
Multimedia Tools and Applications (2019) 78:17973–17994
https://doi.org/10.1007/s11042-018-7122-y

Cryptographic and parallel hash function based on cross
coupled map lattices suitable for multimedia communication
security

Yantao Li1 ·Guangfu Ge2

Received: 1 May 2018 / Revised: 20 December 2018 / Accepted: 26 December 2018 /
Published online: 16 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Cryptographic hash functions can map data of arbitrary size to data of fixed size (hash val-
ues), which can be used in a wide range of multimedia applications for communication
security, such as integrity protection, message authentication and digital signature. In this
paper, we present a cryptographic and parallel chaotic hash function based on the cross cou-
pled map lattices for multimedia communication security. More specifically, we first utilize
the piecewise linear chaotic map with secret keys to generate initial parameter sequence
for the cross coupled map lattices and an initial hash value. Then, we extend the original
message into a message matrix to enhance the correlation of message characters. Next, we
process each of the message blocks in the matrix in parallel as the space domain input of
the cross coupled map lattices and the initial parameters as the time domain input to gen-
erate intermediate hash values. After all message blocks are processed in parallel, the final
h-bit hash value is obtained by logical operations with the initial and intermediate hash val-
ues. Finally, we evaluate the performance of the proposed hash function in terms of uniform
distribution of hash values, sensitivity of the hash value to subtle changes of the origi-
nal message, secret keys, and images, confusion and diffusion properties, collision tests,
efficiency of computation speed. The cryptanalytic results demonstrate that the proposed
hash algorithm has statistical properties with B̄ = 64.0022 and P = 50.0017%, collision
resistance with d = 85.3944, average computation speed of 132.0 Mbps, and better sta-
tistical performance compared with existing chaotic hash functions, which are suitable for
multimedia communication security.

Keywords Multimedia communication security · Chaos · Cryptographic hash function ·
Cross coupled map lattices

� Yantao Li
yantaoli@foxmail.com; liyantao@live.com; yantaoli@cqu.edu.cn

1 College of Computer Science, Chongqing University, Chongqing 400044, China
2 College of Computer and Information Sciences, Southwest University, Chongqing 400715, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-018-7122-y&domain=pdf
http://orcid.org/0000-0001-7648-5671
mailto: yantaoli@foxmail.com
mailto: liyantao@live.com
mailto: yantaoli@cqu.edu.cn

17974 Multimedia Tools and Applications (2019) 78:17973–17994

1 Introduction

With the rapid development of computer and Internet technology, multimedia commu-
nication plays a significant role in multiple areas in our social society. The security of
multimedia data is becoming more and more important in wired or wireless communica-
tions, such as file downloading and online payments [6, 8], image authentication [47] and
watermarking [41]. Due to the high redundancy and large amount of data, multimedia data
have special requirements for the security protection, such as real time, self-certification
and availability. Among the various techniques proposed to address these challenges, hash
algorithm has been proven to be an effective and efficient solution, which is able to pro-
tect information integrity [50], authenticate messages/images [26, 54], and generate digital
signatures/watermarking [46, 69] for multimedia communication security [9, 10, 52] and
mobile communication security [11–17, 71].

A hash function is a special kind of one-way function, which can be classified into two
categories: (i) unkeyed hash function, whose specification dictates a single input parameter,
a message; and (ii) cryptographic hash function, whose specification dictates two distinct
inputs, a message and a secret key [27, 55, 61]. Unkeyed hash function h() has four proper-
ties: compression, irreversibility, second-preimage resistance and collision resistance. More
specifically, (a) compression: a function h() maps an input M with arbitrary bit length, to an
output h(M) of fixed bit length l; (b) irreversibility: given a function h() and an input M , it
is easy to compute h(M). However, it is computationally infeasible to find any input which
hashes to a specific output, i.e., to find any pre-image M such that h(M) = y, given any
y for which a corresponding input is not known; (c) second-preimage resistance: it is com-
putationally infeasible to find any second input which has the same output as any specified
input, i.e., given M , to find a second-preimage M ′ �= M such that h(M) = h(M ′); (d) colli-
sion resistance: it is hard to find any two distinct inputs M and M ′, which hash to the same
output, i.e., such that h(M) = h(M ′). On the other hand, a cryptographic hash function hk

is a class of hash functions {hk : k ∈ Vn} indexed by a key k such that {hk : M → Vm}
generates a message digest with length l, where Vn denotes the n-dimensional vector space
over GF(2). hk is a secure keyed one-way hash function, if it satisfies the following proper-
ties: (a) The function hk is keyed one-way. That is: (i) given k and M , it is easy to compute
hk(M); (ii) without knowledge of k, it is hard to find M when hk(M) is given; (iii) with-
out knowledge of k, it is hard to find hk(M) when M is given; (b) the function hk should
uniformly distribute the message digest in the message digest space. This thwarts statistical
attacks; (c) the function hk is keyed collision free. That is, without the knowledge of k, it
is difficult to find two distinct messages M and M ′ that collide under hk; (d) the function
hk should produce a message digest with at least 128 bits to thwart birthday attacks; (e) the
function hk should have enough key space to thwart exhaustive key search [25, 31].

Traditional hash functions such as MD5 and SHA-1 are mainly based on logical oper-
ations, modular arithmetic operations or digital algebraic operations, which reveal security
weakness, since attacks on these algorithms have been discovered [34, 40, 49, 56, 57]. In
particular, X. Y. Wang has found an effective method to reduce the complexity of collisions
of SHA-1, issued as a Federal Information Processing Standard by NIST [57]. Due to the
high computational complexity of logical or xor operations on traditional hash functions,
chaos has been exploited to design chaotic hash algorithms for its interesting characteris-
tics, such as sensitivity to tiny changes in initial conditions and parameters, random-like
behavior, ergodicity, unstable periodic orbits with long periods and desired diffusion and
confusion. Compared with traditional hash algorithms, chaos-based hash algorithms have
unstable and aperiodic orbits, and are more unstable dynamical systems with high sensitivity

Multimedia Tools and Applications (2019) 78:17973–17994 17975

to initial conditions and more suitable for large-scale data encryption [38]. K. W. Wong is
the first to propose the chaotic hash function, which is built on the number of iterations
of one-dimensional logistic map needed to reach the region corresponding to the charac-
ter, along with a lookup table updated dynamically [63]. Then, chaotic hash functions are
attracting more and more researchers to research ranging from the use of simple maps such
as tent map [4, 32, 37, 70] and logistic map [1, 20, 58] to the use of more complicated maps
of the sine map [21], standard map [33], piecewise linear or nonlinear chaotic maps [2, 30,
36, 53, 64, 65, 74], and high-dimensional chaotic maps [3, 22, 26, 35, 43]. For instance, M.
Amin designed a chaos-based hash function based on a tent map for cryptographic applica-
tions [4]. Y. Wang provided a one-way hash function based on iterating a logistic map [58].
M. Ahmad provided a simple secure hash function scheme using multiple chaotic maps
including logistic map, tent map, skew-tent map, cubic map and baker map [1]. A. Akhavan
designed a hash function based on piecewise nonlinear chaotic map [2]. P. Zhang presented
a parallel and collision resistance hash function with variable initial values [74]. Z. Lin
developed a methodology to construct keyed hash functions based on chaotic iterations to
avoid dynamic degradation caused by finite precision [36]. M. Todorova proposed a hash
function based on irregularly decimated chaotic map [53]. H. S. Kwok presented a chaos-
based cryptographic hash function for message authentication based on a high-dimensional
cat map [26]. Z. Lin again designed an approach for constructing one-way hash function
based on a message block controlled 8D hperchaotic map [35].

