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Abstract
Image segmentation is an important processing in many applications such as image retrieval
and computer vision. The level set method based on local information is one of the
most successful models for image segmentation. However, in practice, these models are
at risk for existence of local minima in the active contour energy and the considerable
computing-consuming. In this paper, a novel region-based level set method based on Breg-
man divergence and multi-scale local binary fitting(MLBF), called Bregman-MLBF, is
proposed. Bregman-MLBF utilizes both global and local information to formulate a new
energy function. The global information by Bregman divergence which can be approx-
imated by the data-dependent weighted L2 − norm, not only accelerates the contour
evolution, especially, when the contour is far away from object boundaries but also boosts
the robustness to the initial placement. The local information is used to improve the capa-
bility of coping with intensity inhomogeneity and to attract the contour to stop at the object
boundaries. The experiments conducted on synthetic images, real images and benchmark
image datasets have demonstrated that Bregman-MLBF outperforms the piece-wise con-
stant (PC) model in handling intensity inhomogeneity and is more effective than the local
binary fitting model and more robust than the local and global intensity fitting model.
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1 Introduction

Image segmentation is important for visual information analysis processes, such as object
detection and scene understanding [6–8, 14, 15, 25–27]. Many segmentation algorithms
have been proposed over the last few decades [5, 6, 10, 12, 17, 18, 21, 22], among which
the active contour model (ACM) [11, 30] is one of the most successful models. ACM is
based on the theory of surface evolution under a speed function which is determined by
local, global and other independent properties. It divides an image into sub-regions with
closed and smooth boundaries. According to the nature of constraints ACM can be generally
categorized into two classes: the edge-based models [11, 30] and the region-based models
[1, 9, 15, 17, 20, 26, 27]. The edge-based models stop evolving contours on the object
boundaries through the image gradient information. One advantage of the models is that they
are generally not affected by intensity inhomogeneity because it is mainly the edge property
that is utilized for segmentation. However, the edge-based models have some limitations
such as being sensitive to noise, weak edges and initial location of the curve, difficulty in
handling topological changes, and its dependency of parameterization. These limitations
have negative impacts on their applications in practice.

Instead of the edge properties, the region-based active contour models use the region
properties of image by defining a region descriptor to guide the motion of the level set
function. Without relying on image gradients, these models perform better on images with
weak object boundaries and are less sensitive to the location of initial contours. They can
also naturally represent the contours of complex topology and deal with topological changes
(such as contour splitting and merging). Based on the functional, Chan and Vese developed
the Chan-Vese (CV) model [27], which is able to handle images with weak boundaries and
detect an object’s inner contour. The most remarkable feature of the CV model is its fast and
low-costing computation. However, since CV assumes that the intensity of each region of
image is statistically uniform, it may fail to segment images with inhomogeneous intensity.

To deal with images with inhomogeneous intensity, a number of approaches have been
proposed. Assuming that the intensities in a relatively small local region are separable,
Tsai et al. [26] proposed a piecewise smooth (PS) model. Despite of exhibiting certain
capability of handling the inhomogeneity of intensity, the PS model is extremely compu-
tation intensive due to re-initialization of the level set function [16]. Lankton et al. [13]
proposed a region-based model to handle images with inhomogeneity and the performance
of the model depends on the local fitting radius setting. Li et al. [15] proposed a Local
Binary Fitting(LBF) model to overcome the difficulty caused by intensity inhomogeneity.
The method defines a weighted K-means clustering objective function for image intensities
in a neighborhood around each point, and the function is integrated over the entire domain
and incorporated into a variational level set formulation. A model driven by local-Gaussian-
distribution-fitting (LGDF) energy model was proposed by Wang et al. [28] to use more
complete statistical characteristics of local intensities for more accurate segmentation. Later
Chai et al. [4] proposed a local Chan-Vese (LCV) model which can utilize both local and
global image information for image segmentation.

However, all existing models utilize the L2 − norm to measure the global information,
instead of the Bregman divergence which can be considered as a data-dependent weighted
L2 − norm. Compared with the L2 − norm, the Bregman divergence applies multi-region
information to express the global information, especially, the data-dependent weighted term
can be considered as the prior information. This term takes advantage of multi-level infor-
mation of image to assist boosting stability of the image segmentation model, particularly,
the robustness to initial placement. Inspired by these advantages, in this paper we propose
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a ACM based on Bregman divergence and multi-scale Local Binary Fitting(MLBF) [17],
which we call Bregman-MLBF. Applying the Taylor expansion, the Bregman divergence
can be approximated by a data-dependent weighted L2 − norm, thus boosting stability and
accelerating the curve evolution.

