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Abstract
Fine-grained classification and grading of breast cancer (BC) histopathological images are
of great value in clinical application. However, automatic classification and grading of BC
histopathological images are complicated by (1) small inter-class variance and large intra-
class variance exist in BC histopathological images, and (2) features extracted from similar
histopathological images with different magnification are quite different. To address these
issues, an improved deep convolution neural network model is proposed and the procedure
can be divided into three main stages. Firstly, in the representation learning process, multi-
class recognition task and verification task of image pair are combined. Secondly, in the
feature extraction process, a prior knowledge is built, which is “the variances in feature out-
puts between different subclasses is relatively large while the variance between the same
subclass is small.” Additionally, the prior information that histopathological images with
different magnification belong to the same subclass are embedded in the feature extraction
process, which contributes to less sensitive with image magnification. The experimental
results based on three different histopathological image datasets show that the perfor-
mance of the proposed method is better than state of the art, with better robustness and
generalization ability.

Keywords Multi-task deep learning · Histopathological image classification ·
Fine-grained · Convolutional neural network · Breast cancer

1 Introduction

Cancer is one of the top deadliest diseases in modern society. Breast cancer (BC), with
different subtypes and risk stratification, is the most common cancer in women. Accord-
ing to the International Cancer Research Center (IARC) data released in 2014, BC is the
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second leading cause of cancer death, and its incidence is increasing year by year at a
younger age [35]. Detection and diagnosis of BC can be achieved by imaging procedures
such as mammography, magnetic resonance imaging (MRI) and ultrasound. However, the
analysis of digital pathological images is an important standard for the final diagnosis
of BC, and the accurate classification of pathological images is an important basis for
treatment plan making by doctors. Therefore, there is important clinical significance for
automatic classification of BC pathological images. Histopathological image analysis is
a time-consuming and laborious task, and the diagnosis results are easily influenced by
many subjective factors. With the help of Computer-Aided Diagnosis (CAD) system, the
automatic classification of pathological image can not only improve the efficiency of diag-
nosis, but also provide more accurate and objective diagnostic results for doctors [44, 46].
Noticeably, fine-grained classification and grading of pathological images [8, 15, 16] are
much more significant than binary one [12, 13, 32–34]. They will help patients get accurate
diagnosis, guide doctors to develop more scientific and reasonable treatment plan, reduce
treatment insufficiency or overtreatment. Last but not least, early detection and intervention
can improve the prognosis.

The automatic classification of BC pathological images is a challenging task. The fun-
damental reasons consist of three aspects: 1) tissue preparation, fixation and other steps
are conducted by different personnel with different technology and proficiency, while dif-
ferent dyeing procedures lead to the diversity of appearance changes in pathological slices
[28, 29]. 2) Breast pathological images are always characterized by small inter-class vari-
ance and large intra-class variance, which bring many particular difficulties for fine-grained
classification. 3) Features extracted from similar pathological images with different magni-
fication are quite different, which makes the design of classifier more difficult. Therefore,
the classifier should have multi-scale attributes and be independent of magnification. Some
details of BC pathological images are shown in Figs. 1 and 2. In Fig. 1, samples (a) - (e) are

Fig. 1 Breast cancer histopathology images, samples a-e are ductal carcinoma(DC), sample f is phyllodes
tumor. The images are from BreaKHis database and the magnification factor of the them is 400x
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Fig. 2 Slides of breast ductal carcinoma in different magnification factors from the same patient: a 40x, b
100x, c 200x, and d 400x. The images are from BreaKHis database

ductal carcinoma (DC). Sample (f) is phyllodes tumor. Although samples (a) - (e) are all
belong to DC, there are many differences in shades and shapes of cells. At the same time,
there is a great similarity in color and cell morphology between samples (e) and (f), but they
belong to different classes. The pathological images with different magnification factors are
shown in Fig. 2. Although they are all DC and from the same patient, we can see that the
differences of visual characteristics among different magnification images are huge.