Although the above hash algorithms have their advantages, most of them ignore the paral-
lel characteristic of message processing, which effectively improves the computation speed.
In this paper, we present a cryptographic and parallel hash algorithm based on the cross cou-
pled map lattices for multimedia communication security. More specifically, we first iterate
the piecewise linear chaotic map with secret keys l times to generate a parameter sequence
A for the cross coupled map lattices and generate an initial h-bit hash value H0. Then, we
extend an arbitrary length of message M into a message matrix M ′′ to enhance the corre-
lation of message characters. Next, we iterate the cross coupled map lattices CCML 2h
times to generate a h-bit intermediate hash value Hi . There are two inputs for the CCML:
the space domain input, which is the message blocks M ′′

i in the matrix M ′′ and the time
domain input, which is the parameters C from sequence A. After all message blocks are
processed in parallel, the final h-bit hash value is obtained by logical operations with H0
and Hi(i = 1, 2, . . .). Finally, we evaluate the performance of the proposed hash function in
terms of uniform distribution of hash values, sensitivity of the hash value to subtle changes
of the original message and secret keys, confusion and diffusion properties, collision tests,
efficiency of computation speed, and the cryptographic results demonstrate that the hash
algorithm has good statistical properties, strong collision resistance, and better statistical
performance compared with existing chaotic hash functions. We differ in that we are among
the first to exploit a two-dimensional cross coupled map lattices with space domain and time
domain inputs to design a cryptographic hash function and that the proposed hash function
can be performed in parallel.

The main contributions of this work can be summarized as:

• We present a cryptographic and parallel hash algorithm based on the cross coupled map
lattices for multimedia communication security. Different from the chaotic maps-based
parallel keyed hash scheme [64], we are among the first to exploit the cross coupled
map lattices to construct the hash algorithm.

• We utilize message blocks as the space domain input and parameter sequence from the
piecewise linear chaotic map as the time domain input for the cross coupled map lattices

17976 Multimedia Tools and Applications (2019) 78:17973–17994

to generate intermediate hash values. We differ from the 2D coupled map lattices-based
hash scheme [59] in that the cross coupled map lattices have space and time domain
inputs, which significantly compress the message information into intermediate hash
values.

• We evaluate the performance of the proposed hash algorithm, and the cryptanalytic
results demonstrate that the hash algorithm has good statistical properties, strong colli-
sion resistance, and better statistical performance compared with existing chaotic hash
functions. Comparing to [23], our algorithm shows better performance in the average
computation speed, statistical analysis, and collision resistance.

The remainder of this paper is organized as follows: Section 2 briefly describes the piece-
wise linear chaotic map and the crossing coupled map lattices. In Section 3, we present the
design of the cryptographic and parallel hash algorithm based on the cross coupled map lat-
tices in detail. We evaluate the performance of the proposed hash algorithm in Section 4 and
conclude the work in Section 5.

2 Preliminaries

In this section, we briefly describe the one-dimensional piecewise linear chaotic map and
the two-dimensional crossing coupled map lattices used in the proposed hash algorithm,
respectively.

2.1 Piecewise linear chaotic map (PWLCM)

We select the one-dimensional piecewise linear chaotic map in the proposed hash algorithm,
which is expressed as in (1):

xi+1 = PWLCM(α, xi) =

⎧
⎪⎪⎨

⎪⎪⎩

xi/α 0 ≤ xi < α;
(xi − α)/(0.5 − α) α ≤ xi < 0.5;
(1 − xi − α)/(0.5 − α) 0.5 ≤ xi < 1 − α;
(1 − xi)/α 1 − α ≤ xi ≤ 1.

(1)

where xi represents the iteration trajectory value, and α denotes the control parameter.
When α is assigned values in (0, 0.5), xi evolves into a chaotic state in range of (0, 1), and
there is no dynamical degradation of PWLCM because only rounded values of xi (0 or
1) are needed in the hash algorithm [24]. The PWLCM has properties of uniform distri-
bution, good ergodicity, confusion and diffusion, therefore, it can provide chaotic random
sequences. An explicit analysis of the bifurcation diagram of the PWLCM shows that with
the specified initial value x0 and parameter α, its iterative values are fixed, which are listed
in Table 1. The map is running in a chaotic state within the range (0, 1), except for the
specified values in Table 1. Therefore, we use the map as a key generator to produce the

Table 1 The fixed iterative
values of PWLCM with the
specified initial value x0 and
parameter α

x0 α xi(i = 1, 2, . . .)

< 0.25 2 × x0 0.5,1,0,0, . . .

< 0.5 x0 0, 0, 0, 0, . . .

0.5 (0, 1) 1, 0, 0, 0, . . .

(0, 1) 0.25 0.5, 1, 0, 0, . . .

Multimedia Tools and Applications (2019) 78:17973–17994 17977

four initial buffers for our hash algorithm. Moreover, according to Ref. [5], {xi} is ergodic,
uniformly distributed in the interval (0, 1) and the autocorrelation function is δ-like.

2.2 Cross coupledmap lattices (CCML)

We select the two-dimensional cross coupled map lattice of size L with nearest neighbor
coupling in the proposed hash algorithm, which is a mixed model of coupled map lattices
with a diffusion process and local reaction process. CCML is defined by (2):

xn+1(i) = CCML(ε, qi) =
{

f (xn(i))
1+ε

+ ε
2(1+ε)

(xn(i − 1)) + xn(i + 1) i mod 2 = 0;
f (xn(i))
1+ε

+ ε
2(1+ε)

(xn+1(i − 1)) + xn+1(i + 1) i mod 2 = 1.
(2)

where n denotes the number of discrete-time steps in [1, N], referred to as the time dimen-
sion, and i represents the number of discrete-space steps in [1, L], referred to as the space
dimension. xn(i) denotes the state of site i (or ith lattice) at time n, and ε indicates a cou-
pling coefficient in range of (0, 1). Periodic boundary conditions meet xn(i) = xn(i + L).
Lattice mapping function f () is an asymmetric tent map that creates the local dynamics,
which is defined by (3):

xn+1 =
{

xn

q
0 ≤ xn < q;

1−xn

1−q
q ≤ xn ≤ 1.

(3)

where q ranges in (0, 1). Since the asymmetric tent map f () is a chaotic map, CCML

model is chaotic. CCML uses the way of diffusion in both time dimension (x-axis in Fig. 2)
and space dimension (y-axis). In even lattice point of each iteration (black dots), the current
value depends on even value in previous iteration step and both-side odd values in previous
iteration step. In odd lattice point of each iteration (white circle), the current value depends
on odd value in previous iteration step and both-side even values in current iteration step.
Therefore, even lattice point reacts first and continues completing diffusion process before
odd lattice point does, and then odd lattice point performs reaction and diffusion processes.
The state of odd lattice points differs half step unit time than that of even lattice points. We
cascade the two chaotic maps ((2) and (3)) to counteract the degradation of various extents
[62].

