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Abstract
In this paper, we propose a hybrid fog and cloud-aware heuristic for the dynamic schedul-
ing of multiple real-time Internet of Things (IoT) workflows in a three-tiered architecture.
In contrast to traditional approaches where the main processing of IoT jobs is performed
in the fog layer, our approach attempts to schedule computationally demanding tasks with
low communication requirements in the cloud and communication intensive tasks with low
computational demands in the fog, utilizing possible gaps in the schedule of the fog and
cloud virtual machines. Furthermore, during the scheduling process, our approach takes
into account the communication cost incurred by the transfer of data from the sensors and
devices in the IoT layer to the fog layer. The performance of the proposed heuristic is evalu-
ated and compared via simulation to a baseline cloud-unaware strategy, under different cases
of workload. The simulation results reveal that the proposed scheduling heuristic provides
on average 76.69% lower deadline miss ratio, compared to the baseline policy. However,
this is achieved at a significant monetary cost, due to the usage of cloud resources.

Keywords Internet of Things · Fog computing · Cloud computing · Real-time workflows ·
Scheduling

1 Introduction

As the Internet of Things (IoT) continues to encompass a wide spectrum of devices and
sensors, an unprecedented volume and variety of data is generated at staggering speeds,
often requiring processing within strict time constraints, in a real-time manner [7, 10, 23].
Healthcare and traffic monitoring IoT devices and sensors are examples of such time-critical
cases [9, 19, 30]. Often the IoT data are processed by real-time jobs, consisting of tasks with
precedence constraints among them, forming a workflow, where the output data of a task
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are used as input by other tasks. A task in the workflow without any parent tasks is called
an entry task, whereas a task without any child tasks is called an exit task [5, 25–27].

Due to the explosive growth of the IoT, fog computing emerged as a new paradigm,
complementing cloud computing. The fog extends the cloud to the network edge, close
to where the IoT data are generated, instead of sending vast amounts of IoT data to the
cloud, as physical proximity affects end-to-end latency [2, 6, 11]. Typically, only selected
data are sent to the cloud, for example for further historical analysis. The heterogeneous
computational resources in the fog can be virtualized, as in the case of cloud computing.
Consequently, a fog node can be a virtual machine (VM) [16]. However, the number and
computational capacity of the resources in a fog platform are typically limited, compared to
those in a cloud environment.

1.1 Motivation

As the volume, variety and velocity of the generated IoT data continue to increase, their
real-time processing requires resources with higher computational capacity than those tra-
ditionally found in a fog environment. On the other hand, the computational capacity of the
cloud is virtually unlimited, but entails a higher communication latency, as well as monetary
cost [17].

Consequently, the workload operating on IoT data should be appropriately distributed
to resources in both the fog and cloud layers, taking into account the computational and
communication characteristics of each individual job [14]. The workload orchestration in
such a framework requires the utilization of an effective and dynamic fog and cloud-aware
scheduling heuristic. This is especially crucial in time-critical environments, such as traffic
control systems [13].

1.2 Contribution

Towards this direction, in this paper we propose a hybrid fog and cloud-aware heuristic for
the dynamic scheduling of multiple real-time IoT workflows in a three-tiered architecture.
In contrast to traditional approaches where the main processing of IoT jobs is performed
in the fog layer, our approach attempts to schedule computationally demanding tasks with
low communication requirements in the cloud and communication intensive tasks with low
computational demands in the fog, utilizing possible gaps in the schedule of the fog and
cloud VMs. Furthermore, during the scheduling process, our approach takes into account
the communication cost incurred by the transfer of data from the sensors and devices in the
IoT layer to the VMs in the fog layer.

The remainder of the paper is organized as follows: Section 2 provides an overview
of related literature. Section 3 presents the system and workload models, as well as the
employed cloud pricing scheme. Section 4 describes the proposed scheduling heuristic,
while Section 5 gives a description of the performance metrics, the experimental setup and
analyzes the simulation results. Finally, Section 6 summarizes and concludes the paper.