Spanhol et al. [33] introduced a BC pathological images dataset named BreaKHis. Based
on the dataset, six kinds of feature descriptors, including local binary patterns, gray level co-
occurrence matrix, and four kinds of classifiers, such as support vector machine (SVM) and
random forest, are applied to classify the data. The accuracy rate of binary classification is
about 80∼85%, showing room for improvement is left. At the same time, the complemen-
tarity of the magnification factors could be fruitfully investigated in the future. Bayramoglu
et al. [2] proposed two different architectures (single task CNN and multi-task CNN) to
detect the image magnification level and classify benign and malignant tumors simultane-
ously. However, fine-grained classification is often very important for accurate diagnosis
and personalized treatment. Janowczyk et al. [16] proposed a framework on deep learning
for digital pathological image analysis. The framework obtained the promising performance
on seven different tasks, but the computing cost was heavy because of the patch-based style
and the performance obtained by means of a five steps pipeline.

One limitation of the above methods is that they only employ class labels to drive fine-
grained classification of images, while it would be better if class similarity constraint is
embedded. Siamese network [6] defines dissimilar and similar image pairs, and specifies
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that the distance between dissimilar image pair should be greater than a certain threshold,
while the one between similar image pair is smaller. This similarity constraint can effec-
tively obtain features in the process of feature representation learning for many kinds of
tasks [3, 36, 38, 43]. An intuitive improvement is to combine the classification and the sim-
ilarity constraints together for better performance. Therefore, other than using classification
constraint alone (e.g., softmax), contrastive constraint is embedded to the procedure of fea-
ture representation learning for pathological images. It improved traditional CNN because
contrastive constraint will add some prior knowledge for training the model.

In this work, we propose a novel fine-grained classification and grading approach for
large-scale complex pathological images. The major contributions lie in three-fold. First,
we propose an improved deep convolution neural network model to achieve accurate and
precise classification or grading of breast cancer pathological images. Meanwhile, online
data augmentation and transfer learning strategies are employed to avoid model overfit-
ting effectively. Second, multi-class recognition task and verification task of image pairs
are combined in the representation learning process; in addition to this, a prior knowledge
is build, which is “the variances in feature outputs between different subclasses are rela-
tively large while the variance between the same subclass is small”, which will effectively
overcome the intractable problem (small inter-class variance and large intra-class variance
in pathological image). At the same time, the verification task only related to the category
of the pathological image, and is independent of magnification, In other words, the priori
information (pathological images with different magnification belong to the same subclass)
is embedded in the feature extraction process. It contributes to less sensitive with image
magnification. Finally, the experimental results based on three pathological image datasets
show that the performance of our method is better than that of state of the arts, with good
robustness and generalization ability.

The rest of the work is organized as follow. Recent methods or algorithms for the classi-
fication of BC pathological images will be reviewed in Section 2. Section 3 elaborates our
methodological contributions in detail, while the experimental results and comparisons with
the recently published methods are described in Section 4. Section 5 draws a conclusion to
this paper.

2 Related work

A great deal of research progress has been acquired about the automatic classification of BC
pathological images. It mainly contains two categories: 1) classification algorithms based
on human feature engineering and classical machine learning [21, 24, 25, 39], 2) the recent
booming methods based on deep learning.

2.1 Classical classification algorithms

Gupta et al. [11] proposed a framework over multiple magnifications for BC histopatholog-
ical image classification. The authors employed joint color-texture features and classifiers
to demonstrate that some of these features and classifiers were indeed effective. Kowal
et al. [17] suggested four different nuclei segmentation methods and deployed them in
a medical decision system for BC diagnosis. The classification accuracy was 96∼100%
for the 500 medical images from 50 patients. In [12, 13], extensive experiments showed
that there is no need for stain normalization and the classification can be made magnifi-
cation invariant when given effective features and ensemble classifiers. Zhang et al. [45]
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proposed one-class KPCA model ensemble for medical images classification and the aver-
aged classification accuracy for 361 BC pathological image is about 92%. Wang et al. [40]
proposed a framework for cell nuclei segmentation and classification of BC pathological
images. For the classification step, 4 shape-based features and 138 textural features based
on color spaces are extracted. Optimal feature set is obtained by SVM with chain-like agent
genetic algorithm. The proposed method obtained a promising performance on 68 breast
cell histopathology images. Dimitropoulos et al. [8] published a dataset with 300 annotated
breast carcinoma images of grades 1, 2 and 3, and presented a manifold learning model for
grading of invasive breast carcinoma.