In comparison with the MLBF model [17], ours Bregman-MLBF model enjoys the fol-
lowing three advantages: (1) it ismore efficient to update the level set functions ; (2) it improves
the possibility of gaining the global optimal solution; (3) it strengthens the robustness to the
initial placement. In addition, compared with CV, Bregman-MLBF has the capability of
handling the problem caused by the intensity inhomogeneity due to the use of local information.

The rest of the paper is organized as follows. The related work is reviewed in Section 2.
We present our model and illustrate its advantages in Section 3. And in Section 4 we conduct
the experiments on synthetic images, medical images and natural images, and compare the
results with existing approaches(LCV incorporated with B-spline [4], MLBF model [17] and
LGIFmodel [1]) in termsof effectiveness and efficiency, followed by conclusion in Section 5.

2 Related work

Amongst the region-based active contour models, define Ω as a bounded open subset R2

and I : Ω −→ R as an image to be segmented. Given a level set function φ, the curve C is
represented implicitly as C = {(x, y)|φ(x, y) = 0}. The evolution of the curve is given by
the zero-level curve during the minimization of the variational functional.

2.1 Local binary fittingmodel (LBF)

Local Binary Fitting Model(LBF) model was proposed by Li et al. [15]. Assume x is a point
in a given gray image defined on Ω , x ∈ Ω , and I : Ω ⊂ R2 → R. Let C be a closed
contour in Ω which separates Ω into two regions fitting as f1(x) and f2(x). The fitting
energy of LBF model is defined as

EFit =
2∑

i=1

λi

∫

Ω

∫

Ωi

Kσ (x − y)|I (y) − fi(x)|2dydx (1)

where λ1, λ2 are weighted parameters andKσ (x−y) is a kernel function with a scale param-
eter σ > 0. The physical meaning of the fitting energy in the LBF model is demonstrated in
Fig. 1. In sub-region Ωi , y is the points in a circular neighborhood with radius σ centered
at each point x in the sub-region domain. The fitting energy is the summation of distances
between fi(x) and the intensity of y represented as red lines. The minimization of EFit can
guide the contour C to find the object boundary and the fitting values fi(x) to optimally
approximate the local image intensities on the two sides of the contour C.

To smooth the contour C, a penalizing term of contour length |C| is added to the energy
function, which is redefined as

ELBF = EFit + ν|C| (2)

The LBF model is one of the most successful models to cope with inhomogeneous inten-
sity. However, the drawbacks of the LBF model are also obvious. First, each iteration needs
to calculate four time-consuming convolutions. Second, the LBF model is sensitive to the
initial placement because it does not utilize global information to guide the contours evolu-
tion. Moreover, compared with the CVmodel, the characteristic of the LBF model is that the
force of the LBF model is edged, meaning that the force is small at the flat area and large at
the edge of image. The force of the CV model that makes the level set evolution is regional
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Fig. 1 The schematic representing of the fitting energy in the LBF model

and distributed over the whole image domain. This characteristic is partially the reason for
the sensitivity of the LBF model to the initial placement and is inefficient when the contour
is far away from object boundaries. As show in Fig. 2a–b, the LBF model assumes that the
intensities in a relatively small local region are separable, while the CV model requests that
the intensities be globally separable. Further discussion will be presented in Section 3.2.

2.2 Local Chan-Vesemodel (LCV)

Chaiet al. [4] proposed a local Chan-Vese (LCV) model which can utilize both local
and global image information in order to handle the problem caused by the intensity
inhomogeneity. This model is defined by the following minimization problem:

ELCV = EG + EL + ER + EP (3)

Fig. 2 Two case of CV model and LBF model can deal with,respectively. a The case of CV model, b The
case of LBF model
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where EG, EL, ER and EP are the global term, the local term, the regularization term and
the penalization term, respectively. The global term and the local term are defined as:

EG = λ1

∫

Ω(in)

|I (x) − c1|2dx + λ2

∫

Ω(out)

|I (x) − c2|2dx (4)

EL(d1, d2, C) = λ1

∫

Ω(in)

|gk(I (x)) − I (x) − d1|2dx +

λ2

∫

Ω(out)

|gk(I (x)) − I (x) − d2|2dx (5)

where λ1 and λ2 are positive constants, C is the curve, gk is a verging filter with k ×
k window size and gk(I (x)) is the smoothed image by the verging filter. c1 and c2 are
the mean intensity inside C and outside C, respectively. d1 and d2 are the averages of the
difference image gk(I (x)) − I (x) inside C and outside C, respectively.