2 Related work

One of the most well-known workflow scheduling techniques in heterogeneous environ-
ments, is the Heterogeneous Earliest Finish Time (HEFT) strategy, proposed by Topcuoglu
et al. [29]. It consists of a task selection phase and a processor selection phase. During the
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task selection phase, tasks are prioritized according to their position in the workflow graph
and the task with the highest priority is selected. Subsequently, in the processor selection
phase, the selected task is assigned to the processor that can provide it with the earliest fin-
ish time, utilizing idle time slots in the processor’s schedule. In [1], Arabnejad and Barbosa
propose the Predict Earliest Finish Time (PEFT) strategy, which is essentially an enhanced
version of the HEFT policy. It introduces a look ahead feature based on an optimistic cost
table. The authors show that their proposed approach outperforms HEFT in terms of the
scheduling length ratio metric.

Jiang et al. in [12], present a novel clustering algorithm, the Path Clustering Heuristic
with Distributed Gap Search (PCH-DGS), for the scheduling of multiple workflows in a
heterogeneous cloud. Their proposed method tries to insert each group of tasks into the first
available schedule gap in a processor’s schedule. The tasks of a workflow are partitioned
into groups in an attempt to minimize the communication cost between them. In case the
time gap cannot accommodate all of the tasks of the group, the rest of the group’s tasks
are inserted into the next available gap in the schedule of the same or other processor in
the system, in a recursive manner. Even though all of the above algorithms are suitable for
scheduling workflows in a heterogeneous environment, however, they do not consider the
characteristics of a fog and cloud architecture. More importantly, they are static and they do
not take into account any timing constraints.

Scheduling in hybrid fog and cloud environments has been attracting more and more
attention [4, 20, 28]. A workload allocation approach in a fog-cloud architecture is proposed
in [8] by Deng et al. The authors investigate the tradeoff between power consumption and
transmission delay in the two-tiered architecture. Their approach attempts to determine the
optimal workload allocation between the fog and cloud layers, based on these two factors.
Based on simulation experiments and analytical solutions, it is shown that by sacrificing
modest computational resources in order to save communication bandwidth and reduce
transmission latency through the proposed approach, fog computing can significantly
improve the performance of cloud computing. However, the proposed approach cannot be
applied to workflow applications, as data dependencies and precedence constraints are not
considered between the tasks of the workload.

In [15], Nan et al. propose an online algorithm, called Unit-slot Optimization, for
scheduling applications in a three-tiered architecture, consisting of an IoT layer, a fog layer
and a cloud layer. The fog nodes do not involve any monetary cost for processing the appli-
cations, but have limited computational capacity. On the other hand, the cloud nodes are
more computationally capable, but involve monetary cost. A portion of the applications
that arrive at the fog layer are offloaded to the cloud layer in an attempt to find a balance
between the average application response time and the average monetary cost. The pro-
posed approach dynamically adjusts the tradeoff between these two factors, based on the
technique of Lyapunov optimization. It is shown that the proposed approach can provide
cost-effective processing, while guaranteeing average response time. However, even though
the response time of the applications is considered in this work, no real-time constraints
(i.e. deadlines) are taken into account. Furthermore, the proposed policy is not suitable for
scheduling workflow applications, as no inter-task dependencies are considered.

On the other hand, a first attempt to workflow scheduling based on collaboration between
cloud and fog computing is presented by Pham et al. in [18]. The major objective of the pro-
posed heuristic, Cost-Makespan aware Scheduling (CMaS), is to achieve a tradeoff between
the application time and the cost of the use of cloud resources, under user-defined con-
straints. Even though this approach is both fog and cloud-aware and is suitable for real-time



24642 Multimedia Tools and Applications (2019) 78:24639–24655

workflows, utilizing idle time slots during the scheduling process, however, it exhibits the
following drawbacks:

– It is static and thus not practically suitable for the dynamic nature of IoT applications.
– It only considers a single workflow for scheduling.
– During the scheduling process, it does not take into account the communication cost

incurred by the transfer of data from the IoT layer.