It is worth noting that the above classification methods lack a unified standard of com-
parison, and there is no comparability between the accuracy metric. More importantly, these
algorithms are based on manual feature extraction method, which not only needs domain
knowledge, but also consumes a lot of time and energy to complete, in addition, the key
issue is that extraction of high-quality discriminative features is still challenging [18–20].

2.2 Deep learningmethods

Deep learning can automatically learn features from the data, which will avoid the complex-
ity and some limitations of the traditional algorithms. Convolutional neural network (CNN)
is a member of deep learning family and has been widely used in the field of machine
translation, object detection, visual tracking and image classification [5, 22, 23, 26, 27].
These successful cases provide some references for CNN in the classification of breast
pathological images [4, 41, 47]. Spanhol et al. [32, 34] employed AlexNet to extract the
deep feature and combined different feature fusion strategies for BC recognition. The per-
formance of the proposed model is much better than the traditional ones. Wei et al. [42]
proposed a novel method based on deep CNN (named as BiCNN) to address the two-class
BC pathological image classification. This model considered class and sub-class labels of
BC as prior knowledge, which could restrain the distance of features of different BC patho-
logical images. Garud et al. [10] presented a GoogLeNet architecture based classification
model for the diagnosis of the cell samples using their microscopic high-magnification
multi-views. Han et al. [15] employed GoogLeNet as the basic network and proposed a BC
multi-classification method. The structured model had achieved remarkable performance
on a large-scale dataset, which was a potential tool for BC multi-classification in clinical
settings. Inspired by inception modules [37], Akbar et al. [1] proposed a regularization tech-
nique named the transition module, which was beneficial to the model generalization ability
and the gradual decrease in network size. Zhi et al. [48] investigated using transfer learning
on convolutional neural networks (VGGNet and the custom model) to diagnose BC from
histopathological images. Song et al. [30, 31] combined convnet with fisher vector (FV) and
designed a new adaptation layer to further boost the discriminative power and classification
accuracy for histopathology image classification. Most of the existing classification meth-
ods of breast pathological images are based on binary classification. However, fine-grained
classification of pathological images is of more important significance.

3 Proposed approach

In this paper, we propose an improved fine-grained pathological image classification model
based on Xception network [5]. Xception is an improved deep learning model devised
by Google which presented excellent classification performance in the large scale image
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datasets (ImageNet, JFT). The depthwise separable convolution is used to replace the
original convolution operation of Inception V3. However, the number of medical images
(pathological images) is often much smaller than that of natural images. The small data
number fails to support large capacity model, which tends to be overfitting and fails to
achieve good classification performance. To resolve this issue, we adopt two schemes to

Fig. 3 Xception based network architecture

Multimedia Tools and Applications (2020) 79:14509–1452814514



improve the classification performance of pathological images. First, parts of network lay-
ers are extracting from the Xception network to form a new model, which is used to extract
the pathological image features. Two prior knowledge that features extracted from different
subclasses have relative large distance while features from the same subclass have smaller
distance; and pathological images with different magnification belong to the same subclass
are embedded in the feature extraction process, which are beneficial to obtain a discrimina-
tive model for fine-grained classification of pathological image. Second, transfer learning is
employed to fine tune the models trained on ImageNet dataset. More details are explained
in Section 3.2.

3.1 Deep convolutional neural networks

(a) Architecture design
In order to prevent overfitting and improve the training speed, we choose parts of net-

work layers in the Xception network to extract the feature of pathological image. The new
model architecture mainly composed of input layer, convolution layer, depthwise separa-
ble convolution, batchnormalization layer, maxpooling layer and activation function layer
(ReLU), which are shown in Fig. 3.