2.3 Local and global intensity fittingmodel (LGIF)

Wang et al. [28] proposed an active contour model based on local and global intensity fit-
ting (LGIF) for image segmentation. This model is defined by the following minimization
problem:

ELGIF = (1 − ω)ELIF + ωEGIF (6)

where ω is a positive constant (0 < ω < 1). When the images are corrupted by intensity
inhomogeneity, the parameter value ω should be chosen small enough. ELIF and EGIF are
the local term, the global term, respectively. The global term and the local term are defined
as:

EGIF = λ1

∫
[
∫

Kσ (x − y)|I (y) − f1(x)|2H(φ(y))dy]dx

λ2

∫
[
∫

Kσ (x − y)|I (y) − f2(x)|2(1 − H(φ(y)))dy]dx (7)

ELIF = λ1

∫

Ω(in)

|I (x) − c1|2dx + λ2

∫

Ω(out)

|I (x) − c2|2dx (8)

where H(·) is the Heaviside function.

3 Bregman divergence incorporated with local binary fitting

To overcome the sensitivity to initial position and enhance the robustness to noise of the
level set of existing models, in this section, we present our new region-based model based
on Bregman divergence [3, 23] and multi-scale Local Binary Fitting (MLBF) [17], which
we call Bregman-MLBF model. This model can be regarded as an extended LBF model
and is more robust to the initial position of the level set and Gaussian noise. It can also
reduce the number of iterations required for convergence. Moreover, compared with other
segmentation models such as LCV incorporated with B-spline(BLCV) [4], MLBF model
[17] and LGIFmodel [1], Bregman-MLBF is more effective to deal with the inhomogeneous
image segmentation.
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3.1 Bregman divergence for energymeasure

To implement the segmentation of inhomogeneous image and solve the sensitivity to initial
placement, the multi-region information is utilized to formulate our proposed model and
defined as the following minimization problem:

EBregman−MLBF (C, c1, c2, f1, f2)

= ηEB(C, c1, c2) + (1 − η)EL(C, f1, f2) + ER(C) (9)

EB(C, c1, c2) = λ1

∫

in(C)

Bϕ(y)=y2α (c1||Iy)dy

+λ2

∫

out (C)

Bϕ(y)=y2β (c2||Iy)dy

EL(C, f1, f2) =
n∑

j=1

wjE
σj
x (f1,j (x), f2,j (x))

=
n∑

j=1

wj

2∑

i=1

λi

∫

Ωi

Kσj
(x − y)|I (y) − fi,j (x)|2dy

ER(C) = μLength(C) (10)

where α, β, λ1, λ2 are positive constants, and α ≥ 1 ≥ β ≥ 0, C is the curve, c1, c2
are the mean intensities inside and outside C, respectively. η is the weight factor to bal-
ance the global information energy term EB and the local information energy term EL.
Bϕ(y)=y2α (c1||Iy) and Bϕ(y)=y2β (c2||Iy) are the Bregman divergence corresponding to the
point pair (c1, Iy) and (c2, Iy), respectively. Iy is the intensity at the point y. n is the number
of the multi-scale kernel. The definition of other parameters is the same as that in the LBF
model. wj(j = 1, 2, . . . , n) is the Gauss kernel weight of local fitting energy kσj

. f1j (x)

and f2j (x) are the approximate values of the pixel brightness inside and outside the cor-
responding curves of Cj in the Gauss kernel weight kσj

, respectively, with x as the center
point. The local information energy term is defined in (1).