On the contrary, the fog and cloud-aware heuristic proposed in this paper is suitable for
the dynamic scheduling of multiple real-time workflows, utilizing possible schedule gaps.
Furthermore, during the scheduling process, it takes into account the communication cost
incurred by the transfer of data from the sensors and devices in the IoT layer to the VMs in
the fog layer.

3 Problem formulation

3.1 Systemmodel

The three-tiered environment under study is depicted in Fig. 1. The IoT layer consists of
sensors and devices that transmit data through a WiFi or cellular (4G/LTE) network to the
fog. The fog layer consists of a set of fog nodes. Specifically, the fog environment has an

Fig. 1 The IoT, fog and cloud layers of the architecture under study
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underlying infrastructure that consists of a set Hfog = {host
fog
1 , ..., host

fog
h } of hfog physical

hosts with heterogeneous processors, connected via Ethernet. Each host host
fog
i has a multi-

core processor that consists of c
fog
i identical cores. There is a set V fog = {vm

fog
1 , ..., vm

fog
v }

of vfog VMs in the fog, where each VM is assigned a virtual CPU (vCPU).
The cloud layer consists of a set of reserved dedicated cloud nodes. Specifically, there is

a set Hcloud = {hostcloud
1 , ..., hostcloud

h } of hcloud physical hosts with heterogeneous proces-
sors, connected via Ethernet. Each host hostcloud

i has a multi-core processor that consists
of ccloud

i identical cores. There is a set Vcloud = {vmcloud
1 , ..., vmcloud

v } of vcloud VMs in the
cloud, where each VM is assigned a virtual CPU (vCPU). The vCPU of a fog or cloud VM
corresponds to a physical core of the respective host. The operating frequency fi of a VM
vmi corresponds to the operating frequency of its assigned physical core. All of the cores
in the fog and cloud layers require the same number of clock cycles per instruction.

The data transfer rate between the IoT devices and sensors and the fog layer is denoted

by lIoT and is uniformly distributed in the range
[
lIoT · (

1 − LIoT/2
)
, lIoT · (

1 + LIoT/2
)]

,

where LIoT is the heterogeneity degree of the network that connects the IoT layer and the
fog layer, whereas lIoT is the mean data transfer rate between the two layers.

The VMs in the fog and cloud layers are fully connected by a virtual network that con-
nects the two layers over the Internet (e.g. through a site-to-site VPN). The data transfer rate
between two fog VMs vm

fog
i and vm

fog
j is denoted by l

fog
ij and is uniformly distributed in

the range
[
lfog · (

1 − Lfog/2
)
, lfog · (

1 + Lfog/2
)]

, where Lfog is the heterogeneity degree

of the virtual network in the fog layer, whereas lfog is the mean data transfer rate of the
respective communication links.

On the other hand, the data transfer rate between two cloud VMs vmcloud
i and vmcloud

j

is denoted by lcloud
ij and is uniformly distributed in the range

[
lcloud · (

1 − Lcloud/2
)
, lcloud·(

1 + Lcloud/2
)]

, where Lcloud is the heterogeneity degree of the virtual network in the cloud

layer, whereas lcloud is the mean data transfer rate of the respective communication links.
Finally, the data transfer rate between a fog VM vm

fog
i and a cloud VM vmcloud

j is denoted by

linter
ij and is uniformly distributed in the range

[
linter · (

1 − Linter/2
)
, linter · (

1 + Linter/2
)]

,

where Linter is the heterogeneity degree of the virtual network that connects the two layers,
whereas linter is the mean data transfer rate of the respective communication links. It is
noted that the superscript indicators in the variables names are used in order to differentiate
between the variables corresponding to each layer. There is a fog and cloud-aware central
scheduler running on a dedicated host in the fog layer that is responsible for scheduling the
tasks to the VMs in the fog and the cloud.