We believe CCML is superior to other maps for our specified hash algorithm, because:
1) we exclusively design the two-dimensional CCML to enhance the security of the hash
function construction, since it considers the message blocks as the space domain input and
the parameter sequence from PWLCM as the time domain input; and 2) we are among the
first to exploit CCML to design a cryptographic and parallel hash algorithm.

3 Cryptographic and parallel hash function based on CCML

In this section, we describe the proposed cross coupled map lattices based parallel chaotic
hash function in detail. We first detail the proposed hash function in four steps: parameter
initialization, message extension, message processing, and hash value generation, as shown
in the structure of the hash function in Fig. 1. Then we present the hash function in Algo-
rithm 1, and illustrate the flowchart of the proposed hash function in Fig. 3. As illustrated

17978 Multimedia Tools and Applications (2019) 78:17973–17994

Fig. 1 The structure of the chaotic hash algorithm.

in Algorithm 1 and Fig. 3, the inputs are an arbitrary length of message M and secret keys
{x0, p0, ε, q0}, and the output is h-bit hash value H , where h = 128.

Step 1: Parameter Initialization With initial secret keys {x0, p0}, we iterate PWLCM l

times and intend to generate a parameter sequenceA for CCML, where l = (n′+h)×2 and
n′ = � n

h−1 +1�×h. Let n denote the number of characters in the arbitrary length of message

M . Since parameter p is variable, for each iteration i (i = 1, 2, . . . , l), pi = 1
2 (pi−1+xi−1)

and xi = 1
2 (xi + mi−2h × 1

2h) if i ≥ 2h. After l iterations, we obtain a chaotic sequence
S = {si = xi |i = 1, 2, . . . , l} and then the parameter sequence A = {aj = xi |i =
2h + 1, 2h + 2, . . . , l; j = 1, 2, . . . , 2n′} is generated. With A = {ai |i = 1, 2, . . . , 2n′},
we calculate T = {ti = round(ai)|i = 1, 2, . . . , 2n′} and then conduct XOR operation on
each h-bit binaries in T , and finally cascade them to generate the h-bit initial hash value H0.

Step 2: Message Extension Given the arbitrary length of message M , we extend it into a
matrix M ′′ to enhance the correlation of message characters. In order to make the original
message M a multiple length of ((h − 1) × 8) bits, we first append {1010 . . . 10}2 bits to
message M , and then preserve 64 bits rightmost denoting the length of original message M .
Then we convert each 8-bit character of the padded message into the corresponding ASCII
code value (a decimal integer) and store them into an array m (m = {m1,m2, . . .}). Finally,
we obtain a p × (h − 1) message matrix M ′ by:

M ′ =

⎡

⎢
⎢
⎢
⎣

m′
1,1 m′

1,2 · · · m′
1,h−1

m′
2,1 m′

2,2 · · · m′
2,h−1

...
...

. . .
...

m′
p,1 m′

p,2 · · · m′
p,h−1

⎤

⎥
⎥
⎥
⎦

= {m′
i,j = m(h−1)(i−1)+j |i = 1, 2, . . . , p; j =

1, 2, · · · , h − 1}.
Then, we generate a transform sequence B = {bi =
ai × 2h�|i = 1, 2, ..., 2n′}, where

ai ∈ A. Based on M ′ and B, we obtain elements of M ′′: m′′
i,j = m′

i,j ⊕ bk + bn′+k ,

ri = ∑h−1
j=1 m′′

i,j , cj = ⊕p

i=1m
′′
i,j , where “⊕” represents bitwise exclusive OR operation,

“+” denotes addition modulo 28, and k = (h − 1) × (j − 1) + j . Then, we extend the
original message M into a (p + 1) × h matrix M ′′ as shown:

Multimedia Tools and Applications (2019) 78:17973–17994 17979

M ′′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

m′′
1,1 m′′

1,2 · · · m′′
1,h−1 r1

m′′
2,1 m′′

2,2 · · · m′′
2,h−1 r2

...
...

. . .
...

...
m′′

p,1 m′′
p,2 · · · m′′

p,h−1 rp

c1 c2 · · · ch−1 ch

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Step 3: Message Processing Each message block M ′′
i (i = 1, 2, ..., p + 1) in matrix M ′′

will be processed by CCML in parallel and the corresponding intermediate hash value
Hi will be generated. We select M ′′

i as an instance to demonstrate the process, which
is illustrated in Fig. 2. In time domain, based on the parameter sequence A, we obtain
sequence Ci = {ci,j = a(i−1)×2h+j |j = 1, 2, . . . , 2h}, which are used as the lattice bound-
ary values for step “i” (green dots in Fig. 2) in CCML. In space domain, the elements
M ′′

i = {m′′
i,1,m

′′
i,2, ...,m

′′
i,h} in matrix M ′′ are used as initial values for step “n” (red dots)

in CCML, respectively. We iterate CCML 2h times with secret keys {ε, q0} and variable
parameter qi+1 = qi + bi,j × 10−3 to generate h-bit binaries (yellow dots), that is, one bit
(a yellow dot) generation is associated to one element m′′

i,j (a red dot) in current message
block M ′′

i by CCML iterations. For h elements in M ′′
i , h-bit binaries are generated, which

are cascaded sequentially as intermediate hash value Hi (Fig. 3).

Step 4: Hash value generation After all message blocks in M ′′ are processed in parallel,
we obtain the final hash value H = H0&H1& . . .&Hp&Hp+1, where “&” is defined as (4):

& =
{

(H ⊕ Hi) << 1 i mod 2 == 0;
(H ⊕ Hi) << 2 i mod 2 == 1.

(4)

Fig. 2 The detailed process of message block M ′′
i

17980 Multimedia Tools and Applications (2019) 78:17973–17994

4 Performance evaluation

In this section, we implement the cross coupled map lattices (CCML) based crypto-
graphic and parallel hash function for performance evaluation by utilizing secret keys
x0 = 0.676767, p0 = 0.232323, ε = 0.333333 and q0 = 0.375281. We evaluate the parallel
hash algorithm in terms of uniform distribution of hash values, sensitivity of the hash value
to subtle changes of the original message, secret keys and images, confusion and diffusion
properties, collision tests, efficiency of computation speed, and comparison with other algo-
rithms. An arbitrary of length of message M for evaluating the performance of the proposed
hash algorithm is randomly chosen as:

Multimedia Tools and Applications (2019) 78:17973–17994 17981

Fig. 3 The flowchart of the chaotic hash algorithm

Southwest University (SWU) is a key comprehensive university, under the direct admin-
istration of the Ministry of Education. It was newly established in July 2005 through the
incorporation of former Southwest China Normal University and Southwest Agricultural
University upon the approval of the Ministry of Education. SWU is situated nearby the beau-
tiful Jialing River, and is located at the foot of Jinyun Mountain, a state level scenic spot, in
Beibei District, Chongqing Municipality.

