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Abstract
The core of the contour-based corner detection is essentially performing a good curvature
estimation on planar curves. Inspired by intuitive observation that the curvature of a point on a
contour is proportional to the distance accumulation of its neighbors to the tangent of the point,
we present a novel curvature estimator named Relative Tangent-to-Point Distance Accumula-
tion (RTPDA) for contour-based corner detection. In the approach, we fit the curve segments
with quadratic polynomials by employing least square technique to derive the tangent of the
target point, and then accumulate the distance of its neighbors to the tangent, which is a good
approximation of the discrete curvature. Experiments verify the effectiveness and the efficien-
cy of the proposed detector in comparison with several influential corner detectors under three
commonly used evaluation metrics, namely, Average Repeatability (AR), Localization Error
(LE) and Accuracy index (ACU).
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1 Introduction

Corners are widely applied for helping to tackle many tasks in image processing and computer
vision communities, such as 3D construction, object tracking, robot navigation, and image
registration. By now, extensive corner detection approaches have been proposed. Generally
speaking, these methods can be categorized into two groups [29]: Intensity-based and contour-
based. Intensity-based methods [1, 2, 10–13, 15, 21, 25, 27, 28] directly deal with the intensity
values (or grey scales) while contour-based methods [4, 5, 9, 14, 16, 17, 23, 26, 29–38]
directly or indirectly estimate a significance measure (e.g., curvature) on the points of a planar
curve, and select the curvature extrema points as corners [29]. Our approach follows the latter.

With respect to the contour-based corner detectors, curvature estimation is the crucial step
[6] and by now lots of influential curvature estimation methods have been proposed. Among
them, some corner detectors estimate the curvature of a plane curve directly according to its
mathematic definition. For example, the curvature scale-space (CSS) [23], ATCSS [14] and
multi-scale curvature product (MSCP) [32] calculated the plane curvature K as follows:

K u;σð Þ ¼ Ẋ u;σð Þ€Y u;σð Þ−€X u;σð ÞẎ u;σð Þ
Ẋ u;σð Þ2 þ Ẏ u;σð Þ2
h i1:5 ð1Þ

w h e r e Ẋ u;σð Þ ¼ x uð Þ⊗ġ u;σð Þ; €X u;σð Þ ¼ x uð Þ⊗€g u;σð Þ; Ẏ u;σð Þ ¼ y uð Þ⊗ġ u;σð Þ;
€Y u;σð Þ ¼ y uð Þ⊗€g u;σð Þ, and ⊗ is the convolution operator. g(u, σ) denotes a Gaussian
function with deviation σ, and ġ u;σð Þ; €g u;σð Þ are the first and second derivatives of
g(u, σ) respectively. x(u) and y(u) are the coordinate functions controlled by the given
parameter u. This curvature estimation technique is sensitive to the local variation and noise
due to its small region of support (RoS) [4, 6]. Meanwhile, many other corner detectors
estimate plane curvature via presenting lots of Bdiscrete curvature^ which can reflect the
degree of the curvature of planar curves. For example, Rosenfeld etc. (RJ73) [26] treated angle
as discrete curvature; Awrangjeb and Lu etc. employed the Chord-to-Point Distance Accumu-
lation for discrete curvature estimation [4]. Other Bdiscrete curvatures^ include eigenvalue
[30], eigenvector [31], GCM [33] and KD curvature [9], SODC [16], ACRA [17] and so on. It
has been concluded in [6] that the second kind of approaches enjoy more robustness and
higher performance in general. A review of the relevant review works on contour-based corner
detection methods can be found in [6, 24].

There are two major problems faced by contour-based corner detectors. One problem is that
they heavily rely on the edge-detection results. Different edge detection methods will yield
different contours which will greatly reflect the corner detection results. The other problem is
that they are sensitive to noise and geometric transformations. For the first problem, robust
contour extraction schemes should be proposed; for the second one, constructing robust
curvature estimators is an effective way. We are devoted to tackle the second problem. Inspired
by intuitive observation that the curvature of a point on a contour is positively correlated to the
distance accumulation of its neighbors to the tangent of the point, we present a novel corner
detector based on the Relative Tangent-to-Point Distance Accumulation (RTPDA) technology.
Since RTPDA uses a relatively larger neighborhood without using any derivative based
measurements, it is less sensitive to noise compared with CSS-based corner detectors. What’s
more, by adopting relative distance for estimation, RTPDA is more robust to the uniform
scaling transform.
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The rest of paper is organized as follows. The related works were presented in section 2. In
Section 3, we discuss the motivation and the methodology of the proposed corner detection
approach. Section 4 presents the image datasets and evaluation metrics employed in this paper.
Section 5 presents the experimental results and we present the conclusion in Section 6.