3.2 Workloadmodel

The data generated and transmitted to the fog by the devices and sensors of the IoT layer,
are processed by multiple real-time workflow jobs, which arrive dynamically at the central
scheduler in a Poisson stream with rate λ. Each workflow job is represented by a directed
acyclic graph (DAG) G = (N , E), where N is the set of the nodes of the graph and E is the
set of the directed edges between the nodes. Each node represents a component task ni of
the workflow, whereas a directed edge eij between two tasks ni and nj represents the data
that must be transferred from task ni to task nj . The component tasks of a workflow are not
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preemptible, as preemption of real-time tasks may lead to performance degradation [3, 22,
24]. In the rest of the paper, the terms job, workflow and DAG are used interchangeably.

Each task ni has a weight wi that denotes its computational volume, i.e. the number of
clock cycles required to execute the instructions of the particular task. The computational
volume of each task is exponentially distributed with mean w. The computational cost of
the task ni on a VM vmj is given by:

Comp(ni, vmj ) = wi/fj (1)

where fj is the operating frequency of VM vmj .
Each edge eij between two tasks ni and nj has a weight zij that represents its commu-

nication volume, i.e. the number of GB of data needed to be transferred between the two
tasks. The communication volume of each edge is exponentially distributed with mean z.
The communication cost of the edge eij is incurred when data are transferred from task ni

(scheduled on VM vmm) to task nj (scheduled on VM vmn) and is defined as:

Comm
(
(ni, vmm), (nj , vmn)

) = zij / lmn (2)

where lmn is the data transfer rate of the communication link between the VMs vmm and
vmn, which may belong to the same layer, i.e. fog (lfog

mn ) or cloud (lcloud
mn ), or different layers,

i.e. one in fog and one in cloud (linter
mn ). In case both tasks ni and nj are scheduled on the

same VM or on VMs that run on the same physical host, the communication cost of the
edge eij is considered negligible.

Each entry task of a workflow requires input data that may vary in size. The input data
size di of an entry task ni is exponentially distributed with mean d. The communication cost
incurred by the transfer of input data from the IoT layer to a task ni scheduled on a fog VM
vmm, is given by:

Comm
(
ni, vm

fog
m

)
= di/ lIoT (3)

where lIoT is the data transfer rate between the IoT and the fog layer. In case the input data
are required to be transferred from the IoT layer to the cloud layer (i.e. to a cloud VM vmn),
they are first uploaded to the fog layer and then forwarded to the cloud layer, incurring an
additional overhead. Hence, the communication cost in this case is given by:

Comm
(
ni, vmcloud

n

)
= di ·

(
1/lIoT + 1/linter

)
(4)

The length of a path in the graph is the sum of the computational and communication
costs of all of the tasks and edges, respectively, on the path, including the input data com-
munication cost of the respective entry task on the particular path. The critical path length
CPL is the length of the longest path in the graph. Each real-time job has an end-to-end
firm deadline D within which all of its component tasks must finish execution. It is defined
as:

D = A + RD (5)

where A is the arrival time of the workflow and RD is its relative deadline, which is uni-
formly distributed in the range [CPL, 2CPL]. In the time-critical environment under study,
the deadline of each job must be met, otherwise its results would be useless. Therefore, in
such a case, the job is considered lost.

The communication to computation ratio CCR of a workflow is the ratio of its average
communication cost to its average computational cost on the target system and is given by:

CCR =
∑

eij ∈E Comm(eij )∑
ni∈N Comp(ni)

(6)
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where N and E are the sets of the nodes and the edges of the workflow, respectively.
Comm(eij ) is the average communication cost of the edge eij over all of the communica-
tion links in the system, whereas Comp(ni) is the average computational cost of the task ni

over all of the VMs in the system. An example of a workflow job is shown in Fig. 2.

3.3 Cloud pricing scheme

As mentioned earlier, the cloud layer consists of reserved dedicated physical hosts, each of
which is charged at an effective average hourly rate Chost . Furthermore, the data that are
transferred in and out of the cloud are charged per TB at a rate Cdata .

