
Multimedia Tools and Applications
https://doi.org/10.1007/s11042-018-7080-4

An auction-based rescue task allocation approach
for heterogeneous multi-robot system

Jieke Shi1 ·Zhou Yang1 · Junwu Zhu1

Received: 13 June 2018 / Revised: 7 December 2018 / Accepted: 12 December 2018 /

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Nowadays, robots are faced with real-time, dynamic, complex and confrontational work-
ing environment. It is significant to analyze task allocation in multi-robot systems. In this
paper, a dynamic auction approach for differentiated tasks under cost rigidities (DAACR) is
proposed, which can obtain optimal results in the task allocation of rescue robots. To verify
the feasibility of the proposed approach, we investigate the optimality of the DAACR and
compare it with other task allocation approaches based on the Hungarian algorithm. The
results show that robots using this algorithm can adapt to a variety of complicated work
environments, accomplish more tasks in limited time, reduce the delay of task allocation,
and improve the overall utility of multi-robot systems.
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1 Introduction

With the rapid development of technology, robots are used in more and more fields. How-
ever, the environment that robots face today is always dynamic, real-time, complex and
adversarial. What’s more, the current single-robot system has limitations in obtaining infor-
mation and solving problems. When faced with such complicated tasks and stochastic
working environment, a single-robot system is complicated to perform operations.

Compared to single-robot systems, multi-robot systems have more advantages when
executing tasks. Robots in the system can complete tasks faster and better.

Therefore, the critical issue we need to study is how to assign tasks based on the work
environment and situation accurately which is called multi-robot task assignment, MRTA.
It aims to increase the efficiency of the entire robotic system and take full advantage of
the collaborative functions in multi-robot systems. When the number and state of robots
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are precise, if the number and state of tasks are also precise, the MRTA problem can be
considered as an assignment problem. We assume that there are N different robots and M

different tasks in the multi-robot system. Then how to map N robots to M tasks correctly is
an assignment problem.

Under normal circumstances, accomplishing tasks can provide some rewards for the sys-
tem. The first object of task allocation is to maximize the utility the whole system can
achieve. Moreover, it costs some to accomplish a task. So the second object is to minimize
the cost of the whole system. The allocation of tasks directly affects the efficiency of the
entire system. We aim to find the optimized task scheduling strategies.

However, in robot rescue tasks, completing tasks will not provide any positive return for
the system, and tasks will continue to damage the system. For example, there is a firing
building in a city. Extinguishing the fire cannot offer any positive income. However, if the
fire brigade leaves the fire as it was, then the fire will cause continuous damage to the city
until it stops.

This paper mainly studies task allocation in the rescue environment. Our goal is to min-
imize system damage caused by sudden disasters. Many task allocation methods are static
at present. The task allocation method can be divided into two types: centralized and dis-
tributed. Based on the analysis of related work, a merging approach based on auction is
proposed.

We made three contributions in this paper. First, a dynamic auction approach for differen-
tiated tasks under cost rigidities (DAACR) is proposed. Secondly, we prove that DAACR is
ε-optimal. Finally, a detailed experiment is designed, we demonstrate the results to analyze
our approach.

2 Related work

In recent years, scholars have made great progress in the research of multi-robot system and
its cooperation mechanism. Some scholars proposed to use the dual programming repre-
sentation process to solve decision problems [1], or use reinforcement learning and neural
network in recent years to to control the robots [10, 11, 13]. The traditional dual program-
ming algorithm is generally based on known and determined static environment, but in
fact, the rescue environment is a dynamic environment. In order to improve the efficiency
of search and rescue (SAR) in disaster relief, some researchers used auction-based task
allocation scheme to develop a cooperative rescue plan [2, 5, 16].

Auction algorithm is a feasible task assignment method. It has proved to be effective in
producing suboptimal solutions. Generally speaking, agents bid for tasks, and the highest
bid wins the assignment [4, 7]. The traditional way of calculating the winner is to have
a central agent as an auctioneer to receive and evaluate every bid in the bidder list [14].
Considering multiple resources of the robots and limited robot communication range, Lee
[7] proposes a resource-oriented, decentralized auction algorithm (RODAA) for multi-robot
task allocation. Lu [9] applied the idea of second-price auction to determine the final price
in the double auction.

However, the results that auction generated cannot necessarily achieve the goals in the
ideal time [5], at the same time, the response of robots when tasks are operated also has
certain hysteresis [15].

The disadvantage of these methods is that the bidding of each agent must be transmitted
to the auctioneers in some way [8]. A standard way to avoid communication constraints
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is to sacrifice auction performance by running auctions through adjacent auctioneers. To
achieve an ideal task allocation plan, we must give full consideration to the tasks we have
accomplished to obtain the corresponding costs and benefits [3, 6, 12].

