSE5 (α = 0.5)

RIMFRA 0.010 0.010 0.417 0.822 0.723
LTrnP 0.010 0.426 0.682 0.813 0.990
LDNP 0.010 0.564 0.677 0.922 0.990
LDrvP 0.010 0.476 0.720 0.730 0.990
LDP 0.010 0.413 0.706 0.806 0.990
LBP 0.010 0.549 0.822 0.920 0.990
LTetP 0.010 0.558 0.750 0.896 0.990
Gabor 0.010 0.290 0.484 0.542 0.990
HoG 0.010 0.470 0.596 0.775 0.990
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find a complete conversion map from gray to RGB conversion. Therefore, it is tried
to find the best possible conversion map. Because the images of the Face94 data set
are originally in a colored form, they give the best results during simulations.
However, because other data sets consist of non-colored images, these images are
first converted to RGB and then processed. The conversion process is unclear as it is
approximate, which naturally affects the results.

Table 10 MSE values calculated between the feature sets of the image of a sample individual in the JAFFE data
set and the feature sets of the artificially illuminated versions of this image

Method MSE1 (α = 0.1) MSE2 α = 0.2) MSE3 (α = 0.3) MSE4 (α = 0.4) MSE5 (α = 0.5)

RIMFRA 0.010 0.010 0.010 0.010 0.990
LTrnP 0.010 0.010 0.010 0.010 0.990
LDNP 0.010 0.010 0.010 0.010 0.990
LDrvP 0.010 0.010 0.010 0.010 0.990
LDP 0.010 0.010 0.010 0.010 0.990
LBP 0.010 0.010 0.010 0.010 0.990
LTetP 0.010 0.010 0.010 0.010 0.990
Gabor 0.010 0.010 0.010 0.010 0.990
HoG 0.010 0.010 0.010 0.010 0.990

Table 11 MSE values calculated between the feature sets of the image of a sample individual in the ORL data set
and the feature sets of the artificially illuminated versions of this image

Methodd MSE1 (α = 0.1) MSE2 (α = 0.2) MSE3 (α = 0.3) MSE4 (α = 0.4) MSE5 (α = 0.5)

RIMFRA 0.010 0.010 0.010 0.010 0.990
LTrnP 0.010 0.010 0.010 0.010 0.990
LDNP 0.010 0.010 0.010 0.010 0.990
LDrvP 0.010 0.010 0.010 0.010 0.990
LDP 0.010 0.010 0.010 0.010 0.990
LBP 0.990 0.990 0.990 0.990 0.010
LTetP 0.010 0.010 0.010 0.010 0.990
Gabor 0.010 0.010 0.010 0.010 0.990
HoG 0.010 0.010 0.010 0.010 0.990

Fig. 23 Graphical demonstration of the correlation between the feature sets of the artificially illuminated versions
of an image in Face94 dataset
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Fig. 24 Graphical demonstration of the correlation between the feature sets of the artificially illuminated versions
of an image in YALE dataset

Fig. 25 Graphical demonstration of the correlation between the feature sets of the artificially illuminated versions
of an image in CAS-PEAL-R1 dataset

Fig. 26 Graphical demonstration of the correlation between the feature sets of the artificially illuminated versions
of an image in JAFFE dataset

Multimedia Tools and Applications (2019) 78:26537–26567 26557



3.2.1 Training-based recognition performance analysis

At this stage, supervised learning is used during classification. %80 of each individ-
ual’s images in each dataset is used for training and the remaining images of the
individuals are used for testing. Table 18 shows the performance results of RIMFRA
and the-state-of-the-art methods in terms of recognition accuracy. As it can be seen in
Table 18, RIMFRA performs promisingly well when compared to other methods in
terms of classification accuracy analysis using supervised learning. RIMFRA performs
remarkably even on the challenging datasets CAS-PEAL-R1, JAFFE and ORL.

Fig. 27 Graphical demonstration of the correlation between the feature sets of the artificially illuminated versions
of an image in ORL dataset

Fig. 28 Demonstration of the robustness of the proposed method against salt-pepper noise
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3.2.2 Similarity-based recognition performance analysis

At this stage, recognition performance measurement of RIMFRA and the-state-of-the-
art methods are done by implementing similarity analysis between the feature sets of
the images. That is, the feature set of the image that is being searched is calculated and
then compared to the feature sets of each image in the dataset. If the tag of the most
similar image found matches up with the tag of the image that is being searched, that
shows a hit (true-positive), otherwise a miss (false-positive). Table 19 figures out the
recognition accuracy performances of each method in each dataset. As clarified in the
table, RIMFRA competes with the other methods even on the challenging datasets
without any training, that is without any knowledge.