4 Hybrid fog and cloud-aware scheduling heuristic

A hybrid heuristic is employed that schedules a ready task of a workflow to a fog or a cloud
VM, depending on the task’s potential communication and computational cost. Specifically,
in contrast to traditional approaches where the main processing of IoT jobs is performed in
the fog layer, our approach attempts to schedule computationally demanding tasks with low
communication requirements in the cloud (which has resources with greater computational
capacity than the fog, but higher communication latency between the cloud VMs and the

Fig. 2 An IoT data-processing workflow represented as a directed acyclic graph with four entry tasks and
five exit tasks. The number in each node denotes the average computational cost of the represented task. The
number on each edge denotes the average communication cost between the two tasks that it connects. The
blue arrows pointing to the entry tasks of the graph indicate the average communication cost incurred by the
transfer of the required input data from the IoT devices. The critical path of the graph is depicted with thick
arrows
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IoT layer) and communication intensive tasks with low computational demands in the fog
(which has limited computational resources, but lower communication latency between the
fog VMs and the IoT layer, compared to the cloud), utilizing possible gaps in the schedule
of the fog and cloud VMs. Furthermore, during the scheduling process, our approach takes
into account the communication cost incurred by the transfer of data from the sensors and
devices in the IoT layer to the VMs in the fog layer. The proposed scheduling strategy
consists of two phases: (a) a task selection phase and (b) a VM selection phase.

4.1 Task selection phase

Tasks are prioritized according to their job’s deadline. The task that its job has the earliest
deadline, has the highest priority. Consequently, tasks are prioritized according to the Ear-
liest Deadline First (EDF) policy. In case two or more ready tasks have the same priority,
the task with the highest average computational cost is selected first.

4.2 VM selection phase

Once a task is selected by the scheduler, it is allocated to the VM that can provide it with
the earliest estimated finish time EFT . All VMs in the fog and cloud layers are considered.
The EFT of a ready task ni on a VM vmk is given by

EFT (ni, vmk) =
max {tdata(ni, vmk), tidle(ni, vmk)} +

Comp(ni, vmk) (7)

where tdata(ni, vmk) is the time at which all input data of task ni will be available on VM
vmk , whereas tidle(ni, vmk) is the time at which vmk will be able to execute task ni .

In order to calculate the term tidle(ni, vmk), we must determine the position that task ni

would be placed in the queue of VM vmk . Firstly, we find the initial position at which the
ready task ni would be placed in the VM’s queue, according to its priority. Subsequently,
we check whether a schedule gap exists that can be utilized by the task, as follows:

– Step 1: In case all of the required input data of the ready task ni are available on VM
vmk (i.e. tdata(ni, vmk) = tcurrent, where tcurrent is the current time), we check whether
a schedule gap exists. A schedule gap is formed when the VM is idle and the task nq

placed at the head of the queue is still in the process of receiving its required input data
from other hosts. The capacity g of the schedule gap is calculated as:

g = tdata(nq, vmk) − tcurrent (8)

where tdata(nq, vmk) is the time at which all of the required input data of task nq will
be received.

– Step 2: If a schedule gap exists, we try to fill it in with the ready task ni :

g ≥ wi/fk (9)

where wi is the communication volume of task ni and fk is the operating frequency of
VM vmk . In case the ready task ni cannot be placed into a schedule gap or a schedule
gap does not exist, the position of task ni in vmk’s queue is determined only by its
priority.
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The pseudocode corresponding to the above procedure is shown in Algorithm 1. The
first step of the procedure is described in lines 5-10, whereas the second step is described
in lines 12-16. The utilization of schedule gaps is also performed in the same manner for
a task waiting in a queue when all of its input data become available on its assigned VM.
Furthermore, it is also performed for tasks that are waiting for service in a queue and either
the task in service completes execution or a task is discarded from the queue because its
job’s deadline has been reached. In the last two cases, eligible tasks are considered according
to their priority.

We refer to our proposed scheduling heuristic as Hybrid-EDF. For comparison purposes
and in order to examine the same heuristic, but in a cloud-unaware setting, an alternative
version of our proposed approach was considered in our experiments, Fog-EDF. This alter-
native baseline approach only considers VMs in the fog layer during the VM selection
phase. That is, no cloud VMs are utilized for the processing of the workflows.