Embedding the prior information in the feature extraction process is beneficial to train a
fine-grained classification model for pathological images with strong discriminative ability.
The multi-task network model is designed, as shown in Fig. 4. Specifically, the input con-
sists of the paired pathological images, their corresponding labels, and the attribute value
that whether the images belong to the same class. The Xception based network structure
with the top layer removed and connects with the output of the proposed model, which for-
mulates the training model. The outputs of the proposed model are composed of the softmax
probability distribution of the image pair and the distance between the features of the image
pair extracted by the network structure. Cross entropy loss is obtained by cross entropy
function with softmax probability distribution and one-hot form labels as inputs. Contrastive

Fig. 4 A network model for multi-task fine-grained classification of pathological images
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loss is obtained by contrast loss function with the distance of image pairs as input. The two
losses are combined through the weights as the final loss, which is used for the training of
the proposed model, as shown in Section 3.3.

(b)Implementation detail
The implementation is based on keras (https://github.com/fchollet/keras), and the back-

end is tensorflow (https://github.com/tensorflow/tensorflow). The data set is randomly
divided into three parts: 20% validation set, 20% test set and the other is the training set,
none of which overlap with others. The training set is employed for model training and
parameter learning; validation set is used to optimize the model and test the model in train-
ing process, automatically adjust learning rate and decide whether early stop according to
test performances of given training steps; and test set is used for validating the recognition
and generalization ability of the proposed model. The experimental results are the mean and
variance of the 5 random data set experiments. In order to verify the effectiveness of trans-
fer learning, two training strategies are adopted: random initialization training and transfer
learning. Furthermore, the result of only softmax with loss is comparison with the combina-
tion with softmax with loss as well as contrastive loss to verify the effectiveness of multitask
learning.

3.2 Data augmentation and transfer learning

Lack of large-scale training data is one of the main challenges to apply deep convolutional
neural network (DCNN) to medical image classification. However, obtaining large-scale
medical images is difficult, and expensive, especially with the professional labels from the
pathologists. In order to alleviate the above difficulties, the following two solutions are
employed in the classification and grading tasks of three pathological image datasets.

Data augmentation: The training data set is augmented by affine transformation and some
data augmentation techniques (e.g., small rotations, zoom, mirror operation, horizontal flip-
ping and vertical flipping) are also applied. In the training process, every batch of images is
transformed online with the combination of the above strategy, so as to achieve the purpose
of data enhancement. It will save physical storage space and promote the training speed
comparing with the traditional off-line data enhancement mode.

Transfer learning: Transfer learning can take advantage of some basic characteristics
(e.g., color and edge features) of source dataset, which is beneficial to the classification per-
formance of the target one. In this paper, we will transfer the pre-trained model in ImageNet
(including more than 1.2 million natural images and 1000 different categories) datasets to
pathological image classification tasks. The specific operation is to freeze the parameters of
the shallow layers, and to train the parameters of the high-level layers.

3.3 Multi-task loss

CNN builds a highly nonlinear mapping between input and output through cascaded con-
volution layers. This hierarchical representation can extract simple and complex features of
the network, and different tasks can share the same features. Therefore, CNN is suitable for
multi-task learning. Taking this into account, we design a multi-task learning architecture
[49, 50], and the steps are as follows.

First, the input image pairs are generated from the training dataset, and the basic unit
includes (xi, xj , yi, yj , yij ). Among them, xi and xj represent the input images; yi and yj

are their corresponding labels. If xi and xj belong to the same class, the attribute value of
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yij is 1, if xi and xj do not belong to the same class, yij is 0. Second, Euclidean distance
between fi and fj , which are the extracted features of network with the xi and xj as inputs,
is calculated. Third, according to the softmax with loss function and the formula of the
contrastive loss, the two types of losses can be obtained respectively. The two losses are
combined through the weights as the final loss, which is used for the training of the proposed
model. Finally, the Nadam [9] optimization method is used for training.