2 Related works

In this section, we shortly review the chord-to-point distance accumulation (CPDA) technique
which is the most relevant work [4]. Let a chord move along a curve, CPDA detector estimates
the Bdiscrete curvature^ of a point pt on the curve with the summation of the perpendicular
distances from pt to the chord. Figure 1 illustrates the basic idea of CPDA technique and eq. (2)
presents the measurement of the CPDA curvature under one RoS.

hL tð Þ ¼ ∑
t−1

j¼t−Lþ1
dt; j ð2Þ

where j denotes the index of the first intersected point between chord and curve, every time the
chord moves. Three curvature functionsh1(t), h2(t) and h3(t) are calculated corresponding to
three chords of lengths L1 = 10, L2 = 10 and L3 = 10. Three functions are normalized as

h j
0
tð Þ ¼ h j tð Þ

max abs h j
� �� � ; for 1≤ t≤n and 1≤ j≤3 ð3Þ

Then the discrete curvature values range from 0 to 1. Finally, the three normalized curvature
functions hj′(t) are multiplied together to find a single curvature value.

H tð Þ ¼ h1
0
tð Þh2 0

tð Þh3 0
tð Þ; for 1≤ t≤n ð4Þ

, ,

Curve

Chord

Fig. 1 Chord-to-point distance accumulation technique for a chord of length L = 10
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With respect to CPDA detector, discrete curvature is calculated with the chord-to-point
distance accumulation, while discrete curvature is calculated with the tangent-to-point distance
accumulation in our proposed RTPDA detector. Moreover, there are some other differences
between these detectors. CPDA detector uses a larger radius. This may make it miss some
weak corners. And it also utilizes the maximum normalization, which can result in the false
reflection of the curvature of contour in some situations [17]. In contrast, RTPDA adopts
relative a small radius which alleviates this problem. With regard to the computational
complexity, CPDA corner detector utilizes three normalized curvature functions to calculate
the corner response value, which is quite time-consuming [17], while RTPDA just uses one
region of support and experimental results also empirically show that RTPDA is faster than
both CPDA and Fast-CPDA. The comparative characteristics of CPDA and RTPDA are
summarized in Table 1.

3 Methodology

In this section, we first specify the motivation of the proposed curvature estimation method and
then analyze the relationship between the estimated curvature and real curvature.

3.1 Motivation of RTPDA

We illustrate the basic idea of our proposed method by an intuitive example. Figure 2 shows
two parabolic curves y = x2 and y = 3x2 that are both tangent to x axis at the origin p0 = (0, 0). It
is not hard to derive the curvature at p0 of the curve y = 3x2 is 6 which is larger than the one of
the curve y = x2 . Meanwhile, it is also not hard to find that the heights of the neighbors of p0
on the curve y = 3x2 to x axis is higher than those on the curve y = x2. Since x axis is the tangent
line of both the two curves at p0, we can find that the curvature at p0 is positively related with
the distance of its neighbors to the tangent. In the following, we will further explain the
relationship under more general conditions.

3.2 Related to curvature

In differential geometry of curves, the osculating circle S of a sufficiently smooth plane curve
C at a given point p is the one among all tangent circles at the point p that approaches the curve
most tightly. The curvature of C at p is defined as the curvature of that circle and the curvature
is just the same as the reciprocal of the radius of the circle. In the following, to simplify the
analysis, we substitute an arc of the osculating circle at the target point for a small fragment of
C centered at the point, which can help us study the relationship between the real curvature and
the estimated curvature.