4.1 Uniform distribution of hash values

Uniform distribution of hash values indicates that hash values are uniformly randomly dis-
tributed into “buckets”, which is directly related to the security of hash functions. The
uniform distribution of a hash value is one of the significant security features of hash func-
tions. We evaluate the uniform distribution of hash values by implementing the proposed
hash algorithm with a randomly chosen message, and then plot the distribution of the mes-
sage and the corresponding hash value. As demonstrated in Fig. 4a, the original message
spreads in a range of [32, 126], which fits the range of ASCII code values of printable char-
acters (such as message) in ASCII code chart. As illustrated in Fig. 4b, the hexadecimal
hash value spreads around randomly and uniformly, which hides the statistical information

17982 Multimedia Tools and Applications (2019) 78:17973–17994

0 100 200 300 400 500

Character Sequence Number

0

50

100

150

200

250

A
SC

II
 V

al
ue

(a)

5 10 15 20 25 30 35

Hexadecimal Code Sequence Number

0

2

4

6

8

10

12

14

16

H
ex

ad
ec

im
al

 V
al

ue

(b)

Fig. 4 Spread of message and hash value: a distribution of the message in ASCII code; b distribution of the
hash value in hexadecimal format (A724966A1ADE6A21C68D47185C9E829C)

of the message. In contrast, we evaluate the proposed algorithm on an extreme case - “blank
space” message with the same length, and then plot the distribution of the particular mes-
sage and the hash value as well. As shown in Fig. 5, even under such an extreme condition,
the distribution of hash value is still uniform. These distributions are well uniform enough
to hide information and act as a strong security measure. Therefore, the proposed hash
algorithm has a good characteristic of uniform distribution on hash values.

4.2 Hash sensitivity

The irreversibility property indicates that it is computationally infeasible to find any input
message for a given hash value, which entails that a hash algorithm should have excellent
message and key sensitivity. That is, a good hash algorithm should be sensitive to tiny
modifications in messages, secret keys, as well as images. According to Hamming distance,
any slight modifications on messages, secret keys or images will lead to a 50% difference
in the hash value. We evaluate the hash sensitivity of the proposed hash algorithm to the

Multimedia Tools and Applications (2019) 78:17973–17994 17983

0 50 100 150 200 250 300 350 400 450

Character Sequence Number

0

50

100

150

200

250

A
SC

II
 V

al
ue

(a)

0 5 10 15 20 25 30 35

Hexadecimal Code Sequence Number

0

2

4

6

8

10

12

14

16

H
ex

ad
ec

im
al

 V
al

ue

(b)

Fig. 5 Spread of all “blank space”-message and hash value: a distribution of all “blank space”-message; b
distribution of the hash value in hexadecimal format (0EB8E2CD5139475EC72D02685D36A35A)

original message and secret keys under ten different conditions (Conditions 1 to 10) and to a
grey-scale Lena image with 256× 256 image size in Fig. 6 under three different conditions
(Conditions 11 to 13):

Condition 1: The original randomly chosen message;
Condition 2: Change the first character “S” in the original message into “T”;
Condition 3: Change the word “direct” in the original message into “directly”;
Condition 4: Swap “Southwest China Normal University” and “Southwest Agricultural

University” in the original message;
Condition 5: Change the full stop “.” at the end of the original message into comma “,”;
Condition 6: Add a blank space to the end of the original message;
Condition 7: Change the initial value x0 = 0.676767 to x0 = 0.676767000001;
Condition 8: Change the control parameter p0 = 0.232323 to p0 = 0.232323000001;
Condition 9: Change the coupling coefficient ε = 0.333333 to ε = 0.333333000001;
Condition 10: Change the parameter q0 = 0.375281 to q0 = 0.375281000001;

17984 Multimedia Tools and Applications (2019) 78:17973–17994

Fig. 6 The standard grey-scale
Lena image with 256 × 256
image size

Condition 11: The original grey-scale Lena image with 256 × 256 image size (Fig. 6);
Condition 12: Add 1 to the gray value of the pixel located at the upper left corner;
Condition 13: Subtract 1 to the gray value of the pixel located at the upper right corner.

We illustrate the corresponding hash values in binary format associated to the thirteen
conditions in Fig. 7, and tabulate the hash values in hexadecimal format as well as Hamming
distances from Condition 1 for Conditions 2 to 10 and from Condition 11 for Conditions
12 and 13 in Table 2. As depicted in Fig. 7, the hash sensitivity property of the proposed
algorithm to text is good, since any subtle change of the message (Conditions 2 to 6) causes
large difference in hash values, and any tiny modification of the secret keys (Conditions 7
to 10) leads to huge difference. It also shows a good sensitivity property to images that 1
bit of the gray value change causes much difference in hash values (Conditions 12 and 13).
As illustrated in Table 2, Hamming distances from Condition 1 have an average value of
64.6, which is significantly close to the ideal value of 64 (half of hash value size), and from
Condition 11 have an average value of 66. These prove that the proposed hash algorithm

20 40 60 80 100 120
0

0.5
1

C
1

20 40 60 80 100 120
00.51C

2

20 40 60 80 100 120
00.51C

3

20 40 60 80 100 120
00.51C

4

20 40 60 80 100 120
00.51C

5

20 40 60 80 100 120
00.51C

6

20 40 60 80 100 120
00.51C

7

20 40 60 80 100 120
00.51C

8

20 40 60 80 100 120
00.51C

9

20 40 60 80 100 120
00.51C

10

20 40 60 80 100 120
00.51C

11

20 40 60 80 100 120
00.51C

12

20 40 60 80 100 120
128-bit Hash Values

0
0.5
1

C
13

Fig. 7 Hash values in binary format under thirteen different conditions

Multimedia Tools and Applications (2019) 78:17973–17994 17985

Table 2 The corresponding hash values in hexadecimal format to the thirteen conditions

Message Hash value in hexadecimal format Hamming distance

Condition 1 A724966A1ADE6A21C68D47185C9E829C 0

Condition 2 66D40283BFED62C26DD894CCAD88D727 65

Condition 3 993420125038B04BE88A361BA9F46E4D 64

Condition 4 AD15D5F0E7B73F890C1A3DA12994304F 65

Condition 5 40043D299A8ADC20A3DF4ACE609B5D16 56

Condition 6 E2FC4ABFF36B3E6FE4203333D607CBC7 64

Condition 7 340CA5F7E2A7D50E873E4DF609F5B047 70

Condition 8 651BAD5B397C34D5C0D8921987BC0FC4 60

Condition 9 76A08D7587CBF15602356DB7F9CF1779 66

Condition 10 5FB7090D64E2D2B97F181388E8A35925 71

Condition 11 9E3BDF8D524E3B2C24327D1255F2DBF7 0

Condition 12 8CCC5699C84D83712ABFF28DAFDB6F2D 65

Condition 13 092F13798E416462845DBC5B0C4C514E 67

satisfies the irreversibility property of a cryptographic hash function. Therefore, our hash
algorithm shows high hash sensitivity to messages, secret keys, and images.

4.3 Confusion and diffusion

In cryptography, confusion and diffusion are two properties of the operation of a secure
cipher, which are identified by Claude Shannon [48]. Confusion refers to making the
relationship between the key and the ciphertext as complex and as involved as possible,
and diffusion refers to the property that redundancy in the statistics of the plaintext is
“dissipated” in the statistics of the ciphertext. In our evaluation, confusion refers to as
the relationship between a message and its corresponding hash value must be complex
and unpredictable, while diffusion refers to as the hash value is highly dependent on the
message.