The fine-grained classification features of pathological images are learned by two super-
vised signals (tasks). The first one is the multi-class recognition signal. In order to divide
the pathological images into different categories (for example, 8 categories), a probability
distribution of 8 categories is obtained through connecting the 8-way softmax layer after
CNN. The network is trained by minimizing the cross-entropy loss, as shown in formula (1).

Lsof tmax = L(x, y, θ) = − 1

N

⎡
⎣

N∑
i=1

k∑
j=1

1{yi = j}log e
θT
j xi

∑k
j=1 e

θT
j xi

⎤
⎦ (1)

where 1(yi = j) is the indicative function, and the rule of value is: 1{expression is true}=1,
and 1{expression is false}=0. N is the number of images, and k is the number of image
categories. θ represents the parameters of the softmax classifier.

The second is the verification signal, which encourages that distance between the fea-
tures of the same class images is as small as possible and distance between the features of
the different types of images is as far as possible. The verification signal can effectively
reduce the variance of the extracted features of similar pathological images, and preserve
the variance of the extracted features of different pathological images, which will make
the model to be more discriminative. Inspired by the literature [14, 36], the following loss
function is adopted to constrain the extraction of the features, as shown in formula (2).

Lcontrastive = L(fi, fj , yij ,m) = yij (fi − fj )
2 + (1 − yij )max(0,m − (fi − fj )

2) (2)

where fi , fj , and yij have been described above, and m is a learning parameter, which
usually set to 1.

Despite its merits in learning feature representation, there still exist several disadvan-
tages for minimizing formula (2) in recognition tasks. For example, given a dataset with
N images, the number of all possible pairs of images is N2. Each pair of images contains
much less information than the classification constraint that provides specific label among k
classes, which can lead to a slow convergence. In addition, in the absence of explicit classifi-
cation constraint, the accuracy of only similar constraint may be inferior to that of traditional
CNNs using softmax, especially for fine-grained problems with subtle differences of sub-
classes. Given the limitations of training with the contrastive loss solely, we constitute these
two kinds of losses via a multi-task learning strategy:

C = λsL
1
sof tmax + λsL

2
sof tmax + (1 − 2λs)Lcontrastive (3)

where L1
sof tmax and L2

sof tmax are the softmax with loss of the two inputs, respectively.
Lcontrastive is the contrast loss. λs is the weight to control the trade-off between three dif-
ferent losses. Since softmax with loss may contain more information than contrastive loss in
each iteration, it is should assign a higher weight to softmax. Actually, in [47], the authors
claimed that the performance was not sensitive to small variations to the weight of soft-
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max with loss, i.e., within 0.8% difference in a range of [0.55, 0.85] . Guiding by literature
[47], we set λs as 0.35 in our experiments. Therefore, softmax with loss and contrastive loss
accounts for 70% and 30% of the total loss, respectively.

4 Experiments and results

4.1 Datasets description

We evaluated our proposed models based on the experimental results from three different
datasets: (1) BreaKHis. (2) Grading of invasive breast carcinoma. (3) Lymphoma sub-type
classification.

(1) BreaKHis. The dataset consists of 7909 BC histopathology images acquired on 82
patients with different magnification (40x, 100x, 200x, and 400x). This database
was built in collaboration with the P&D Laboratory— Pathological Anatomy and
Cytopathology, Parana, Brazil (http://www.prevencaoediagnose.com.br/). It contains
four types of benign breast tumors: adenosis (A), fibroadenoma (F), phyllodes tumor
(PT), and tubular adenoma (TA); and four types of BC: ductal carcinoma (DC), lobular
carcinoma (LC), mucinous carcinoma (MC), and papillary carcinoma (PC). The size
of images is 700x460, and the mode is RGB three channels (24 bits color, each chan-
nel is 8 bits). Table 1 is the specific distribution of the benign and malignant tumor
subclass images with different magnification [33].