Table 1 Comparative characteristics of CPDA and RTPDA detectors

Difference CPDA RTPDA

Distance Point to chord Point to tangent
Curve smoothing Multi-scale Single-scale

RoS Large (10, 20 and 30) Small (4 or 6)
Time efficiency Time-consuming Fast
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Let us consider the following circle SR: x2 + (y − R)2 = R2 shown in Fig. 3a. It is easy to find
that SR passes through the origin and the radius of SR is R. The tangent line of SR at the origin is
the x axis. Assume the point p0 = (x0, y0) is on SR, there is x02 + (y0 − R)2 = R2. If p0 is near

enough to the origin, we have y0 ¼ R−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−x02

p
. The distance of p0 to the x axis equals to y0.

With some derivations, we have y0 ¼ x02

Rþ
ffiffiffiffiffiffiffiffiffiffi
R2−x02

p ¼ 1
R

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 1

Rð Þ2x02
q x02. Keep x0 fixed, y0 in-

creases monotonically with 1
R, which means that the larger the curvature at the origin is, the

longer distance from the point near the origin to the tangent line (x axis) at the origin. The
relationship between the length and 1

R is shown in Fig. 3b.

Given a target point on a plane curve, we get that the distance of its neighbor to the
tangent line of the curve at the point increases with the curvature at the point. So we can
use the distance as discrete curvature estimation at the target point. However, the
distance is proportional to uniform scaling, which means it is not robust to that trans-
formation. Such behavior indicates that it needs choosing different thresholds for differ-
ent scaled images based on one same original image. To make the distance more robust
under the uniform scaling, we alternatively use the ratio of the distance to the length of
the chord from the target point to its neighbor. The derived relative distance can be
represented by

dr ¼ y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

p ¼
ffiffiffi
1

2

r 1

R
x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 1

R

� �2x02qr ; ð5Þ

which also increases monotonically with 1
R. The relationship of the relative distance and

the 1
R is shown in Fig. 3c. In the next step we construct our curvature estimator at the

origin according to the following scheme: 1) assign the region of support (RoS) of the
origin (target point); 2) for every point on the RoS, we calculate a relative distance
described as above; 3) the accumulation of all the relative distances is considered as the
discrete curvature estimation at the origin. The reason why we use the distance accumu-
lation is that more neighbors of the target point can participate in the calculation of the
curvature at the target point in this way, and a relative bigger neighborhood is robust to
noise in general.

3.3 Relative tangent-to-point distance accumulation

In the following, we present a novel Bdiscrete curvature^ estimation technique based on
the above described basic idea. Let m sequential digital points describe a contour C,
C = {pj = (xj, yj), j = 1, 2,⋯,m}, where pj + 1 is adjacent to pj. Denote Nk(pi) as a small
boundary segment of C, which is defined by the RoS between points pi − k and pi + k for
some integer k, i.e. Nk(pi) = {pj| j = i − k,⋯, i + k}. Our aim is to calculate the Bdiscrete
curvature^ at the point pi. The first step is calculating the tangent line at pi. To achieve
this aim, we parameterize the 2k + 1 points and can get two parameterized point sets

j; xiþ j
� �� � k

j¼−kand j; yiþ j

� �n o k

j¼−k
. According to the least squares criterion, we
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respectively fit the polynomial series:x tð Þ ¼ ∑2
n¼0αntnand y tð Þ ¼ ∑2

n¼0βnt
n, to the point

sets {(j, xi + j)} and {(j, yi + j)}, where j = − k, ⋯, − 1, 1, ⋯, k, x(0) = xi and y(0) = yi.The
coefficients α = (α0, α1, α2) and β = (β0, β1, β2, ) are estimated as follows:

α ¼ argmin
α

∑
k

j¼−k; j≠0
x jð Þ−xiþ j
� �2

; s:t x 0ð Þ ¼ xi ð6Þ

β ¼ argmin
β

∑
k

j¼−k; j≠0
y jð Þ−yiþ j

� �2
; s:t y 0ð Þ ¼ yi ð7Þ

By solving the above two optimization problems with constraints, we have

α1 ¼
∑k

j¼−k; j≠0xiþ j−xi j
∑k

j¼−k; j≠0 j
2

¼ 3

k k þ 1ð Þ 2k þ 1ð Þ ∑
k

j¼−k; j≠0
xiþ j−xi j ð8Þ

β1 ¼
∑k

j¼−k; j≠0yiþ j−yi j
∑k

j¼−k; j≠0 j
2

¼ 3

k k þ 1ð Þ 2k þ 1ð Þ ∑
k

j¼−k; j≠0
yiþ j−yi j ð9Þ

The tangent line of C at pi is determined by the target point pi and the direction (α1, β1). For
any point p = (x, y) on C, its distance to the tangent line at pi is represented by

j β1 x−xið Þ−α1 y−yið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2
1 þ β2