We conduct the diffusion and confusion experiment for the proposed hash algorithm: a
message is randomly selected and the hash value for the message is generated; then one
bit of the message is modified randomly, and a new hash value is generated. The two hash
values are compared with each other, and the number of different bits at the same posi-
tion in the two hash values is counted. We introduce six statistical metrics for evaluation
of confusion and diffusion: minimum changed bit number Bmin = min {B1, B2, ..., BN },
maximum changed bit number Bmax = max {B1, B2, ..., BN }, mean changed bit num-
ber B̄ = 1

N

∑N
i=1 Bi , mean changed probability P = B̄

h
× 100%, standard variance of

the changed bit number �B =
√

1
N−1

∑N
i=1(Bi − B̄)2, and standard variance �P =

√
1

N−1

∑N
i=1(

Bi

h−P
)2 × 100%, where Bi denotes the changed bit number, N indicates the

test time of the experiment, and h represents the length of hash value.
The experiment is performed N times on the proposed hash algorithm, where N =

256, 512, 1024, 2048, and 10000, respectively. The corresponding results of Bmin, Bmax, B̄,
P , �B, and �P are tabulated in Table 3. The corresponding distribution of changed bit
number B̄, is illustrated in Fig. 8.

17986 Multimedia Tools and Applications (2019) 78:17973–17994

Table 3 Statistics of number of changed bits

N N = 256 N = 512 N = 1024 N = 2048 N = 10000 Mean

Bmax 78 78 79 82 85 80.4000

Bmin 50 47 47 45 42 46.2000

B̄ 63.9844 64.0176 64.0518 63.9438 64.0133 64.0022

P(%) 49.9878 50.0137 50.0404 49.9561 50.0104 50.0017

�B 5.500067 5.554012 5.279875 5.607089 5.600470 5.5083

�P(%) 4.2969 4.3391 4.1249 4.3805 4.3754 4.3034

As illustrated in Table 3, the proposed hash algorithm has a mean changed bit number
B̄ = 64.0022 and mean changed probability P = 50.0017% that are extremely close to the
ideal values of 64 bits and 50%, respectively. The values of �B and �P are very small,
which shows a strong capability for confusion and diffusion. As depicted in Fig. 8, the plot

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Test Times N

40

45

50

55

60

65

70

75

80

85

90

C
ha

ng
ed

 B
it

N
um

be
r

(a)

40 45 50 55 60 65 70 75 80 85 90

Changed Bit Number

0

100

200

300

400

500

600

700

800

N
um

be
r

of
 H

its

(b)

Fig. 8 Spread of changed bit number: a Plot of Bi , b Histogram of Bi

Multimedia Tools and Applications (2019) 78:17973–17994 17987

0 1 2 3 4 5 6 7 8

Number of Hits

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N
um

be
r

of
 E

qu
al

 C
ha

ra
ct

er
s

(0,9414)

(1,569)
(2,17) (3,0) (4,0)

Fig. 9 Distribution of the number of the same ASCII characters at the same location in hash value

of Bi shows that its value is evenly distributed (Fig. 8a), and the histogram of Bi has a
normal distribution centering on the ideal value of 64 (Fig. 8b). The statistical confusion
and diffusion results ensure that the proposed algorithm exhibits the competency to mitigate
any kind of linear or differential attacks related to hash values. Therefore, the proposed hash
function has a near-ideal confusion and diffusion strength.

4.4 Collision resistance

Collision refers to as two distinct messages produce the same hash value, while collision
attack indicates that it tries to find two arbitrary messages that collide. Collision resistance
is an important property of a secure hash function, which refers to as it is hard to find two
different message with the same hash value.

In the proposed hash algorithm, the state of the chaotic CCML is related to message
blocks (space domain input) and the sequence of PWLCM (time domain input). The
sequence of PWLCM is affected by the control parameter and initial conditions, which will
be assigned values if the algorithm is designed. Therefore, the state of CCML is directly
related to each message bit in message blocks. These ensure that each bit of the final hash
value is related to all the bits of the message. That is, even 1-bit change in the message
would lead to a completely different in hash values.

We conduct collision resistance experiment for the proposed hash algorithm: a hash value
for a randomly chosen message is generated and stored in ASCII code format; then a new
hash value for the message with a bit randomly modified is generated and stored in ASCII
code format as well. The two hash values are compared with each other, and the number of
the same ASCII character at the same location (the number of hits) is counted. The collision
resistance experiment is conducted N = 2048 times, and the distribution of the number of
hits is plotted in Fig. 9. As described in Fig. 9 and Table 4, 2 tests hit twice, 117 tests hit

Table 4 Number of hits
Number of equal characters 0 1 2 3 4 5 6 7 8

The proposed algorithm 1930 117 2 0 0 0 0 0 0

17988 Multimedia Tools and Applications (2019) 78:17973–17994

once, while in 1930 tests, no hit occurs. The maximum number of equal characters is only
2, therefore, the collision on our hash algorithm is very low.

Moreover, we calculate the absolute difference of the two hash values by using equa-
tion of d = ∑N

i=1 |t (ei) − t (e′
i)|, where ei denote the ith ASCII character of the original

hash value while e′
i represents the ith ASCII character of the new hash value, respectively,

and the function t () converts the the entries into the equivalent decimal values. We per-
form the collision test N = 10000 times, and the corresponding maximum, minimum,
mean and mean/character values of the absolute difference d for two hash values are 2316,
553, 1366.3105, and 85.3944, respectively. For our algorithm, the mean/character of abso-
lute difference d of two hash values is 85.3944, which is very close to the theoretical
mean/character value 85.3333 computed in [45, 67]. Therefore, our mean/character value
is a near theoretical value, and the analysis on collision shows that our hash algorithm has
strong collision resistance.

4.5 Efficiency

In order to analyze the efficiency of computation speed, we implement the proposed hash
algorithm in C99 on a PC with 2.50 GHz Intel Pentium IV Dual-core, 2G Memory and
Ubuntu 10.10 operation system and the test message consists of 10000 ASCII codes. The
proposed parallel hash function is implemented in a distributed memory architecture, where
the message is split and saved to the local memory for each message block. In theory,
parallel computation optimizes the use of all processors in a multicore computer. In imple-
mentation, it subjects to the number of cores on a computer. Therefore, the degree of
parallelism for the proposed algorithm is 2 message blocks, each with a size of 128 bits. The
overhead of message separation is quite low, which can be ignored. Furthermore, we imple-
ment the widely used MD5 [45] and SHA-1 [42] algorithms in C99 with optimized codes on
the same conditions to our algorithm as well. Finally, we present the average computation
speed comparison based on the same platform as ours in Table 5. As illustrated in Table 5,
the average computation speed of our algorithm (132.0 Mbps) is higher than Li’s algorithm
(131.1 Mbps) [31], SHA-1 (114.5 Mbps) [45], Guo’s algorithm (131.3 Mbps) [18], while it
is very close to Li’s algorithm [33] (132.1 Mbps) and MD5 (132.1 Mbps) [42].