The definition of the Bregman divergence Bϕ(·||·) is associated with a continuously dif-
ferentiable, real-valued and strictly convex function ϕ : S → � defined on a closed convex
set S. Then, for any pair of points (p, q) ∈ S2,

Bϕ(p||q) = ϕ(p) − ϕ(q) − ϕ′(q)(p − q) (11)

the Bregman divergence can be interpreted as the difference between the function ϕ evalu-
ated at p and its first-order Taylor approximation around q, evaluated at p. As the function ϕ

is differentiable, according to the Taylor’ expansion, we can obtain the following equation:

ϕ(p) = ϕ(q) + ϕ′(q)(p − q) + ϕ′′(q)

2! (p − q)2 + o(|p − q|3) (12)
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Substituting (12) to (11) gives us

Bϕ(p||q) = ϕ′′(q)

2! (p − q)2 + o(|p − q|3) (13)

Let ϕ(y) = y2α , p = c1, q = Iy and ϕ(y) = y2β , p = c2, q = Iy , respectively,
according to (13), we can readily obtain the following equation:

Bϕ(y)=y2α (c1||Iy) = α1I
2α−2
y (Iy − c1)

2 + R1

Bϕ(y)=y2β (c2||Iy) = β1I
2β−2
y (Iy − c2)

2 + R2 (14)

where R1 = o(|Iy − c1|3), R2 = o(|Iy − c2|3) are the third-order of the Taylor expanded
remaining terms, and α1 = 2α2 − α, β1 = 2β2 − β are two coefficients.

Only are the zeroth-, the first- and the second- order the Taylor terms considered in this
research. Hence, the Bregman divergence can be considered as the data-dependent weighted
L2 − norm. Then the energy term EB can be rewritten as follows:

EB(C, c1, c2) = λ1

∫

in(C)

α1I
2α−2
y (Iy − c1)

2dy

+λ2

∫

out (C)

β1I
2β−2
y (Iy − c2)

2dy (15)

Substitute (15) to (9). And the energy EBregman−MLBF in (9) written as level set form.
Besides, the penalization term is embedded to avoid the time-consuming re-initialization and pre-
serve the regularity of the level set function. Hence, we can obtain the following equation:

EP (φ) = v

∫

Ω 1
2 (|∇φ(x)|−1)2dx

(16)

where v is a positive constant, and in most cases, v = 1. Hence, we can obtain the following
equation:

EBregman-MLBF(φ, c1, c2, f1, f2)

= λ1

∫

Ω

(e1 + e3)Hε(φ(x))dx

+λ2

∫

Ω

(e2 + e4)(1 − Hε(φ(x)))dx

+μ

∫

Ω

δε(φ(x))dx + v

∫

Ω

1

2
(|∇φ(x)| − 1)2dx (17)
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where φ(x) is the level set function, Hε(φ(x)) and δε(φ(x)) are Heaviside function and
Dirac function, respectively,

e1(x) = (1 − η)

n∑

j=1

∫

Ω

Kσj
(y − x)|Ix − f1(y)|2dy

e2(x) = (1 − η)

n∑

j=1

∫

Ω

Kσj
(y − x)|Ix − f2(y)|2dy

e3(x) = ηα1I
2α−2
x (Ix − c1)

2

e4(x) = ηβ1I
2β−2
x (Ix − c2)

2

Hε(x) = 1

2

[
1 + 2

π
arctan

(x

ε

)]

δε(x) = H ′
ε(x) = 1

π

ε

ε2 + x2
(18)

where ε is a small positive constant. Let ε → 0, Hε(x) and δε(x) s.t.

limε→0 Hε(x) = H(x) =
{
1, x ≥ 0
0, otherwise

limε→0 δε(x) =
{
1, x = 0
0, otherwise

(19)

The value of ε relates to the speed and accuracy of the contour evolving. To make the
level set evolution fast, typically, ε = 1. α1, β1 are same as that in the (14).

We utilize the two-step iteration method to minimize the function
EBregman−MLBF (φ(x), c1, c2, f1, f2) in (17). First, we fix the level set function φ(x),
according to the following (20) update the mean intensity c1, c2 and the local fitting
intensity f1(x), f2(x) inside and outside curve C, respectively.

c1 =
∫

Ω

I
(2α−1)
x Hε(φ(x))dx

∫

Ω

I
(2α−2)
x Hε(φ(x))dx

c2 =
∫

Ω

I
(2β−1)
x (1 − Hε(φ(x)))dx

∫

Ω

I
(2β−2)
x (1 − Hε(φ(x)))dx

fi,j (y) = Kσj
(y − x) ∗ (Mε

i
(φ(x))I (x))

Kσj
(y − x) ∗ Mε

i
(φ(x))

(20)

i = 1, 2; j = 1, ..., n

Mε
1 (φ(x)) = Hε(φ(x)),

Mε
2 (φ(x)) = 1 − Hε(φ(x))

f1(y) = max (fi,j (y))

f2(y) = min (fi,j (y))

