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Abstract
As many people have portable video devices such as cameras on cell phones and cam-
corders, image stabilization technique is a crucial and challenging task in computer vision
applications, and many image stabilization techniques have been researched over many
years. We propose a digital image stabilization method that only uses a software algo-
rithm without additional hardware devices. Furthermore, a novel digital image stabilization
method composed of three steps that use similarity-constrained nonlinear optimizer is intro-
duced and applied to many unstabilized videos. First, a feature detection technique called
moment-based speeded-up robust features (MSURF) is utilized to obtain the transforma-
tion matrix. Second, the k-means clustering algorithm is used to detect and remove some
of the outliers that cause residual errors during feature matching. Third, the transformation
matrix is optimized using nonlinear optimization algorithms to maintain the similarity of the
transformation matrix. The experimental results prove that the proposed algorithm provides
accurate image stabilization performance.
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1 Introduction

With the development of portable video devices such as cameras on mobile phones, cam-
corders, and action cams, many people have personal video imaging devices, and it has
become increasingly popular to utilize the video imaging device to share images or personal
broadcasts. Research is also carried out to recognize this video image [19]. However, such
personal video imaging devices often have a problem in that the image shakes due to move-
ment of the user and camera. To solve the problem, many researchers have developed image
stabilization techniques divided into four types: 1) mechanical, 2) optical, 3) electronic, and
4) digital [5].

The mechanical, optical, and electronic image stabilization techniques can obtain good
stabilization results, but image stabilization is only possible by additional mechanical com-
pensation. In addition, mechanical compensation can have disadvantages such as an increase
in the size of the imaging device and a cost increase due to the purchase of an additional
device. Therefore, there has been a lot of research on the digital image stabilization tech-
nique using only software that consists of three stages: 1) motion estimation [7], 2) motion
compensation [17], and 3) motion inpainting [15]. Since all three stages of digital image sta-
bilization have value as a research field, we focus on the motion estimation stage to estimate
camera motion.

Currently, there are two research methods for motion estimation. The first method is
intensity-based estimation using changes in color information value (intensity) of the image
frame [2, 14, 22, 26]. When the input image is cut out frame by frame, the time between
each frame represents a very short time (30 fps standard, which is about 33 ms). Therefore,
a pixel at one point does not change much in a short time, and the camera motion can be
estimated as a result of estimating the color information of the pixel. This method has the
advantage of using only a simple operation of the image frame pixels and thus has a short
computational time. However, it has disadvantages such as illumination change, blurred
image, and so on. The second method is feature point-based estimation whereby feature
points such as edges and corners that can be seen in successive frames are extracted [3, 4, 8,
9, 12, 13, 16, 18, 21, 24, 25]. This method has the advantage of robust and accurate motion
estimation for various environmental factors because it extracts feature points that are not
affected by the surrounding video imaging environment. Because of these characteristics, it
is used in many areas [23]. However, it has a disadvantage in that the computational time can
be much longer compared with the color information-based method. In addition, a method
of using the relationship between successive images was also proposed [20].

In general, the motion estimation stage assesses the motion of the camera in three steps:
1) local motion estimation, 2) accuracy improvement, and 3) global motion estimation. If
the motion estimation is performed in three stages, accuracy improvement in separating the
local motion and the global motion may take a long time or having to repeat the image
stabilization may occur because of RANSAC (RANdom SAmple Consensus) in the accu-
racy improvement stage. Therefore, one-step motion estimation techniques with a simple
framework have been studied [13].

In this paper, we propose a method to minimize the motion estimation to a one-step
process and eliminate the problems that may occur in the accuracy improvement stage by
using the k-means clustering algorithm. Finally, we propose an algorithm that minimizes
the residual error of feature matching by optimizing the transformation matrix using the
similarity constraint-based optimization algorithm.
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The composition of the paper is as follows. In Section 2, the proposed algorithm is
explained in detail, while in Section 3, experimental results are shown, and in Section 4, the
contributions of this research are described.

2 Digital image stabilization using similarity-constrained optimization

2.1 System overview

In this chapter, we propose an advanced digital image stabilization method based on
similarity-constrained optimization, as shown in Fig. 1. In order to improve image stabi-
lization accuracy, feature points were extracted using the moment-based speeded-up robust
features (MSURF) algorithm [10], which is a modified version of the conventional SURF
algorithm using Gaussian-Hermite moments [11]. MSURF improves robustness of the
image features and provides better matching accuracy.