The final step of the simulations is to measure recognition accuracy when images are
subject to rotational changes. At this point, the desired image is rotated by 90° and then the
feature set is extracted. The feature set is then compared with the feature set of the non-rotated
images. Not surprisingly, RIMFRA shows remarkable performance under the circumstance of
rotational change as presented in Table 20.

Table 12 MSE values calculated between the feature sets of a sample individual’s image in each database and its
artificially salt-pepper noisy version

Method MSEs

Face94 YALE CAS-PEAL-R1 JAFFE ORL

RIMFRA 0.141 0.038 0.039 0.010 0.031
LTrnP 0.026 0.032 0.037 0.010 0.111
LDNP 0.062 0.120 0.167 0.010 0.111
LDrvP 0.010 0.010 0.010 0.010 0.010
LDP 0.886 0.990 0.990 0.990 0.990
LBP 0.990 0.967 0.657 0.010 0.876
LTetP 0.023 0.024 0.024 0.010 0.031
Gabor 0.030 0.037 0.026 0.010 0.046
HoG 0.113 0.301 0.678 0.010 0.528

Fig. 29 Graphical demonstration of the correlation between the feature sets of sample images in each database
and their salt-pepper noisy versions
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Table 13 MSE values calculated between the feature sets of a sample individual’s image in Face94 dataset and
feature sets of its artificially Gaussian noise exposed versions

Method σ2 = 0.01 σ2 = 0.02 σ2 = 0.03 σ2 = 0.04 σ2 = 0.05

RIMFRA 0.010 0.103 0.250 0.636 0.990
LTrnP 0.010 0.406 0.780 0.898 0.990
LDNP 0.010 0.476 0.645 0.990 0.979
LDrvP 0.010 0.474 0.740 0.886 0.990
LDP 0.010 0.247 0.613 0.762 0.990
LBP 0.010 0.436 0.688 0.828 0.990
LTetP 0.010 0.463 0.699 0.990 0.929
Gabor 0.010 0.238 0.614 0.632 0.990
HoG 0.010 0.512 0.468 0.777 0.990

Table 14 MSE values calculated between the feature sets of a sample individual’s image in YALE dataset and
feature sets of its artificially Gaussian noise exposed versions

Method σ2 = 0.01 σ2 = 0.02 σ2 = 0.03 σ2 = 0.04 σ2 = 0.05

RIMFRA 0.010 0.064 0.182 0.587 1.000
LTrnP 0.010 0.480 0.707 0.964 1.000
LDNP 0.010 0.538 0.710 1.000 0.993
LDrvP 0.010 0.484 0.665 0.825 1.000
LDP 0.010 0.427 0.602 0.817 1.000
LBP 0.010 0.552 0.798 0.987 1.000
LTetP 0.010 0.457 0.774 0.865 1.000
Gabor 0.010 0.374 0.782 0.557 1.000
HoG 0.010 0.349 0.671 0.927 1.000

Table 15 MSE values calculated between the feature sets of a sample individual’s image in JAFFE dataset and
feature sets of its artificially Gaussian noise exposed versions

Method σ2 = 0.01 σ2 = 0.02 σ2 = 0.03 σ2 = 0.04 σ2 = 0.05

RIMFRA 0.010 0.413 0.674 0.850 1.000
LTrnP 0.010 0.525 0.681 0.820 1.000
LDNP 0.010 0.444 0.738 0.872 1.000
LDrvP 0.010 0.640 0.781 0.972 1.000
LDP 0.010 0.506 0.561 0.707 1.000
LBP 0.010 0.497 0.774 1.000 0.865
LTetP 0.010 0.486 0.732 0.743 1.000
Gabor 0.010 0.265 0.658 0.934 1.000
HoG 0.010 0.331 0.836 0.813 1.000

Table 16 MSE values calculated between the feature sets of a sample individual’s image in CAS-PEAL-R1
dataset and feature sets of its artificially Gaussian noise exposed versions

Method σ2 = 0.01 σ2 = 0.02 σ2 = 0.03 σ2 = 0.04 σ2 = 0.05

RIMFRA 0.010 0.271 0.483 0.323 1.000
LTrnP 0.010 0.442 0.748 0.836 1.000
LDNP 0.010 0.315 0.676 0.925 1.000
LDrvP 0.010 0.555 0.680 0.776 1.000
LDP 0.010 0.514 0.781 0.924 1.000
LBP 0.010 0.608 0.834 1.000 0.996
LTetP 0.010 0.682 0.790 0.841 1.000
Gabor 0.010 0.131 0.701 0.938 1.000
HoG 0.010 0.412 0.521 0.972 1.000
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Table 17 MSE values calculated between the feature sets of a sample individual’s image in ORL dataset and
feature sets of its artificially Gaussian noise exposed versions