5 Performance evaluation

5.1 Performancemetrics

The following metrics were employed for the evaluation of the performance of our proposed
scheduling heuristic, Hybrid-EDF, and its comparison to the baseline strategy, Fog-EDF:

– Deadline Miss Ratio, which is the ratio of the number of jobs that did not finish their
execution within their deadline (and thus lost), over the number of all of the jobs that
arrived at the central scheduler of the fog layer, during the observed time period.

– Percentage of Tasks Executed on Cloud, which is the percentage of tasks of completed
jobs that were executed on cloud VMs, during the observed time period.

– Total Monetary Cost, which is the total monetary cost (in US dollars) for the utilization
of the resources of the cloud layer. This cost concerns the reserved dedicated hosts in
the cloud layer, as well as the data transfers in and out of the cloud, during the observed
time period.
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5.2 Experimental setup

The performance of the system was evaluated by conducting a series of simulation runs
using the independent replications method. Due to the complexity of the system and the
workload model under study and in order to have full control on all of the required param-
eters, we implemented our own discrete-event simulation program in C++, tailored to the
specific requirements of the particular problem. The hosts in the fog and cloud layers were
based on real-world processors (one processor per host). The fog layer consisted of a small
number of hosts with low to moderate computational capacity. Specifically, the fog layer
consisted of 1 small (in terms of operating frequency) processor, modeled after the Intel
Xeon Bronze 3106 processor, 1 medium processor, modeled after the Intel Xeon Silver 4108
processor, and 1 large processor, modeled after the Intel Xeon Silver 4109T processor. On
the other hand, the cloud layer consisted of a larger number of hosts with greater computa-
tional capacity than those in the fog layer. Specifically, the cloud layer consisted of 5 small
processors, modeled after the Intel Xeon Platinum 8158 processor, 10 medium processors,
modeled after the Intel Xeon Gold 6134 processor, and 10 large processors, modeled after
the Intel Xeon Platinum 8156 processor. The operating frequency and the number of cores
of each processor are shown in Table 1.

In order to directly control the workload parameters and obtain unbiased, general results,
not applicable only to particular workload traces, synthetic workload was used. The work-
flows were generated randomly, using our own random DAG generator, as described in [21].
Each generated workflow was a weakly connected graph, having a path between any pair of
tasks, without taking into account the direction of the edges. There was at least one entry and
one exit task in each generated workflow. We conducted three sets of experiments: (a) for
computationally intensive (CCR = 0.5), (b) moderate (CCR = 1) and (c) communication
intensive (CCR = 2) workflows.

For computationally intensive workflows (CCR = 0.5), the mean computational volume
of the tasks was selected to be equal to w = 1.1 ·1012 clock cycles, so that on average, a task
would take 10 minutes to execute on a fog VM. For moderate and communication intensive
workflows (CCR = {1, 2}), the mean computational volume of the tasks was selected to be
equal to w = 0.55 · 1012 clock cycles, so that on average, a task would take half the time
(i.e. 5 minutes) to execute on a fog VM, compared to the computationally intensive case.

For each CCR and mean computational volume w, the mean communication volume z

was calculated from (6). In order for the system to be stable, the job arrival rate was chosen
to be λ = 0.002. As we wanted to examine data-intensive workflows, the mean input data
size of the entry tasks was chosen to be d = 100 GB. In order to be in line with the prices
of real-world cloud vendors, such as Amazon Web Services and Google Cloud Platform,
the reserved dedicated cloud host effective average (for compute optimized hosts) hourly
rate was chosen to be Chost = $1 per host, whereas the data transfer rate for transfers in
and out of the cloud was chosen to be Cdata = $1 per TB. The heterogeneity degree of
the networks in all layers was chosen to be equal to L = 0.5, since most modern networks
feature moderate heterogeneity. All of the input parameters of the simulation model are
shown in Table 1.