1

q j ð10Þ

Fig. 2 An intuitive illustration of the main idea of the proposed RTPDA detector
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Divided by ppi
	!

 

 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x−xið Þ2 þ y−yið Þ2
q

, we can derive its relative distance as follow

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2
1 þ β2

1

q j β1 x−xið Þ−α1 x−yið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xið Þ2 þ x−yið Þ2

q j ð11Þ

then the accumulation of the relative distances among the RoS between points pi − k and pi + k is
represented by

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2
1 þ β2

1

q ∑
k

j ¼ −k
j≠0

j
β1 xiþ j−xi

� �
−α1 yiþ j−yi

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiþ j−xi
� �2 þ yiþ j−yi

� �2
r j ð12Þ

(0,0)

(0,R)

(0,2R)

x

y

(a)

(b) (c)

Fig. 3. a The showing of the circle 푆 ;(b) the changing of 푦0 with variable 1
R; (c) the changing of 푑 with

variable 1
R
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which is used as the Bdiscrete curvature^ of C at pi in this paper. We named our proposed
detector as Relative Tangent to Point Distance Accumulation (RTPDA) detector. The
whole procedure is shown in the following algorithm.

4 Image datasets and evaluation metrics

4.1 Image datasets

In this section, two image datasets are adopted to evaluate the performance of the
compared corner detectors. The images from Dataset 1 shown in Fig.4 can be found in
[33] while the images from Dataset 2 shown in Fig.5 are provided by Dr. M. Awrangjeb
[3]. Many images from Dataset 1 are simple binary images which contains little gray

Algorithm: Relative Tangent-to-Point Distance Accumulation

Inputs: gray-scale image, standard derivation (σ), radius of support region (RoS) 

and Threshold (T).

Outputs: corners of the gray-scale image.

Step 1: extract and select contours from the original gray image.

Step 2: fill gaps and locate the T-junctions and mark them as T-corners in the edge  

contours.

Step 3: find the corners for any extracted contour = {( ( ), ( ))} , where 

( ) and ( ) denote coordinate functions. In detail, do step

step 4: Smooth by convolution with Gaussian function G( , ) =

√
exp(− ) , the smoothed version of can be represented as ( ) =

{( ( , ), ( , ))} , where ( , σ) = ( ) ( , ), ( , σ) = ( )

( , ).

Step 5: calculate the discrete curvature at p(n, σ) = ( ( , ), ( , )) as 

( , σ) according to equation (12).

Step 6: Retain those points p(n, σ), where ( , σ) > ( , σ) for all

such that | − | ≤ 2 and ( , σ) ≥ as corner points. 

Step 8: output the all saved corners.
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information while the images of Dataset 2 are all gray-scale images. The transformed
images of the two datasets are considered as test images, which were obtained by
applying the five different types of experiments on each original image described as
follows:

1) Rotation: The original image was rotated with rotation angles chosen by uniform steps of
interval [−90o, + 90o] at a 10o resolution.

2) Uniform scaling: The original image was zoomed with scale factors chosen by uniform
scaling of the interval[0.5, 2] at a resolution of 0.1.

3) Non-uniform scaling: scaling factors sx in [0.7, 1.5] and sy in [0.5, 1.8], at 0.1 apart.
4) Combined transformations (rot.-scale): θ in [−30o, +30o] at 10o apart, followed by uniform

or non-uniform scaling factors sx and sy in [0.8 1.2] at 0.1 apart.
5) Gaussian noise: Gaussian white noise with zero-mean and variances was introduced to the

original image chosen by uniform sampling of the intervals [0.005, 0.05]. Distance
between consecutive samples was 0.005.