(2) Grading of invasive breast carcinoma. This dataset contains cases of breast carcinoma
histological specimens received in General Hospital of Thessaloniki, Greece [8]. It
consists of 300 annotated images with resolution 1280x960 corresponding to 21 dif-
ferent patients with invasive ductal carcinoma of the breast of grades 1-3 (grade 1:
107, grade 2: 102 and grade 3: 91 images). The image frames are from tumor regions
captured through a Nikon digital camera attached to a compound microscope with x40
magnification objective lens, as shown in Fig. 5.

(3) Lymphoma sub-type classification. The dataset has been prepared by different pathol-
ogists from different laboratories to create a real-world type cohort which contains a
larger degree of stain and scanning variances [16], as shown in Fig. 6. It consists of
374 images with resolution 1388x1040 and is broken into three subtypes: 113 for the
Chronic Lymphocytic Leukemia (CLL), 139 for the Follicular Lymphoma (FL) and
122 for the Mantle Cell Lymphoma (MCL).

Table 1 The specific distribution of the benign and malignant tumor subclass images with different
magnification

Magnification Benign Malignant

A F TA PT Total DC LC MC PC Total

40x 114 253 109 149 598 864 156 205 145 1370

100x 113 260 121 150 614 903 170 222 142 1437

200x 111 264 108 140 594 896 163 196 135 1390

400x 106 237 115 130 562 788 137 169 138 1232

Total 444 1014 453 569 2368 3451 626 792 560 5429

# Patients 4 10 3 7 24 38 5 9 6 58
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Fig. 5 Grading of invasive breast carcinoma. a grade1, b grade2, c grade3

4.2 Performancemetrics

There is only image level information in two of the three experimental datasets, so we calcu-
late the recognition rate from the image level. Nall represents the number of validation and
test set of pathological images, Nr is the number of pathological images that are correctly
classified. So the image level recognition rate can be expressed as:

RecognitionRate = Nr

Nall

(4)

4.3 Experimental results and analysis

The study is implemented with python 2.7 on a workstation with Intel(R) Xeon(R) E5-2650
v2 CPU, 32 GB memory and the model of GPU is GTX1080. Comparison experiments are
conducted between our proposed methods and the recently published state-of-the-art models
or approaches.

(1) Experiment on BreaKHis dataset
The BreaKHis dataset is randomly divided into three parts: 20% validation set,

20% test set and the other is training set, meanwhile, none of which overlap with
others. The experiment results between our proposed method and the recently state-
of-the-arts are shown in Table 2. From Table 2, we can draw several conclusions:
1) the same method obtains the similar performance from the validation set and the
test set, indicating that the model has good generalization ability. 2) In general, the
performance of multi-task CNN is better than single task CNN, and fine-tuning multi-
task CNN is superior to multi-task CNN training from scratch. Xception network is
trained from scratch with the pathological images, and the classification results are

Fig. 6 Lymphoma sub-type Classification. a CLL, b FL, c MCL
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Table 2 Comparison of the proposed fine-grained classification method against seven state of the art
approaches based on of BreaKHis images

Methods Magnification factors

40x 100x 200x 400x all

ST (valid) 92.42±0.39 93.29±0.81 92.29±0.39 90.81±1.42 92.25±0.26

ST (test) 94.11±0.52 91.77±0.83 92.12±0.51 90.25±2.11 92.08±0.28

MT (valid) 92.89±1.18 91.65±0.73 93.03±0.6 91.42±0.54 92.25±0.3

MT (test) 94.69±0.8 93.8±0.63 92.66±0.68 92.24±1.11 93.36±0.19

MT SCR Xception (valid) 86.69±3.79 83.12±4.61 84.32±4.95 86.54±2.04 85.08±3.85

MT SCR Xception (test) 87.95±2.79 83.67±4.56 85.04±3.63 85.22±2.11 85.50±3.17

MT FT Xception (valid) 95.26±0.49 93.37±1.08 93.09±1.45 91.65±1.66 93.36±0.83

MT FT Xception (test) 94.8±0.33 94.03±1.19 93.85±0.24 90.71±0.71 93.43±0.47

CSDCNN + Raw [15] 89.4±5.4 90.8±2.5 88.6±4.7 87.6±4.1 −
CSDCNN+ Aug [15] 92.8±2.1 93.9±1.9 93.7±2.2 92.9±1.8 −
Dimitropoulos et al. [8] 91.8 92.1 91.4 90.2 91.38