We ran 30 replications of the simulation with different seeds of random numbers, for
each set of input parameters. Each replication was terminated when 104 workflows had been
completed. We found by experimentation that this simulation run length was sufficiently
long enough to minimize the effects of warm-up time. For every mean value, a 95% confi-
dence interval was calculated. The half-widths of all of the confidence intervals were less
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Table 1 Simulation input parameters

Parameter Value

System Model Parameters

IoT layer:

Mean data transfer rate (IoT-fog) lIoT = 50 Mbps

Network heterogeneity degree (IoT-fog) LIoT = 0.5

Fog layer:

Number of small hosts h
fog
small = 1

Number of small host processor cores c
fog
small = 8

Small host core operating frequency f
fog
small = 1.7 GHz

Number of medium hosts h
fog
medium = 1

Number of medium host processor cores c
fog
medium = 8

Medium host core operating frequency f
fog
medium = 1.8 GHz

Number of large hosts h
fog
large = 1

Number of large host processor cores c
fog
large = 8

Large host core operating frequency f
fog
large = 2.0 GHz

Number of VMs vfog = 24

Mean data transfer rate (fog) lfog = 1 Gbps

Network heterogeneity degree (fog) Lfog = 0.5

Mean data transfer rate (fog-cloud) linter = 100 Mbps

Network heterogeneity degree (fog-cloud) Linter = 0.5

Cloud layer:

Number of small hosts hcloud
small = 5

Number of small host processor cores ccloud
small = 12

Small host core operating frequency f cloud
small = 3.0 GHz

Number of medium hosts hcloud
medium = 10

Number of medium host processor cores ccloud
medium = 8

Medium host core operating frequency f cloud
medium = 3.2 GHz

Number of large hosts hcloud
large = 10

Number of large host processor cores ccloud
large = 4

Large host core operating frequency f cloud
large = 3.6 GHz

Number of VMs vcloud = 180

Mean data transfer rate (cloud) lcloud = 1 Gbps

Network heterogeneity degree (cloud) Lcloud = 0.5

Reserved dedicated host average hourly rate Chost = $1 per host

In-out data transfer rate Cdata = $1 per TB

Workload Model Parameters

Number of completed DAGs 104

DAG arrival rate λ = 0.002

Number of tasks per DAG n ∼ U [8, 64]
Mean entry task input data size d = 100 GB

DAG communication to computation ratio CCR = {0.5, 1, 2}
Mean task computational volume w = 0.55 · 1012 clock cycles for
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Table 1 (continued)

Parameter Value

CCR = {1, 2} and w = 1.1 · 1012 clock cycles for CCR = 0.5

Other Model Parameters

Scheduling heuristics Hybrid-EDF, Fog-EDF

than 5% of their respective mean values. Furthermore, in order to evaluate whether the dif-
ferences between the mean values obtained by each scheduling method were statistically
significant, a 95% confidence interval was calculated for the difference between each pair of
mean values. The calculated confidence intervals did not include 0 and thus the differences
in the results between the employed scheduling policies were statistically significant.

5.3 Simulation results

The simulation results reveal that, in terms of the deadline miss ratio metric, the proposed
fog and cloud-aware scheduling heuristic, Hybrid-EDF, outperforms the cloud-unaware
baseline strategy, Fog-EDF, for all cases of workload. This is shown in Fig. 3. It is noted that
in this case a logarithmic scale is used for the deadline miss ratio values, as they are highly
skewed. In the case of computationally intensive (CCR = 0.5), moderate (CCR = 1) and
communication intensive (CCR = 2) workflows, Hybrid-EDF yields a much lower dead-
line miss ratio than Fog-EDF. Especially in the case of computationally intensive workflows,
the difference is significant. Specifically, Hybrid-EDF yields a deadline miss ratio equal to
1.51%, whereas Fog-EDF yields a deadline miss ratio equal to 85.76%.