Fig. 4 The sample images from the Dataset 1

Fig. 5 The sample images from the Dataset 2
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4.2 Evaluation criteria

We use two criteria to evaluate performance. The one criterion is average repeatability (AR)
[4] and localization error (LE); the other one is accuracy (ACU) [22] and localization error
(LE).

4.2.1 Average repeatability and localization error

(a) Average Repeatability

Let No and NT be the number of corners detected from an original image and its transformed
image respectively. Nr is the number of repeated corners in the original image and transformed
image. Then AR can be represented as

(a) (b)

(c) (d)

(e) (f)
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Fig. 6 Effects of different parameter changes (Gaussian smoothing scale, RoS and curvature threshold) on the
RTPDA corner detector
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Table 2 Parameters of the compared detectors

Detectors(Reference) Sigma Radius Threshold

Dataset 1 Dataset 2

RTPDA 3.5 4 0.72 0.85
CTAR [29] 3 3 0.993 0.99
SODC [16] 1,3,5 7 0.015 0.023
LoG [36] 3.5 – 0.016 0.016
CPDA [4] 1,2,3 10,20,30 0.2, 1580 0.2, 1590

F-CPDA [5] 3,4 10,20,30 0.2, 1570 0.2, 1590

GCM [33] 3 1 0.007 0.007
MSCP [32] 2,2.5 – 0.017 0.02
Eigenvector [31] 3 10 0.2 0.23
RJ73 [26] 3 0.1 × LC – –

(a)
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Fig. 7 Comparative results under geometric transformations using Dataset 1. (a) Average Repeatability and (b)
Localization Error
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Ra ¼ Nr

2

1

No
þ 1

NT

� �
ð13Þ

(b) Localization Error

The localization error in this criterion is measured as the Root-Mean-Square-Error (RMSE) of
the detected corners

Le ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nr
∑
i¼1

Nr

xti−xoið Þ2 þ yti−yoið Þ2
h is

ð14Þ

Where (xoi, yoi) and (xti, yti) are the original position and the test position of the ith repeated
corner respectively. An RMSE value of maximal 3 pixels was allowed to find a corner
correspondence or repetition.

As two commonly used metrics, Repeatability mainly measures the stability of a corner
detector while LE measures the accuracy of a corner detector.
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Fig. 8 Comparative results under geometric transformations using Dataset 2. (a) Average Repeatability and (b)
Localization Error.
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4.2.2 Accuracy and localization error

(a) Accuracy

Let No, Ng, and Na be the number of detected corners, Bground truth^ corners and correctly
matched corners respectively, accuracy (ACU) can be represented as

ACU ¼ Na

No
þ Na

Ng

� �
=2� 100% ð15Þ

(b) Localization Error

Let Nr be the number of correctly matched corners between the test image and reference image,
LE is defined as the Root-Mean-Square-Error (RMSE)

Table 4 Total times to detect corners on Dataset 1 and Dataset 2 with different corner detectors (average results
over ten random experiments)

Ranks Total execution time (s)

Detectors Dataset 1 Dataset 2

1 CTAR 0.0380 0.0676
2 SODC 0.0491 0.0934
3 RTPDA 0.0545 0.1027
4 F-CPDA 0.0757 0.1263
5 LoG 0.0859 0.1491
6 MSCP 0.1194 0.2055
7 GCM 0.1296 0.2282
8 CPDA 0.1731 0.2931
9 RJ73 0.5921 0.8992
10 Eigenvector 0.7474 1.7905

Table 3 The performances of the compared detectors

Detectors AR(Percentage) LE(pixels)

Dataset 1 Dataset 2 Dataset 1 Dataset 2

RTPDA 84.01 74.76 1.09 1.14
CTAR 83.05 74.32 1.10 1.14
SODC 83.07 74.00 1.07 1.13
LoG 83.07 73.94 1.07 1.13
CPDA 81.72 73.24 1.08 1.09
F-CPDA 80.87 72.02 1.09 1.11
GCM 82.09 73.15 1.10 1.15
MSCP 80.64 72.63 1.11 1.16
Eigenvector 77.44 68.62 1.24 1.22
RJ73 64.89 52.66 1.27 1.33

The bold ones indicate the best performance under that evaluation metric
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LE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nr
∑
i¼1

Nr

xgi−xti
� �2 þ ygi−yti

� �2
 �s

ð16Þ

where (xgi, ygi) is the position of the ith matched corner in the reference image and (xti, yti) is
that in the test image.