Gupta et al. [12] 86.96 88.92 90.32 86.85 −
Spanhol et al. IJCNN16 [34] 89.6±6.5 85.0±4.8 82.8±2.1 80.2±3.4 −
Spanhol et al. TBE16 [33] 81.6±3.0 79.9±5.4 85.1±3.1 82.3±3.8 −
Song et al. ISBI17 [30] 87.0±2.6 86.2±3.7 85.2±2.1 82.9±3.7 −
Song et al. MICCAI17 [31] 87.7±2.4 87.6±3.9 86.5±2.4 83.9±3.6 −

Abbreviations: ST=single task, MT=multi-task, SCR Xception=training from scratch based on Xcep-
tion model, FT Xception=fine tuning the Xception model training from ImageNet, Raw=raw dataset,
Aug=augmented dataset

Bold symbols represent the maximum values of each column in the tables

not ideal. The reason may be that the size of the data is so small and the model is
not well matched, resulting in overfitting or getting stuck in poor local minima. 3)
The results of our method are superior to that of literature [8, 12, 30, 31, 33, 34],
although results of these articles provided are binary classification. It is widely known
that fine-grained classification (multi-class classification) is more difficult than the
binary classification. 4) CSDCNN [15] was an excellent multi-classification method,
which obtained very good performance.

The performance of our proposed method (fine-tuning multi-task CNN) is 3% bet-
ter than that of CSDCNN+Raw [15] in all magnification factors. Most of the results
of our proposed method (fine-tuning multi-task CNN) are better than that of CSD-
CNN+Aug [15], and the performance is slightly worse than that of CSDCNN+Aug
[15] when magnification is 400X. However, CSDCNN+Aug [15] has expanded 14
times for the training datasets, and we simply augment the data online, which greatly
save the storage overhead.

From Fig. 7, we can see that the training was stopped due to the absence of further
improvement in validation loss and accuracy after less than 110 epochs. Actually, it
begins to obtain a relatively good performance while the epoch is about 60.

(2) Experiment on grading of invasive breast carcinoma dataset
The experiment results between our proposed method and the recently state-of-the-

arts are shown in Table 3. From Table 3, we can draw almost the same conclusions
as the experiments of BreaKHis dataset: 1) the same method obtains the similar
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Fig. 7 Performance curves when MT FT Xception (multi-task fine tuning the Xception model training from
ImageNet). a Training and validation accuracy against training steps. out 1 acc and out 2 acc represent
the training accuracies of two outputs according to the input images pairs, respectively; val out 1 acc and
val out 2 acc are the validation accuracies of two outputs according to the input images pairs, respectively.
b Training and validation loss against training steps. Training loss and validation loss are the overall loss
when training and validation phases, which are obtained by formula (3). out 1 loss and out 2 loss repre-
sent the training loss of two outputs according to the input images pairs, respectively; val out 1 loss and
val out 2 loss are the validation loss of two outputs according to the input images pairs, respectively

performance from the validation set and the test set, indicating that the model has
good generalization ability. 2) In general, the performance of multi-task CNN is better
than single task CNN, and fine-tuning multi-task CNN is superior to multi-task CNN
training from scratch. In [8], experiments were implemented with different patch sizes
and patching strategies which contained overlapping, non-overlapping and random
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Table 3 Comparison of the proposed method against grassmann manifold approach based on grading of
invasive breast carcinoma dataset