Table 5 Average computation speed comparison

Algorithms Platform (on PC) Average computation speed

Li’s [31] C99, Pentium IV 2.50 GHz Dual-core CPU,
2G RAM under Ubuntu 10.10

131.1 Mbps

Li’s [33] C99, Pentium IV 2.50 GHz Dual-core CPU,
2G RAM under Ubuntu 10.10

132.1 Mbps

Rivest’s [45] C99, Pentium IV 2.50 GHz Dual-core CPU,
2G RAM under Ubuntu 10.10

132.1 Mbps

NIST [42] C99, Pentium IV 2.50 GHz Dual-core CPU,
2G RAM under Ubuntu 10.10

114.5 Mbps

Guo’s [18] C99, Pentium IV 2.50 GHz Dual-core CPU,
2G RAM under Ubuntu 10.10

131.3 Mbps

This scheme C99, Pentium IV 2.50 GHz Dual-core CPU,
2G RAM under Ubuntu 10.10

132.0 Mbps

Multimedia Tools and Applications (2019) 78:17973–17994 17989

Table 6 Comparison on
statistical performance with
N = 2048 random tests and
128-bit hash value

Algorithm Statistical performance of the algorithms

B̄ P (%) �B �P(%)

Li’s [31] 63.873 49.901 5.581 4.360

Ahmad’s [1] 64.129 50.101 5.605 4.378

Li’s [33] 63.99 49.99 5.66 4.40

Li’s [30] 63.57 49.66 7.43 5.80

Xiao’s [64] 63.92 49.94 5.62 4.39

Xiao’s [65] 64.09 50.07 5.48 4.28

Zhang’s [74] 128.014 50.006 5.450 2.123

Lin’s with MT [36] 63.78 49.83 5.56 4.35

Todorova’s [53] 63.99 49.99 5.51 4.33

Kanso’s [22] 63.94 49.95 5.69 4.44

Lin’s [35] 63.98 49.99 5.71 4.46

MD5[45] 64.03 50.02 5.66 4.42

Wang’s [59] 63.98 49.98 5.53 4.33

Zhang’s [72] 64.43 49.96 5.57 4.51

Deng’s [7] 63.84 49.88 5.88 4.59

Guo’s [19] 63.40 49.53 7.13 6.35

Kanso’s [23] 64.01 50.01 5.61 4.38

Li’s [28] 64.17 50.13 5.75 4.49

Ren’s [44] 63.92 49.94 5.78 4.52

Li’s [29] 63.81 49.85 5.76 4.50

Teh’s [51] 64.01 50.01 5.66 4.26

Wang’s [60] 64.15 50.11 5.77 4.51

Xiao’s [66] 64.01 50.01 5.72 4.47

Xiao’s [68] 64.18 50.15 5.67 4.41

Zhang’s [73] 63.91 49.92 5.58 4.36

This scheme 63.94 49.96 5.61 4.38

Table 7 Comparison on
statistical performance with
N = 10000 random tests and
128-bit hash value

Algorithm Statistical performance of the algorithms

B̄ P (%) �B �P(%)

Ahmad’s [1] 63.781 49.828 5.937 4.638

Li’s [33] 64.00 50.00 5.72 4.47

Todorova’s [53] 64.00 50.01 5.6 4.37

Wang’s [59] 63.90 49.91 5.58 4.36

Kanso’s [23] 63.94 49.95 5.64 4.41

Lin’s [35] 63.95 49.96 5.62 4.39

Li’s [28] 64.04 50.03 5.79 4.53

Ren’s [44] 64.00 50.00 5.62 4.39

Teh’s [51] 63.85 49.88 5.67 4.43

Wang’s [60] 63.99 49.99 5.61 4.39

Zhang’s [73] 63.96 49.97 5.52 4.32

This scheme 64.01 50.01 5.60 4.37

17990 Multimedia Tools and Applications (2019) 78:17973–17994

Table 8 Comparison on collision resistance with N = 2048 random tests and 128-bit hash value

Algorithm Number of hits Absolute difference

0 1 2 3 Min. Max. Mean Mean/Char.

Li’s [33] 1928 116 4 0 695 2017 1359 84.94

Xiao’s [64] 1924 120 4 0 658 2156 1431.1 89.46

Xiao’s [65] 1915 132 1 0 812 2034 1349.1 84.32

Lin’s with MT [36] 1931 132 3 0 N/A N/A N/A 83.79

Lin’s [35] 1912 132 4 0 496 2908 N/A 88.76

Deng’s [7] 1940 104 4 0 583 2206 1399.8 87.49

Kanso’s [23] 1954 92 2 0 731 2230 1368 85.50

Li’s [28] 1945 103 0 0 685 1972 1255 78.44

Li’s [29] 1928 118 2 0 687 2220 1432.1 89.51

Xiao’s [66] 1926 120 2 0 605 1952 1227.8 76.74

Xiao’s [68] 1932 114 2 0 573 2224 1401.1 87.56

Luo’s [39] 1928 117 3 0 796 2418 1598.6 99.91

This scheme 1930 117 2 0 688 2019 1350 84.38

4.6 Comparison with other hash algorithms

We perform a comparison between the proposed hash function and some significant chaos-
based hash functions as well as MD5, which is based on statistical performance and collision
resistance. Tables 6 and 7 describe the comparison of statistical performance between
the proposed algorithm and selected existing algorithms. Note that the results reported in
Table 6 are based on N = 2048 random tests and 128-bit hash value, while the results of
Table 7 focus on N = 10000 random tests and 128-bit hash value. Based on the results, our
algorithm shows better statistical performance.

In addition, Table 8 presents the comparison of the number of ASCII characters with the
same value at the same location and absolute difference in 128-bit hash values based on
N = 2048 random tests between our algorithm and selected existing algorithms. Based on
the results, the proposed algorithm shows better collision resistance.

5 Conclusions

In this paper, we design, implement and evaluate a cryptographic and parallel chaotic hash
function based on the two-dimensional cross coupled map lattices for multimedia communi-
cation security. This work includes three main contributions: 1) presents a cryptographic and
parallel hash algorithm based on the cross coupled map lattices; 2) utilizes message blocks
as the space domain input and parameter sequence from the piecewise linear chaotic map
as the time domain input for the CCML to generate intermediate hash values; 3) evaluates
the performance of the proposed hash algorithm, and the cryptanalytic results demonstrate
that the hash algorithm has good statistical properties, strong collision resistance, and bet-
ter statistical performance compared with existing chaotic hash functions. Comparing with
other related works, it is the first time to exploit the two-dimensional cross coupled map
lattices with space domain and time domain inputs to design a cryptographic hash function

Multimedia Tools and Applications (2019) 78:17973–17994 17991

and the proposed hash function can be performed in parallel. We believe the proposed hash
function is suitable for multimedia communication security.