Second, fix the mean intensity c1, c2 and the local fitting intensity f1(y), f2(y) inside
and outside the curve C. Then, update the Bregman-MLBF model level set function φ(x)
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Table 1 The parameter’s
relationship between the
Bregman-MLBF model and the
other model

α, β η Model

(1,1) 0 The LBF model(Li et al.[15] )

1 The LCV model(Chai et al [4])

otherwise The LGIF model (Wang et al. [29] )

otherwise 0 The LBF model(Li et al.[15])

1 Not discussion

otherwise The Bregman-MLBF model

according to (21). Applying the calculus of variations and gradient descent method, we have
the gradient flow equation:

∂φ(x, t)

∂t
= δε(φ)

(
F + μdiv

( ∇φ

|∇φ|
))

+v

(
∇2φ + div

( ∇φ

|∇φ|
))

(21)

where

F = −λ1[e1(x) + e3(x)] + λ2[e2(x) + e4(x)] (22)

3.2 Analysis of the Bregman-MLBFmodel

In this section, we discuss the relationship between the proposed model and the conventional
model of level set method. The comparisons are listed in Table 1.

The weight factor of the first term in (15) is an increasing function, whereas the sec-
ond term is a decreasing function, so either term is biased to the point with small or large
intensity. Therefore, this method can accelerate the curve evolution.

As discussed in Section 2, we declare that the force of the LBF model is edged while
the force of the CV model is regional. Similarly, the force corresponding to (15) is regional.
We discuss the gradient of level set function at any point in a strict-binary image I (x).
According to the gradient flow equation corresponding to (15) and the LBF model, we
discard the Dirac function in the gradient flow equation. The gradient of level set function
at point P corresponding to different models is as follows:

FBregman =−λ1α1I
2α−2
P (IP − c1)

2+λ2β1I
2β−2
P (IP − c2)

2

FMLBF = −λ1e1 + λ2e2 (23)

where c1, c2 are the mean intensities inside and outside curve C, respectively. λ1 and λ2
are constants. IP is the intensity at point P , whereas e1 and e2 are defined in (18). FB is
the sum of squared difference which is almost impossible to be zero. However, FMLBF is
almost zero, if the point P is far away from the edge and more than the size of Gaussian
kernel. Otherwise, FMLBF is non-zero. The results are shown in Fig. 3b–c. From Fig. 3b,
we can observe that the force is non-zero at the edge, compared with the MLBF model. And
in Fig. 3c we can see that the force is non-zero on the area inside curve C.
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Fig. 3 The force of the Bregman-MLBF model and the global energy term. a Strict binary image with the
zero level set (the red circle). b FMLBF in (23). c FBregman in (23)

4 Experimental results and performance analysis

We apply the Bregman-MLBF model on various images, and the segmentation results
are presented and compared with three existing models: LCV incorporated with B-
spline(BLCV) [4], MLBF model [17] and LGIF model [1]. There are parameters λ1, λ2,
α, β, μ and v in the Bregman-MLBF model and the time step Δt for the implementation.
In our experiments, we fixed them as λ1 = 1, λ2 = 1, α = 1.05, β = 0.95 , v = 1.
In this experiment, the proposed MLBF model was compared with the traditional LBF
model. When applying the LBF model, because there is no general guideline to choose suit-
able scale parameters, different scale values ranging from 1 to 16 were tested one by one.
The segmentation results of MLBF model are shown in Fig. 4. Among all the segmentation
results of MLBF model, the one with n = 3 is best (enclosed by red rectangle in Fig. 4). so
the number of multi-scale kernel n is set to 3. The parameter μ of the length constraint term
varies with the images to be segmented (the value of the parameter μ gets bigger when the
image is larger). The weight factor w is decided by the image’s quality, because the global
energy term can effectively segment the piece-wise image, while the local energy term is
utilized to cope with the inhomogeneity image segmentation problem. In order to improve
the quality of the segmentation results, we should be careful in choosing an appropriate
weight factor for images of different quality.

Fig. 4 Segmentation results of LBF model with different scale parameter ranging from 1 to 16



Multimedia Tools and Applications (2019) 78:20585–20608 20595

4.1 Accuracy of contour location

The effectiveness of the Bregman-MLBF model is evaluated by applying it to both syn-
thetic and medical images, as shown in Figs. 5, 6 and 7. The first column in Fig. 5 (synthetic
images) illustrates the initial contours and the second to the fifth column are the segmen-
tation results by using MLBF, LGIF, BLCV and our Bregman-MLBF model respectively.
Also, we perform some experiments on medical images which are provided by the 4th Affil-
iated Hospital of Harbin Medical University in China. The columns in Figs. 6 and 7 from
left to right are the original images (initial contours), the results with MLBF, LGIF, BLCV
and Bregman-MLBF, respectively. The segmentation results have demonstrated clearly that
the Bregman-MLBF model has better segmentation ability than the other three models.