This is due to the fact that the proposed scheduling heuristic attempts to assign com-
putationally demanding tasks with low communication requirements to VMs in the cloud,
where there is a larger number of VMs with greater computational capacity than in the
fog layer. On the other hand, it tries to schedule communication intensive tasks with low

Fig. 3 Deadline Miss Ratio (%) for computationally intensive, moderate and communication intensive
workflows (Hybrid-EDF & Fog-EDF)
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Fig. 4 Percentage of Tasks Executed on Cloud (%) for computationally intensive, moderate and communi-
cation intensive workflows (Hybrid-EDF)

Fig. 5 Total Monetary Cost ($) for computationally intensive, moderate and communication intensive
workflows (Hybrid-EDF)

Table 2 Cloud resource usage statistics (Hybrid-EDF)

CCR

Parameter 0.5 1 2

Number of physical hosts used 24/25 23/25 25/25

Number of VMs used 173/180 173/180 178/180

Total data transferred 1.5 PB 1.0 PB 1.2 PB

Average data transferred per job 314.76 GB 210.74 GB 253.12 GB
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Table 3 Simulation results
summary Hybrid-EDF Fog-EDF

CCR Deadline Miss Ratio (%)

0.5 1.51 85.76

1 1.26 3.05

2 1.81 6.74

CCR Percentage of Tasks Executed on Cloud (%)

0.5 61.65 0.00

1 48.88 0.00

2 42.55 0.00

CCR Total Monetary Cost ($)

0.5 19,441.61 0.00

1 18,884.21 0.00

2 19,189.14 0.00

computational demands to fog VMs, which are closer to the IoT sources of the generated
data, in an attempt to minimize the incurred communication cost. Overall, Hybrid-EDF
provides on average 76.69% lower deadline miss ratio, compared to the baseline policy,
Fog-EDF, under all cases of workload.

The scheduling decisions of the proposed strategy are clearly shown in Fig. 4, where it is
apparent that for computationally intensive workflows, the majority (61.65%) of the tasks
are scheduled on cloud VMs. In the case of moderate workflows, about half (48.88%) of
the tasks are scheduled in the cloud and the other half in the fog. On the other hand, in the
case of communication intensive workflows, the majority (57.45%) of the tasks are assigned
to fog VMs. However, the impressive results of the proposed scheduling heuristic come at
a significant monetary cost, as shown in Fig. 5. Specifically, for the simulated duration of
about a month, the total monetary cost incurred by the data transfers in and out of the cloud
and the reserved dedicated hosts in the cloud, was $19,441.61 in the case of computationally
intensive workflows, $18,884.21 in the case of moderate workflows and $19,189.14 in the
case of communication intensive workflows.

Thus, even though the proposed Hybrid-EDF policy outperforms the baseline Fog-EDF
strategy, it requires a significant monetary cost in order to effectively utilize the cloud
resources (as shown in Table 2), in addition to the fog resources, which are free. The
simulation results are summarized in Table 3.

6 Conclusions and future directions

In this paper, we proposed a hybrid fog and cloud-aware heuristic, Hybrid-EDF, for the
dynamic scheduling of multiple real-time IoT workflows in a three-tiered architecture. In
contrast to traditional approaches where the main processing of IoT jobs is performed in
the fog layer, our approach attempts to schedule computationally demanding tasks with
low communication requirements in the cloud and communication intensive tasks with low
computational demands in the fog, utilizing possible gaps in the schedule of the fog and
cloud VMs. Furthermore, our approach takes into account during the scheduling process the
communication cost incurred by the transfer of data from the sensors and devices in the IoT
layer to the VMs in the fog layer.
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The performance of the proposed heuristic was evaluated and compared to a baseline
cloud-unaware strategy, Fog-EDF, via a series of simulation experiments, for computation-
ally intensive, moderate and communication intensive workflows. The simulation results
reveal that Hybrid-EDF outperforms Fog-EDF in the framework under study, providing on
average 76.69% lower deadline miss ratio. However, this comes at a significant monetary
cost, due to the usage of cloud resources. In an attempt to minimize the monetary cost, we
plan to apply our approach in architectures where the cloud layer consists of on-demand
multi-tenant VMs, instead of reserved dedicated hosts.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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