Acknowledgements This work is supported in part by the National Natural Science Foundation of China
(Grant nos. 61672119, 61528206 and 61402380), the Natural Science Foundation of CQ CSTC (Grant nos.
cstc2015jcyjA40044, and cstc2014jcyjA40030), the Fundamental Research Funds for the Central Universi-
ties (Grant no. XDJK2015B030), U.S. National Science Foundation (Grant nos. CNS-1253506 (CAREER)
and CNS-1618300), and the Opening Project of State Key Laboratory for Novel Software Technology (Grant
No. KFKT2016B13).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Ahmad M, Khurana S, Singh S, AlSharari HD (2017) A simple secure hash function scheme using
multiple chaotic maps. 3D research 8(2), article 13

2. Akhavan A, Samsudin A, Akhshani A (2009) Hash function based on piecewise nonlinear chaotic map.
Chaos, Soliton and Fractals 42:1046–1053

3. Akhavan A, Samsudin A, Akhshani A (2013) A novel parallel hash function based on 3D chaotic map.
EURASIP Journal on Advances in Signal Processing 1:1–12

4. Amin M, Faragallah OS, El-Latif AAA (2009) Chaos based hash function (CBHF) for cryptographic
applications. Chaos, Soliton and Fractals 42(2):767–772

5. Bakhtiari S, Safavi-Naini R, Pieprzyk J (1996) Keyed hash function. Proceedings of the Cryptography:
Policy and Algorithms, Lecture Notes in Computer Science 1029:201–214

6. Deng S, Xiao D, Li Y, Peng W (2009) A novel combined cryptographic and hash algorithm based on
chaotic control character. Commun Nonlinear Sci Numer Simul 14(11):3889–3900

7. Deng S, Li Y, Xiao D (2010) Analysis and improvement of a chaos-based hash function construction.
Commun Nonlinear Sci Numer Simul 15(5):1338–1347

8. Deng S, Zhan Y, Xiao D, Li Y (2011) Analysis and improvement of a hash-based image encryption
algorithm. Commun Nonlinear Sci Numer Simul 16(8):3269–3278

9. Elhoseny M, El-Minir HK, Riad AM, Yuan X (2016) A secure data routing schema for WSN using
elliptic curve cryptography and homomorphic encryption. Journal of King Saud University - Computer
and Information Sciences 28(3):262–275

10. Elhoseny M, Yuan X, El-Minir HK, Riad AM (2016) An energy efficient encryption method for secure
dynamic WSN. Security and Communication Networks 9(13):2024–2031

11. Elhoseny M, Farouk A, Zhou N, Wang M-M, Abdalla S, Batle J (2017) Dynamic multi-hop clustering
in a wireless sensor network: performance improvement. Wirel Pers Commun 95(4):3733–3753

12. Elhoseny M, Shehab A, Yuan X (2017) Optimizing robot path in dynamic environments using genetic
algorithm and Bezier curve. J Intell Fuzzy Syst 33(4):2305–2316

13. Elhoseny M, Tharwat A, Farouk A, Hassanien AE (2017) K-coverage model based on genetic algorithm
to extend WSN lifetime. IEEE Sensors Letters 1(4):1–4

14. Elhoseny M, Tharwat A, Hassanien AE (2018) Bezier curve based path planning in a dynamic field
using modified genetic algorithm. Journal of Computational Science 25:339–350

15. Elhoseny M, Tharwat A, Yuan X, Hassanien A (2018) Optimizing K-coverage of mobile WSNs. Expert
Syst Appl 92:142–153

16. ElsayedW, ElhosenyM, Sabbeh S, Riad A (2018) Self-maintenance model for wireless sensor networks.
Comput Electr Eng 70:799–812

17. FarouK A, Batle J, Elhoseny M, Naseri M, Lone M, Fedorov A, Alkhambashi A, Ahmedand SH, Abdel-
Aty M (2018) Robust general N user authentication scheme in a centralized quantum communication
network via generalized GHZ states. Front Phys 13(2):130306

18. Guo XF, Zhang JS (2006) Keyed one-way hash function construction based on the chaotic dynamic
S-Box. Acta Phys Sin 55:4442–4449

19. Guo W, Wang X, He D, Cao Y (2009) Cryptanalysis on a parallel keyed hash function based on chaotic
maps. Phys Lett A 373(36):3201–3206

17992 Multimedia Tools and Applications (2019) 78:17973–17994

20. Hong D, Kim D-C, Kwon D, Kim J (2016) Improved preimage attacks on hash modes of 8-round AES-
256. Multimed Tools Appl 75(22):14525–14539

21. Jiteurtragool N, Ketthong P, Wannaboon C, San-Um W (2013) A topologically simple keyed hash
function based on circular chaotic sinusoidal map network. In: International conference on advanced
communication technology, pp 1089–1094

22. Kanso A, Ghebleh M (2013) A fast and efficient chaos-based keyed hash function. Commun Nonlinear
Sci Numer Simul 18:109–123

23. Kanso A, Ghebleh M (2015) A structure-based chaotic hashing scheme. Nonlinear Dyn 81(1):27–40
24. Kim B-K, Oh S-J, Jang S-B, Ko Y-W (2017) File similarity evaluation scheme for multimedia data using

partial hash information. Multimed Tools Appl 76(19):19649–19663
25. Kim H, Kim D-W, Yi O, Kim J (2018) Cryptanalysis of hash functions based on blockciphers suitable

for IoT service platform security. Mutimedia Tools and Applications. https://doi.org/10.1007/s11042-
018-5630-4

26. Kwok HS, Tang WKS (2005) A chaos-based cryptographic hash function for message authentication.
Int J Bifurcation Chaos 15(12):4043–4050

27. Li Y (2016) Collision analysis and improvement of a hash function based on chaotic tent map. Optik
127(10):4484–4489

28. Li Y, Li X (2016) Chaotic hash function based on circular shifts with variable parameters. Chaos, Soliton
and Fractals 91:639–648

29. Li Y, Deng S, Xiao D (2011) A novel Hash algorithm construction based on chaotic neural network.
Neural Comput & Applic 20(1):133–141

30. Li Y, Xiao D, Deng S, Han Q, Zhou G (2011) Parallel hash function construction based on chaotic maps
with changeable parameters. Neural Comput & Applic 20(8):1305–1312

31. Li Y, Xiao D, Deng S (2012) Keyed hash function based on a dynamic lookup table of functions. Inform
Sci 214:56–75

32. Li Y, Xiao D, Deng S (2012) Secure hash function based on chaotic tent map with changeable parameter.
High Technol Lett 18(1):7–12

33. Li Y, Ge G, Xia D (2016) Chaotic hash function based on the dynamic S-Box with variable parameters.
Nonlinear Dyn 84(4):2387–2402

34. Liang J, Lai X (2005) Improved collision attack on hash function MD5, Technical report
35. Lin Z, Yu S, Lu J (2017) A novel approach for constructing one-way hash function based on a message

block controlled 8D hyperchaotic map. Int J Bifurcation Chaos 27(7):1750106
36. Lin Z, Guyeux C, Yu S, Wang Q, Cai S (2017) On the use of chaotic iterations to design keyed hash

function. Clust Comput. https://doi.org/10.1007/s10586-017-1062-6
37. Liu J, Wang X, Yang K, Zhao C (2012) A fast new cryptographic hash function based on integer tent

mapping system. J Comput 7(7):1671–1680
38. Liu H, Kadir A, Sun X, Li Y (2018) Chaos based adaptive double-image encryption scheme using hash

function and S-boxes. Multimed Tools Appl 77:1391–1407
39. Luo Y, Du M (2012) One-way hash function construction based on the spatiotemporal chaotic system.

Chinese Physics B 21(6):060503
40. Mendel F, Nad T, Schlaffer M (2013) Improving local collisions: new attacks on reduced SHA-256.