We also apply Bregman-MLBF to the natural images from the Berkeley segmentation
dataset BSDS300 [19], which contains more than 300 images. Over 100 images are ran-
domly selected from the dataset. Figure 8 shows the segmentation results of 10 sample

Fig. 5 Comparison of the segmentation results with synthetic images
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Fig. 6 Comparison of the segmentation results with medical images

images. The columns in Fig. 8 from left to right are the original images, the manual seg-
mentation results, the results obtained with MLBF, LGIF, BLCV and Bregman-MLBF,
respectively. It can be clearly seen that Bregman-MLBF has achieved the result which is
closer to that of the manual segmentation than the other three models.

To evaluate the Bregman-MLBF model objectively, we use two well-known metrics, the
Hausdorff distance [24] and the PRA metric [2]. As defined in [24], the Hausdorff distance
measures the similarity between two images. The lower it is, the better the segmentation
result is. The Hausdorff distance between two images is computed as follows:

HAU(Ic, Iref ) = max(h(Ic, Iref ), h(Iref , Ic)) (24)



Multimedia Tools and Applications (2019) 78:20585–20608 20597

Fig. 7 Comparison of the segmentation results with breast medical images

where h(Ic, Iref ) = maxa∈Ic (minb∈Iref
‖a − b‖) and Ic denotes the detected contours

obtained through a segmentation result of an image I . Iref denotes the reference contours
corresponding to the ground truth.
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Fig. 8 Comparison of the segmentation results with breast natural images

Pratt et al. [2] proposed an empirical measure for PRA, which is one of the most commonly
used measures for two pixel sets comparison. The PRA is computed as

PRA(Iref , Ic)=
∑card(Ic)

k=1
1

1+d2(k)

max{card(Iref ), card(Ic)} (25)

where d(k) is the distance between the kth pixel belonging to the segmented contour Ic and
the nearest pixel of the reference contour Iref .

Table 2 lists the evaluation results of the MLBF model, the LGIF model, the BLCV
model and the Bregman-MLBF model by using the Hausdorff distance and PRA metric
in Fig. 8. They are computed by using the manual segmentation as Iref and segmentation
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Table 3 Comparison of processing speed for the experiment shown in Fig. 5

Test images
(image size)

MLBF [17] LGIF [1] BLCV [4] Bregman-MLBF

CPU time(s) Iterations CPU time(s) Iterations CPU time(s) Iterations CPU time(s) Iterations

1(79*75) 4.5934 250 9.1589 300 3.6374 200 2.1246 110

2(95*72) 8.7205 400 2.1060 100 5.0544 200 3.0264 100

3(79*75) 1.924 95 5.7829 147 2.963 150 1.3253 90

4(79*75) 6.274 300 5.1286 147 3.8407 200 2.1782 100

5(79*75) 2.9208 90 7.3743 100 3.5102 130 2.3652 90

6(79*75) 3.4654 185 6.7317 190 3.3102 190 3.5017 180

results of the models as Ic. It is obvious that the Bregman-MLBF method has the lowest
values of the criteria by Hausdorff, except for the image 5. The Hausdorff distance is the
maximum among the minimum distances between the points of contours in the image Ic

and Iref . Since the contours of the segmentation results of the MLBF and the LGIF model
that shown in Fig. 8 are in a relatively local area, and those of the Bregman-MLBF have
some points out the object. This leads to the bigger Hausdorff distance of the Bregman-
MLBF model than those of the MLBF and the LGIF model. It also causes that the PRA
metric results of the Bregman-MLBF model is lower than that of the MLBF model in the
image 5. However, the segmentation results shown in Fig. 8 illustrates that the Bregman-
MLBF model has better segmentation ability. Therefore, the Bregman-MLBF model has
better segmentation performance than those of the comparative three models.