Since accuracy index (ACU) involves human visual inspection procedure, it is hard to
implement for proper robustness tests in practice [6].

Lena image ground truth CPDA CTAR

LoG GCM F-CPDA RTPDA

SODC Eigenvector MSCP RJ73

Fig. 9 Corners of BLena^ detected by ten contour-based corner detectors

Table 5 Parameters of the compared detectors

Detectors(Reference) Sigma Radius Threshold
Dataset 1

RTPDA 3 4 0.74
CTAR [29] 3 3 0.993
SODC [16] 1,3,5 7 0.012
CPDA [4] 1,2,3 10,20,30 0.04, 1600

GCM [33] 3 1 0.004
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5 Experiment results and discussion

In this section, some experiments are conducted to evaluate RTPDA detector compared with
the-state-of-art corner detectors in two aforementioned criteria. These approaches are included:
i) LoG [36], ii) CTAR [29], iii) GCM [33], iv) CPDA [4], v) F-CPDA [5], vi) MSCP [32], vii)
Eigenvector [31], viii) RJ73 [26], ix) SODC [16].
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Fig. 10 Comparative results under geometric transformations using Dataset 1. (a) Accuracy and (b) Localization
Error

Table 6 The performances of the compared detectors

Detectors ACU(Percentage) LE(pixels)
Dataset 1 Dataset 1

RTPDA 72.50 1.44
CTAR 72.26 1.44
SODC 71.84 1.44
CPDA 70.46 1.47
GCM 70.41 1.45
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5.1 Performance evaluation based on repeatability criterion

5.1.1 Parameter selection

The behaviors of RTPDA detector changing along with the parameters setting are analyzed in
this section and we mainly consider three parameters: (1) Gaussian smoothing scale (σ), (2)
RoS (n), and (3) curvature threshold (T). We conduct several experiments to empirically select
the optimal parameter.

Figure 6 shows the effect of different parameters (Gaussian smoothing scale σ, the size of
RoS n and curvature threshold T) to the performances of the RTPDA. In this experiment, we
tune one parameter at one time and keep the others fixed. It should be noted that the parameters
of the other compared detectors have also been well tuned. We present the selected parameters
of all the compared methods in Table 2 and the performances are reported in Figs. 7 and 8, and
Table 3 in detail. Canny edge detector [8] is chosen as the contour tracking method and its
parameters are set following the ones in [4, 6]. For a fair comparison, the same Canny edge
extraction and contour-tracking methods are applied for all comparative detectors.

5.1.2 Performance evaluation

Figure 7 and 8 show the results under different geometric transformations and Gaussian noise
on Dataset 1 and Dataset 2, respectively. Overall, the proposed RTPDA detector shows the
highest average repeatability in all datasets, with a similar localization error as the one of the
CTAR detector. RTPDA detector used both a relative big neighborhood and large scale factor,
which can improve its robustness to the geometric transformations and Gaussian noise. LoG
detector had better localization (lower error) compared with other nine well-known detectors
on Dataset 1 while CPDA detector [6] had better localization on Dataset 2. GCM detector
performed not well as the recent proposed LoG and CTAR detectors, it was pointed out in [13]
that it used a very small neighborhood (1 × 1) and its significance measure is highly sensitive
to geometric transformation. Since Eigenvector detector [31] calculated the discrete curvature
by utilizing the wavelet transform of contour orientation, it was sensitive to noise too. Without
adopting any derivative of curve-point locations RTPDA has not suffered from this drawback.
SODC [16] is a recently proposed corner detector by employing simple triangular theory and
distance calculation. Since it utilized absolute distance instead of relative distance, it was not as

(a) (b) (c) (d) (e)

[0···1···1···0]