Advances in Cryptology-EUROCRYPT, lecture notes in computer science 7881:262–278
41. Mihcak K, Venkatesan R, Liu T (2005) Watermarking via optimization algorithms for quantizing

randomized semi-global image statistics. Multimedia Systems 11(2):185—200
42. NIST (2001) Secure hash standard. http://csrc.nist.gov/CryptoToolkit/tkhash.html
43. Nouri M, Khezeli A, Ramezani A, Ebrahimi A (2012) A dynamic chaotic hash function based upon

circle chord methods. In: 6th international symposium on telecommunications, pp 1044–1049
44. Ren H, Wang Y, Xie Q, Yang H (2009) A novel method for one-way hash function construction based

on spatiotemporal chaos. Chaos, Soliton and Fractals 42(4):2014–022
45. Rivest R (1992) The MD5 message-digest algorithm. IETF network working group
46. Rompel J (1990) One-way functions are necessary and sufficient for secure signatures. Proceedings of

the 22th annual ACM symposium on theory of computing: 387–394
47. Schneider M, Chang SF (1996) A robust content based digital signature for image authentication. In:

Proceedings IEEE conf image processing, vol 3, pp 227–230
48. Shannon CE (1949) Communication theory of secrecy systems. Bell Syst Tech J 28(4):656–715
49. Stevens M (2013) New collision attacks on SHA-1 based on optimal joint local-collision analysis.

Advances in Cryptology-EUROCRYPT 2013, Lecture Notes in Computer Science 7881:245–261
50. Tang KW, Tang WK, Man KF (2007) A chaos-based pseudo-random number generator and its

application in voice communications. Int J Bifurcation Chaos 17(3):923–933

https://doi.org/10.1007/s11042-018-5630-4
https://doi.org/10.1007/s11042-018-5630-4
https://doi.org/10.1007/s10586-017-1062-6
http://csrc.nist.gov/CryptoToolkit/tkhash.html

Multimedia Tools and Applications (2019) 78:17973–17994 17993

51. Teh JS, Samsudin A, Akhavan A (2015) Parallel chaotic hash function based on the shuffle-exchange
network. Nonlinear Dyn 81(3):1067–1079

52. Tharwat A, Elhoseny M, Hassanien A, Gabel T, Kumar A (2018) Intelligent Beziér curve-
based path planning model using chaotic particle swarm optimization algorithm. Clust Comput.
https://doi.org/10.1007/s10586-018-2360-3

53. Todorova M, Stoyanov B, Szczypiorski K, Kordov K (2018) SHAH: hash function based on irregularly
decimated chaotic map. arXiv:1808.01956

54. Tsudik G (1992) Message authentication with one-way hash functions. ACM SIGCOMM Computer
Communication Review 22:29–38

55. Wang S, Shan P (2011) Security analysis of a one-way hash function based on spatiotemporal chaos.
Chin Phys B 20(9):090504–090507

56. Wang X, Feng D, Lai X, Yu H (2004) Collisions for hash functions MD4, MD5, HAVAL-128 and
RIPEMD. Cryptology ePrint archive, report 2004/199

57. Wang X, Yin Y, Yu H (2005) Finding collisions in the full SHA-1. Advances in Cryptology-CRYPTO
2005, Lecture Notes in Computer Science 3621:17–6

58. Wang Y, Yang D, DuM, Yang H (2007) One-way hash function construction based on iterating a chaotic
map. In: 2007 international conference on computational intelligence and security workshops, pp 791–
794

59. Wang Y, Liao X, Xiao D, Wong K (2008) One-way hash function construction based on 2D coupled
map lattices. Inform Sci 178(5):1391–1406

60. Wang Y, Wong KW, Xiao D (2011) Parallel hash function construction based on coupled map lattices.
Commun Nonlinear Sci Numer Simul 16:2810–2821

61. Wang S, Li D, Zhou H (2012) Collision analysis of a chaos-based hash function with both modification
detection and localization capability. Commun Nonlinear Sci Numer Simul 17(2):780–784

62. Wang Q, Yu S, Li C, Lu J, Fang X, Guyeux C, Bahi JM (2016) Theoretical design and FPGA-based
implementation of higher-dimensional digital chaotic systems. IEEE Trans Circuits Syst Regul Pap
63(3):401–412

63. Wong KW (2003) A combined chaotic cryptographic and hashing scheme. Phys Lett A 307:292–298
64. Xiao D, Liao X, Deng S (2008) Parallel keyed hash function construction based on chaotic maps. Phys

Lett A 372:4682–4688
65. Xiao D, Liao X, Wang Y (2009) Improving the security of a parallel keyed hash function based on

chaotic maps. Phys Lett A 373:4346–4353
66. Xiao D, Liao X, Wang Y (2009) Parallel keyed hash function construction based on chaotic neural

network. Neurocomputing 72:2288–2296
67. Xiao D, Peng W, Liao X, Xiang T (2010) Collision analysis of one kind of chaos-based hash function.

Phys Lett A 374(10):1228–1231
68. Xiao D, Shih FY, Liao XF (2010) A chaos-based hash function with both modification detection and

localization capabilities. Commun Nonlinear Sci Numer Simul 15:2254–2261
69. Xie EY, Li C, Yu S, Lu J (2017) On the cryptanalysis of Fridrich’s chaotic image encryption scheme.

Signal Process 132:150–154
70. Yi X (2005) Hash function based on chaotic tent maps. IEEE Trans Circuits Syst Express Briefs 52:354–

357
71. Yuan X, Elhoseny M, El-Minir HK, Riad AM (2017) A genetic algorithm-based, dynamic clustering

method towards improved WSN longevity. J Netw Syst Manag 25(1):21–46
72. Zhang H, Wang X, Li Z, Liu D (2005) One way hash function construction based on spatiotemporal

chaos. Acta Phys Sin 54:4006–4011
73. Zhang J,Wang X, ZhangW (2010) Chaotic keyed hash function based on feedforward-eedback nonlinear

digital filter. Phys Lett A 362:439–448
74. Zhang P, Zhang X, Yu J (2017) A parallel hash function with variable initial values. Wirel Pers Commun

96(2):2289–2303

https://doi.org/10.1007/s10586-018-2360-3
http://arxiv.org/abs/1808.01956

17994 Multimedia Tools and Applications (2019) 78:17973–17994

Yantao Li is a Professor in the College of Computer Science at the Chongqing University, China and has
been a Postdoctoral Research Associate in the Department of Computer Science at the College of William
and Mary, USA, since July of 2016. He received the PhD degree from the College of Computer Science
at Chongqing University, in December 2012. From September 2010 to September 2012, he was a visiting
scholar supported by China Scholarship Council working with Prof. Gang Zhou at the Department of Com-
puter Science in the College of William and Mary, USA. He was an Associate Professor in the College
of Computer and Information Sciences at the Southwest University, China, from March 2013 to December
2018. His research area includes wireless communication and networking, sensor networks and ubiquitous
computing, and information security.

Guangfu Ge is working toward the Master’s degree in the College of Computer and Information Sciences at
Southwest University, China. He received his B.S. degree from Southwest University in 2015. His research
area includes mobile computing, wireless networks and information security.

	Cryptographic and parallel hash function based on cross coupled map lattices suitable for multimedia communication security
	Abstract
	Introduction
	Preliminaries
	Piecewise linear chaotic map (PWLCM)
	Cross coupled map lattices (CCML)

	Cryptographic and parallel hash function based on CCML
	Step 1: Parameter Initialization
	Step 2: Message Extension
	Step 3: Message Processing
	Step 4: Hash value generation

	Performance evaluation
	Uniform distribution of hash values
	Hash sensitivity
	Confusion and diffusion
	Collision resistance
	Efficiency
	Comparison with other hash algorithms

	Conclusions
	References