The analysis of experimental results shows the BLCV model is more effective than
the LBF model. By utilizing the global image information, the BLCV model improves
the robustness to initialization of contour. However, the local term of the BLCV model
can be regarded as the energy function that the CV model acts on the difference image
gk(I (x)) − I (x). Consequently, it is challenging for LCV to correctly segment the image
with intensity inhomogeneity, especially when high noise exists. Compared with MLBF,
BLCV and LGIF, the Bregman-MLBF model measured by Bregman divergence which can
be approximated by the data-dependent weighted L2 − norm not only accelerates the con-
tour evolution, especially, when the contour is far away from object boundaries but also

Table 4 Comparison of processing speed for the experiment shown in Fig. 6

Test images
(image size)

MLBF [17] LGIF [1] BLCV [4] Bregman-MLBF

CPU time(s) Iterations CPU time(s) Iterations CPU time(s) Iterations CPU time(s) Iterations

1(111*110) 1.924 95 5.7829 147 2.963 150 1.3253 90

2(103*131) 6.274 300 5.1286 147 3.8407 200 2.1782 100

3(252*185) 2.9208 90 7.3743 100 3.5102 130 2.3652 90

4(119*78) 3.4654 185 6.7317 190 3.3102 190 3.5017 180

5(240*160) 55.4272 600 18.3305 210 43.4151 400 35.6462 200

6(180*170) 4.0258 180 9.7792 190 3.773 190 4.0474 180

7(549*357) 69.7826 350 87.7608 350 78.6312 350 67.3824 300
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Table 5 Comparison of processing speed for the experiment shown in Fig. 8

Test images
(image size)

MLBF [17] LGIF [1] BLCV [4] Bregman-MLBF

CPU time(s) Iterations CPU time(s) Iterations CPU time(s) Iterations CPU time(s) Iterations

1(240*160) 23.4936 400 16.2397 350 21.3565 300 21.4813 300

2(240*160) 28.2309 220 10.0456 220 21.782 190 25.3336 200

3(240*160) 37.7166 300 5.8126 150 40.7547 350 14.9902 120

4(240*160) 61.5956 500 13.6884 300 21.8537 200 18.9407 210

5(240*160) 30.0458 400 34.8194 420 73.4609 500 24.3362 140

6(481*321) 32.662 260 13.9769 220 22.4559 190 12.8737 100

7(240*160) 20.8105 200 13.7908 60 14.1025 100 12.3712 35

8(240*160) 29.2190 500 18.3457 300 29.1878 400 24.4507 100

9(240*160) 30.2066 260 22.9769 220 22.4559 220 19.8737 200

10(240*160) 55.4272 600 35.6462 300 43.4151 400 8.3305 100

boosts the robustness to the initial placement. The local information is used to improve the
capability of coping with intensity inhomogeneity and to attract the contour to stop at the
object boundaries.

4.2 Speed of evolution convergence

The Bregman-MLBF’s efficiency can be reflected by the iteration times required for obtain-
ing the final contour and the total CPU time taken to complete the segmentation. The
iteration times and the CPU time required for the segmentation as in Figs. 5, 6 and 8 are

Fig. 9 Segmentation results with different initial locations in medical images. Column a is the initial con-
tours. Columns b–e are the segmentation results of the BLCV model, the MLBF model, the LGIF model and
the Bregman-MLBF model, respectively
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shown in Tables 3, 4 and 5. Tables 3 and 4 show that Bregman-MLBF requires fewer itera-
tion times than the other three models in general. From Table 5, it is obvious that only the
iteration times of BLCV model for segmenting the image 4 is less than that of Bregman-
MLBF. This is because the BLCV model falls into a local optimum, which needs fewer
iteration times. But the segmentation result of BLCV is worse than that of Bregman-MLBF,
as shown in Fig. 8. Worth to note that, the CPU time spent for LGIF to obtain the final
segmentation results is less than that for Bregman-MLBF in the image 4. However the
segmentation results of these images are rather poor, as seen in Fig. 8. In contrast, the seg-
mentation results of Bregman-MLBF are more accurate than the other three models, which
has been proved objectively in the Section 4.1.

4.3 Robustness against initial position

To demonstrate the robustness of our proposed model to contour initialization, experiments
are preformed, respectively, on a synthetic image , a medical images which are typical
images with intensity inhomogeneity and a real world image which is almost piece-wise, as
shown in Figs. 9, 10 and 11. The different initial contours are shown in column (a) in each
figure, the corresponding results of the MLBF model, the BLCV model, the LGIF model
and the Bregman-MLBF model are shown in column (b), (c), (d), (e), respectively.