Methods Grading of invasive breast carcinoma

grade1 grade2 grade3 all

ST (valid) 78.79±2.14 98.41±2.24 92.59±2.62 89.62±2.04

ST (test) 81.82±11.13 96.83±2.24 92.98±2.48 90.32±5.27

MT (valid) 87.88±2.14 98.41±2.24 87.04±2.62 91.26±0.77

MT (test) 84.85±4.29 95.24±3.89 92.98±6.56 90.86±2.01

MT SCR Xception (valid) 78.79±2.14 100.0±0.0 94.44±4.54 90.71±2.04

MT SCR Xception (test) 77.27±9.82 96.83±2.24 98.25±2.48 90.32±4.75

MT FT Xception (valid) 89.39±2.14 98.41±2.24 96.30±5.24 94.54±1.55

MT FT Xception (test) 86.36±7.42 100.0±0.0 92.98±4.96 93.01±1.52

Dimitropoulos et al. 8x8, overlapping [8] − − − 95.8

Dimitropoulos et al. 16x16, overlapping [8] − − − 91.5

Dimitropoulos et al. 32x32, random [8] − − − 85.1

Dimitropoulos et al. 64x64, random [8] − − − 82.3

Bold symbols represent the maximum values of each column in the tables

patches. Image patches of size 8x8 provide the best classification rate (95.8% for over-
lapping). Other best classification rate of different patch sizes and patching strategies
are shown in Table 3. Results show that patches of size 8x8 contain sufficient dynam-
ics and appearance information for the classification of histological images, while the
strategy of overlapping patches (with 50% overlap between patches) result in 151,376
Grassmannian points in each histological image.

(3) Experiment on lymphoma sub-type classification dataset
The experiment results between our proposed method and the recently state-of-the-

arts are shown in Table 4. For a fair comparison, we divide IICBU dataset into training
set and testing set, 75% is the training set, and 25% is the testing set. The experimental

Table 4 Comparison the proposed method against three state of the art approaches based on lymphoma
sub-type classification dataset

Methods Lymphoma sub-type

CLL FL MCL all

ST (test) 94.25±3.25 95.18±2.65 90.32±4.56 93.3±3.45

MT (test) 97.7±3.25 96.19±3.56 93.55±6.97 95.79±1.49

MT SCR Xception (test) 90.8±10.66 87.51±5.85 89.25±8.05 89.09±7.5

MT FT Xception (test) 96.55±0.0 94.26±4.02 95.7±1.52 95.43±1.98

Codella et al. [7] − − − 95.5

Song et al. MICCAI17 [31] − − − 96.5±2.7

Janowczyk et al. [16] − − − 96.58±0.01

Bold symbols represent the maximum values of each column in the tables
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results are the mean and variance of the 5 random data set experiments, and the perfor-
mance of our proposed method is almost the same with that of [7] and slightly worse
than that of [31]. Song et al. [31] needed to combine FV encoding and multilayer
neural network, in addition, their inputs were multiscale and the linear-kernel SVM
was adopted as the classifier, which was more complex than our proposed end-to-end
DCNN pipeline. At the same time, the performance of lymphoma sub-type classifi-
cation in [16] was slightly better than our proposed method, but the paper achieved
the performance by means of a five steps pipeline ((a) extract patches from all images
separated into the 3 sub-types, (b) patches were split into a 5-fold training and test-
ing sets, and 825 k patches were used for training (c) create 5 sets of leveldb training
and testing databases, (d) training of DL classifier and (e) use final model to generate
the output, a voting scheme per subtype was used where votes were aggregated based
on the deep learnings output per patch. The class with the highest number of votes
became the designated class for the entire image), which is much more complex than
our models.

5 Conclusions

In this paper, we proposed a fine-grained classification and grading model for pathological
images. In order to further improve the accuracy of classification, multi-class recogni-
tion task and verification task of image pair are combined in the representation learning
process; in addition, a prior knowledge is embedded in the process of feature extraction,
which will effectively overcome the intractable problem that small inter-class variance
and large intra-class variance in pathological image. At the same time, the priori informa-
tion that pathological images with different magnifications belong to the same subclass is
embedded in the feature extraction process, which contributes to less sensitive with image
magnification. Both qualitative and quantitative experimental results on BreaKHis, grad-
ing of invasive breast carcinoma and lymphoma sub-type classification dataset show that
our method obtains the promising performance, and it is superior to several state of the art
approaches.
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