Fig. 11 An example of building shape representation using corners (a) contour of a shape; (b) corners detected
using RTPDA method; (c) some contour fragments of the shape divided by corners; (d) contour fragment
descriptions; (e)we use K-means clustering algorithm to acquire the codebook of the contour fragments and then
can derive the shape representation
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robust as RTPDA in some geometrical transformations such as uniform scaling or non-uniform
scaling. In all, RTPDA provided promising performances in term of AR and LE for two
datasets demonstrating its effectiveness in corner finding. However, we noticed that RTPDA
performed not so well in LE metric. Its localization error is somewhat high. We attribute this to
the fact that RTPDA adopts a large Gaussian smoothing scale to remove noise. In this situation
Multi-scale technique may be a suitable choice for RTPDA considering its good performance
on suppressing noise and improving localization [16, 32].

5.1.3 Time efficiency

We tabulate the computational time of each evaluated detector on Dataset 1 and Dataset 2 in
Table 4. All the experiments are conducted in a Win10 machine with 3.4 GHz Intel(R)
Core(TM) Quad CPU and 8GB of RAM (Matlab-2012b). It should be noted that the time
for curve extraction is not included in the total computational costs since it is identical for
every compared detector. CTAR runs fastest by estimating discrete curvature with only three
points based on triangle theory while Eigenvector runs slowest due to the time-consuming
wavelet transform. RTPDA is faster than fast-CPDA detector, which also reveals its high
efficiency.

Figure 9 shows some visualization results, with the corners of BLena^ image detected by
the nine testing algorithms. The Bground truth^ corners of BLena^ image can be referred to [6].
We can see that the proposed RTPDA detector finds all true corners without introducing any
false corner. CPDA and fast-CPDA miss some true corners while GCM, SODC, Eigenvector,
MSCP and RJ73 introduce some false corners.

5.2 Performance evaluation based on accuracy criterion

In this section, we present the evaluation performances based on accuracy criterion under
Dataset 1. It should be pointed out that the thresholds of Canny edge detector are chosen as
low = 0 and high = 0.35 following the setting in [33] and the Bground truth^ corners are also
from [33]. For a fair comparison, all compared detectors share the same Canny edge extraction
and contour-tracking methods. Here we just select four typical contour-based detectors as
reference ones: [4, 16, 29, 33]. The optimal parameters are summarized in Table 5 and the
performances of the five compared detectors are shown in Table 6 and Fig. 10.

5.3 Some applications of the approach

Corner detection has many important applications on computer vision. Specially, since
information about a shape is concentrated at the corners, they prove to be practical descriptive
primitives in shape representation, objection recognition and motion analysis [30]. Figure 11
shows a practical application of our approach on the construction of shape descriptor. We first
detect the corners of a shape and then extract all of the possible fragments defined by two
corners with that the distance between the two points is more than 10 points. After that, each
contour fragment is described (here we can choose an effective method, e.g. shape context [7]).
Finally, we use K-means clustering algorithm to acquire the codebook of the contour frag-
ments (all the shapes) and then derive the shape representation with a multi-dimensional
vector, which can be conveniently applied to shape classification and shape recognition etc. In
addition, we notice that Liu et al. [18–20] proposes to recognize activities from sensor data
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where discriminant features are utilized. The attempt to replace the discriminant features with
the features constructed with corners would be a very interesting work for us.

6 Conclusion and future work

In this paper, we presented a novel discrete curvature estimator based on Relative Tangent-to-
Point Distance Accumulation (RTPDA) technique to provide a robust corner detection
scheme. In RTPDA, we first fit the digital curve segments with quadratic polynomials by
employing least square technique to derive the tangent of the target point and then compute the
distance accumulation of its neighbors to the tangent. Based on the Bdiscrete curvature^, we
developed a novel corner detection algorithm. Higher average repeatability and accuracy with
relative low localization error compared with the-state-of-art contour-based corner detection
algorithms demonstrate that it is a robust contour-based corner detector.

However, as a typical contour-based detector, RTPDA highly relies on the performances of
edge-detection technique, which is a common problem suffered by boundary-based corner
detection algorithms; besides, the discrete curvature of RTPDA detector is calculated under
single-scale, while fusing multi-scale information may help RTPDAmore robust. In the future,
we would try to improve the performance of RTPDA algorithm based on the above two
considerations and propose a more robust corner detection scheme.
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