3 Model description

We define Et to represent the robots’ work environment at time t . Mathematically speaking,
Et can be formalized as below:

Et =< T1, T2, R > (1)

In the formula (1), T1 is the set of tasks that have been allocated while T2 is the set of the
tasks waiting to be assigned. Apparently the set T consisting of all the tasks in the system
is T = T1 ∪ T2. A task can be formalized as below:

taskj =< taskIDj , locationj , statej , Cj (A
t
j ), t > (2)

taskIDj is uesd to identify a task uniquely and taskIDj = j . locationj represents
the robots current location. statei indicates the status of task j , and it can be described as
below:

statej =
{
0, if task j is not assigned;
taskIDj , if robot i takes care of it.

(3)

We need to point out that At
j is the accomplishment rate of taskj at time t . Clearly,

At
j ∈ [0, 1]. We also define a new parameter called damaging rate function, labeled with

Cj (ARt
j ). It represents how much damages taskj will cause to the system in per unit of

time when the accomplishment rate equals to At
j .

R is the set of all the robots in this system, it can be formalized as below:

R =< r1, r2, ..., rn > (4)

ri is the ith robot in the system. n = |R| represents the total number of robots. One of robots
ri can be described as below:

ri =< robotIDi, locationi, statei , t > (5)

In this formula, robotIDi uniquely identifies a robot. locationi represents the robot’s
location. statei indicates the operational status of robot ri , whose value rules are demon-
strated below:

statei =
{
0, if robot ri is free;
taskIDj , if taskj is assigned to ri .

(6)

We use auction as a basic approach to assign tasks, an auction can be formalised as below:

A =< T2, B > (7)

T2 is the set of tasks waiting to be assigned in this auction. B is the set of robots waiting to
be assigned to tasks, in other words, bidders.

So far, if tj is assigned to bi at time t0, then under such allocation result, the damage that
taskj will cause to the system can be formalized as below:

cost
j
i =

∫ t0+t
ij
1

t0

Cj (0)dt +
∫ t0+t1ij +t2ij

t0+t1ij

Cj (A
t
j )dt (8)

Multimedia Tools and Applications (2020) 79:14529–14538 14531



For a certain task tj , bidder bi will calculate two time parameters: t1ij and t2ij . t1ij repre-

sents the time it takes for bi to go to task tj . t2ij represents the time it takes from starting
working on tj to accomplishing it.

4 Auction algorithm description

4.1 N tasks for N bidders

In this section, we consider one to one auction model of task allocation with N robots
matching N rescue tasks. We use taskID and robotID to represent a task and a robot,
respectively. The allocation problem to be discussed here is to minimise the damage to
the whole system by matching the N robots with the N tasks, and the constraints can be
expressed as the following mathematical formula:

min
∑
i∈B

∑
j∈T2

qij cost
j
i

s.t.
∑

j |(i,j)∈D

qij = 1,∀i = 1, 2, ..., n
∑

i|(i,j)∈D

qij = 1,∀j = 1, 2, ..., n

qij = 0, 1, ∀(i, j) ∈ D

(9)

In this format group above, we use set D to represent the tuples of all possible
distributions. It can be formalized as below:

D = {(i, j)|j ∈ T2,∀i = 1, 2, ..., N} (10)

We use D(i) to represent the set of all tasks that can be assigned to the robot i. To reduce
the complexity of the algorithm, we set the time limit using the t . If the total time of robot i
solving task j is more than t , task j cannot be assigned to robot i.

D(i) = {j |tij ≤ t} (11)

The set A is used to represent the two-tuples (i, j) consisting of robots and tasks. Each
robot can have one two-tuples (i, j) ∈ A at most. Each robot can have one two-tuples
(i, j) ∈ A at most either. For the set A, if there is a two-tuples(i, j) ∈ A, it means that task
j is assigned to robot i.

In the algorithm, we set a positive value called ε and a price set p = {p1, ..., pn}. For
robot i, if the difference between its absolute value of the relative gains obtained from task
j and the optimal relative gains obtained from all the allocation schemes is not greater than
ε, we call robot i and task j satisfy complementary slackness condition. This two-tuples
(i, j) is the optimal result, which can be described as below:

|pj − cost
j
i − max

k∈D(i)
{pk − costki }| ≤ ε (12)

The specific process of auction algorithm is described as follows:

Step 1: prepare phase Select a ε > 0, set pk = 0,∀k = 1, 2, ..., n, and the set of robots
which are tender to the task j in the bidding phase is denoted as B(j);
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Step 2: decision phase For each robot i, if statei = 0, get the maximum relative gains ui

and the assigned task ji when the maximum relative gains is obtained:

ui = max
k∈D(i)

{pk − costki } (13)

And its second relative gains vi :

vi = max
k∈D(i),k �=j

{pk − costki } (14)

If D(i) has only one task j , we define vi as −∞.

Step 3: bidding phase All robots bid for ji which is the most gainful task, the bidding
price of the robot is determined as:

aiji
= pji

− ui + vi − ε = cost
ji

i + vi − ε (15)

Step 4: allocation phase For each task j , if the B(j) is not empty, we update the price of
the task j to the highest bid price:

pj = max
i∈B(j)

aij (16)

The task is assigned to the highest bidding robot ij , and at the same time, the two-
tuples related to the robot ij and the task j are removed from the A which is an infeasible
allocation, and the new two-tuples (ij , j) are added to the set A.