Method σ2 = 0.01 σ2 = 0.02 σ2 = 0.03 σ2 = 0.04 σ2 = 0.05

RIMFRA 0.010 0.298 0.558 0.689 1.000
LTrnP 0.010 0.517 0.817 0.996 1.000
LDNP 0.010 0.394 0.802 0.805 1.000
LDrvP 0.010 0.535 0.717 0.816 1.000
LDP 0.010 0.235 0.595 0.665 1.000
LBP 0.010 0.535 0.929 0.929 1.000
LTetP 0.010 0.433 0.717 0.866 1.000
Gabor 0.010 0.378 0.345 0.478 1.000
HoG 0.010 0.525 0.690 0.907 1.000
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Fig. 30 Graphical demonstration of the correlation between the feature sets of a sample image in Face94 dataset
and feature sets of its Gaussian noisy versions
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Fig. 31 Graphical demonstration of the correlation between the feature sets of a sample image in YALE dataset
and feature sets of its Gaussian noisy versions
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Fig. 32 Graphical demonstration of the correlation between the feature sets of a sample image in JAFFE dataset
and feature sets of its Gaussian noisy versions
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Fig. 34 Graphical demonstration of the correlation between the feature sets of a sample image in ORL dataset
and feature sets of its Gaussian noisy versions
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Fig. 33 Graphical demonstration of the correlation between the feature sets of a sample image in CAS-PEAL-R1
dataset and feature sets of its Gaussian noisy versions
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Table 18 The recognition performance results regarding supervised training

Method Face94 CAS-PEAL-R1 JAFFE ORL

RIMFRA 0.997 0,891 0,920 0,775
LTrnP 0.991 0.947 1.000 0.775
LDNP 0.996 0.950 1.000 0.750
LDrvP 0.991 0.889 0.900 0.638
LDP 0.991 0.881 0.980 0.725
LBP 1.000 0.912 0.960 0.825
LTetP 0.998 0.836 0.780 0.725
Gabor 1.000 0.897 0.820 0.863
HoG 1.000 0.987 1.000 0.888

Table 20 The recognition performance results regarding similarity analysis

Method Accuracies

Face94 CAS-PEAL-R1 JAFFE ORL

TP FP TP FP TP FP TP FP

RIMFRA 93 0 349 38 9 1 18 22
LTrnP 1 92 0 377 0 10 4 36
LDNP 1 92 2 375 0 10 2 38
LDrvP 0 93 0 377 0 10 5 35
LDP 0 93 0 377 0 10 2 38
LBP 4 89 0 377 0 10 1 39
LTetP 4 89 0 377 0 10 5 35
Gabor 13 80 0 377 3 7 6 34
HoG 0 93 0 377 0 10 7 33

Table 19 The recognition performance results regarding similarity analysis

Method Accuracies

Face94 CAS-PEAL-R1 JAFFE ORL

TP FP TP FP TP FP TP FP

RIMFRA 93 0 350 27 10 0 36 4
LTrnP 93 0 364 13 10 0 33 7
LDNP 93 0 362 15 10 0 35 5
LDrvP 93 0 362 15 10 0 36 4
LDP 93 0 341 36 10 0 33 7
LBP 93 0 353 24 10 0 35 5
LTetP 93 0 336 41 10 0 40 0
Gabor 93 0 352 25 10 0 40 0
HoG 93 0 375 2 10 0 40 0
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4 Conclusion

This paper proposes a rotation-invariant multi-spectral facial recognition approach, which is
highly resistant especially to rotational variances, as well as illumination changes and noise
effects. Nearly all methods proposed so far have based on gray-level domain that ignores the
information embodied in the color bands. The traditional view during texture extraction is
considering the relationships of the pixels only in the colorless domain. However, during
texture extraction, significant discriminative features can be obtained by considering the
relationships between different color bands of the neighboring pixels. With this in mind,
RIMFRA explores the multi-spectral relationships of pixels with their neighbors. Orthogonal
polynomials are an effective way of representing 2D matrices. Thus, the resulting matrices
produced in the previous step are fed to the orthogonal polynomial decomposition stage. The
first few coefficients of the polynomial are the ones that the most information about the 2D
matrix and also help reduce the size of the feature set. Simulation results encourage us to take
the idea a step further by considering not only the RGB space but also other color spaces and
combining the features of different color spaces as a compound feature set in future studies.
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