From the results shown in Fig. 9, we can conclude that the MLBF model and the BLCV
model failed to correctly segment the object in three different initial contours. Compared
with the MLBF model and the BLCV model, the results given by the LGIF model shown
in column (d) shows better performance in some cases. However, the results shown in the
row 2 demonstrate that all compared models (MLBF, BLCV, LGIF) fail to segment the
real boundaries satisfactorily, while the Bregman-MLBF model can successfully extract the
boundaries for three different initial contours.

Fig. 10 Segmentation results with different initial locations in synthetic images. Column a is the initial
contours. Columns b–e are the segmentation results of the MLBF model, the BLCV model, the LGIF model
and the Bregman-MLBF model, respectively
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Fig. 11 Segmentation results with different initial locations in real images. Column a is the initial contours.
Columns b,–e are the segmentation results of the MLBF model, the BLCV model, the LGIF model and the
Bregman-MLBF model, respectively

Fig. 12 Segmentation results of the Bregman-MLBF model in different image conditions, e.g. different
noises and intensity inhomogeneities. The red circle is the initial contour while the green contours are the
segmentation results. For the row 1-3, each image in the same row has the same intensity inhomogeneity
but different noises. Image in the same column have the same level of Gaussian noise but different inten-
sity inhomogeneities (The level of Gaussian noise corresponding to each column are mean μ = 0, variance
σ 2 = 5, 10, 18, 23, respectively)
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Fig. 13 The error ratios corresponding to the row 1-3 in Fig. 11, and the curve of error ratio of image 1, 2, 3,
4 corresponding to column (a), (b), (c), (d) in each figure, respectively

4.4 Robustness against noise

In order to demonstrate the robustness of our proposed model to Gaussian noise and inten-
sity inhomogeneity, we generated different images with the same objects in it, whose
boundaries are known and used as the ground truth. These images are generated by smooth-
ing an ideal binary image, adding intensity inhomogeneity of different profiles and different
levels of Gaussian noise. In Fig. 12, the results of corresponding image with the same ini-
tial contour (the blue circle) are the red contours, shown in Fig. 12. It is obvious that the
Bregman-MLBF model produces accurate segmentation results. To evaluate the accuracy
quantitatively, we compute the error ratio which is plotted in Fig. 13, where the X-axes
represent the number of iteration and the Y-axes represent the error ratio. The (a), (b), (c)
in Fig. 13 are the error ratio corresponding to row 1, 2 and 3 in Fig. 12, respectively. We

Fig. 14 Comparison of segmentation results of image with noises. Column a is the various degrees of Gaus-
sian noise image. Columns b–e are the segmentation results of the MLBF model, the BLCV model, the LGIF
model and the Bregman-MLBF model, respectively
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can observe that the error ratio is very low, 3% at most. Moreover, clearly the heavier of
the intensity inhomogeneity or/and the level of noise is, the more iterations are required.
These results demonstrate the robustness of the Bregman-MLBF model to Gaussian noise
and intensity inhomogeneity.

In Fig. 14, the experiments are performed on images contaminated by various degrees of
noise. Since the image 2 in Fig. 5 consists of more objects, it is chosen as the test image.
The first column in Fig. 14 shows the noisy images with different degrees of Gaussian noise
(mean μ = 0, variance σ 2 = 10, 15, 20, 25, respectively). The second to the fifth Columns
are the segmentation results of MLBF, BLCV, LGIF and Bregman-MLBF, respectively. It
is obvious that Bregman-MLBF not only achieves better segmentation results, but also is
robust to noise.

5 Conclusion

In this paper, we proposed a region-based active contour model Bregman-MLBF for image
segmentation in a variational level set framework. Bregman-MLBF takes into account both
the global and the local information to formulate the energy function in order to control
the contour evolution. The global information is utilized in a way that boosts its robust-
ness to the initial position and accelerates the contour evolution, resulting in the improved
segmentation results and reduction of overall computational cost. The local information is
utilized to improve the ability of handling intensity inhomogeneity. The experiments on syn-
thetic images, medical images and natural images from the Berkeley BSDS300 dataset have
demonstrated that Bregman-MLBF can achieve more accurate segmentation results than
existing approaches such as MLBF, LGIF, BLCV, etc. In terms of robustness, the experi-
ments have proved that Bregman-MLBF are more robust to noise and initial contour than
other models. Moreover, Bregman-MLBF’s also converges faster, thanks to the improved
energy function.
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