Optimization proof In this iterative process of the algorithm, we use pj and p′
j respec-

tively to represent the price corresponding to the task before and after the iteration. In the
iterative process, if robot i bids to the task ji and is successfully assigned to the task ji , its
price will be updated, which can be described as follow:

p′
ji

= cost
ji

i + vi − ε (17)

Therefore, we can get the format below:

p′
ji

− cost
ji

i = vi − ε = max
k∈D(i),k �=j

{pk − costki } − ε (18)

For each task j , there are pj ≥ p′
ji
, so:

|p′
ji

− cost
ji

i − max
k∈D(i),k �=j

{pk − costki }| ≤ ε (19)

It can be seen that every two tuple (i, j) always satisfies complementary slackness condition
in each iteration.

4.2 M tasks for N bidders

In the actual disaster environment, the number of rescue tasks and the number of robots can-
not be guaranteed to be equal. In order to ensure the feasibility of the algorithm in different
environments, it is necessary to discuss the reasonable allocation of N rescue robots and
M rescue tasks. According to the number of rescue tasks, there are two kinds of situations,
namely, N > M and N < M .
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4.2.1 N > M

The number of rescue robots is larger than the number of rescue missions. Set the N − M

virtual tasks and join the auction, we set the price of the virtual task as pj = +∞. After all
of the tasks have been assigned to the robots, robots which are assigned to operate virtual
tasks can join the auction again to get real tasks until all robots have been assigned real tasks
so far.

4.2.2 M > N

The number of rescue tasks is greater than the number of rescue robots, unable to deal with
all tasks in a timely manner, in order to ensure the minimum loss of the system, we should
select rescue tasks which can have the greater loss for priority allocation. We set M − N

virtual robots to add to the allocation, and the tasks allocated to the virtual robot or the less
loss task should be discarded in the allocation.

4.3 Dynamic adjustment of task assignment

Because the rescue environment of the robot is changing at all time, the results of the auction
are not necessarily feasible. Also, there may be other emergencies in the process of respond-
ing to tasks. In this case, we need to adjust the task executors. In this way, we quantify the
emergency results using Ej . The definition of urgency is:

Ej = w

βv
(20)

In the above formula, w is the quantitative result of the severity of the disaster in the task,
and the v is the speed of the task execution. β is the ratio coefficient. In the process of task
execution, if Ej is greater than the set threshold h, it is considered that the execution robot
cannot finish the task under the existing circumstances. Station will reassess the task and
add the task to the auction list, then launch a new round of auction.

5 Experiment analysis and future work

In this paper, we proposed a new auction model and use the auction algorithm to study the
multi-robot task allocation problem. Experiments show that the algorithm can effectively
allocate tasks.

We chose the classical Hungarian algorithm for comparative experiments. For all cost
matrices, the same optimal allocation result can be obtained by iteration. Through experi-
ments, it is found that the results of the two task assignment algorithms are the same. For
all matrices, the same optimal assignment results or the near optimal results can be obtained
by iteration.

For example, when the number of tasks and robots is 5, we give the cost matrix shown
in Table 1.

The final allocation results of the two algorithms are the same:

– Task allocation results:
Robot r1 gets task3
Robot r2 gets task1
Robot r3 gets task2
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Table 1 Cost matrix
costr1 costr2 costr3 costr4 costr5

task1 10 3 5 5 7

task2 7 9 1 8 6

task3 1 7 7 4 4

task4 6 7 5 4 8

task5 8 1 10 2 4

Robot r4 gets task4
Robot r5 gets task5

– The total cost of tasks is 13. This is a global optimal result.

For all cost matrices in the experiment, the distribution results may be different, but the
total cost will be the same and the least. The two algorithms can show the same precision.

However, the proposed auction algorithm has excellent computational complexity obvi-
ously. We can improve the time complexity to a fairly low level by changing the value of
ε. When the size of task matrix that needs to be assigned is 250 × 250, the running time of
Hungarian algorithm is 15 times that of Auction algorithm. When processing the assigned
task of 500 × 500, this multiple reduced to 5. The number of tasks has a greater impact
on the running time of the Hungarian algorithm than the algorithm we proposed. The time
spent on auction algorithm and Hungarian algorithm is as follows (see Fig. 1).

Due to the limited ability of the author, there are many deficiencies in this paper. On the
one hand, there may be new tasks in the execution of tasks. For more urgent tasks, it should

Fig. 1 Time cost comparison between Auction algorithm and Hungarian algorithm
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have priority and can be done by more agents, and the robot may need to stop the current
work and perform new tasks.

On the other hand, the auction algorithm can only be terminated in the feasible distribu-
tion, so a mechanism must be added to the auction algorithm to discover the infeasibility
of the problem when the problem is unsolvable. Also, the experiment we carried out in
this paper are only theoretical simulation experiments. A real world experiment should be
carried out later to verify the method.
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