Conventional digital image stabilization techniques use the RANSAC algorithm in the
motion estimation stage. Because it uses a random function, it has disadvantages in that
different results can be obtained every time an experiment is carried out and the calcula-
tion time for the RANSAC algorithm is long. Therefore, we propose a k-means clustering
algorithm and a similarity constraint-based optimization technique to solve this problem.

Fig. 1 Architecture of the proposed method
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2.2 MSURF-based feature point detection

The first step in digital image stabilization is to divide the input image into several frames
to obtain transformation matrix T representing the movement between the divided frames.
In this paper, the MSURF algorithm [10] is applied for more accurate matching since it has
better feature matching performance than SURF [1], which is similar to the scale-invariant
feature transform (SIFT) algorithm [18] but with faster execution. Figure 2 shows an
overview of the MSURF algorithm applied to an input image. While the conventional SURF
algorithms used the Hessian matrix, MSURF uses the modified discrete Gaussian-Hermite
moment (MDGHM) matrix for position x = (i, j) of each feature point as follows:

M(x, σ ) =
[
η̂p,0(x, σ ) η̂p,q(x, σ )

η̂p,q(x, σ ) η̂0,q (x, σ )

]
, (1)

where η̂p,q(x, σ ) is the MDGHM [11] at feature position x on input image I , and is defined
as

η̂p,q(i, j, σ )= 4

(M − 1)(N − 1)

M∑
u=1

N∑
v=1

I
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)
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Fig. 2 Overview of MSURF algorithm
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In (2), M × N , (u, v), and (x, y) represent the size and position of the mask at feature
position x on input image I . By using (1) to (4), the MSURF descriptor v̂ is generated as

descriptor v̂ =
(∑

η̂p,0,
∑

η̂0,q ,
∑∣∣η̂p,0

∣∣, ∑∣∣η̂0,q ∣∣) . (5)

As a result, robust feature points can be extracted using (5). Figure 3 illustrates the exam-
ple input image to which to apply the MSURF algorithm. The center of the green circle in
the figure represents the feature point of the input image frame, and the size of the circle
represents the strength of the feature point.

Using the MSURF algorithm, the feature point matching between consecutive image
frames can be confirmed. Figure 4 shows the distribution of matching points between
consecutive image frames.

Since the location of feature points can be found by matching feature points between
successive frames, the final transformation matrix T can be obtained using the similarity
transformation matrix to maintain and compensate for the size and direction of structures in
the image frames.

2.3 Outlier elimination by k-means clustering

When the feature point matching using the MSURF algorithm is performed, matching with
outliers may occur. Since this can lead to ultimately calculating the wrong transformation
matrix, outliers must be removed before the final transformation matrix can be obtained.
Conventional image stabilization algorithms remove this problem using the RANSAC algo-
rithm. However, since RANSAC can cause problems such as repeatability of the algorithm
results and long computational time, other researches to replace it are now proceeding.

In this study, we applied the k-means clustering algorithm to solve this problem. After
the feature points obtained through the MSURF algorithm are divided into k clusters, each
cluster has one centroid. If the transformation matrix T is obtained by using these center
points, the effect of the RANSAC algorithm can be achieved because the influence caused
by the outliers is minimized. In addition, it is possible to solve the problem of biasing the
transformation matrix where the feature points are concentrated in a specific region within
the image frame. The local bias problem is an important issue that needs to be solved before
calculating the final transformation matrix because if not carried out correctly, it can empha-
size the transformation of a specific region and so calculate an incorrect transformation
matrix. Figure 5 shows the matching using the center point of each cluster.

Fig. 3 Example image for applying MSURF algorithm
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Fig. 4 Feature matching between two consecutive images

In the k-means clustering algorithm, to set the appropriate K is very important and
proceeds by applying.

K ≈ √
n/2, (6)

where n is the total number of data items. Since the number of feature-points in an image
is usually several tens to several hundreds and the K value is determined using (6), it is
impossible to solve the problem of local bias due to too much clustering.

In this study, we determine K value using elbow method. As K value increases, it calcu-
lates sum of squared errors (SSE) of k-mean cluster. SSE value is decreasing rapidly when
K value is lower than real cluster, whereas decreasing slowly when K value is higher than
real clusters. It determines K value in which the decreasing rate become changes. Figure 6
shows the experimental results of a comparison of inter-frame transformation fidelity (ITF)
performance results according to the K values for the 100th and 101st frames.

The minimum value of K started at the reference value 5, which was set at the minimum
value when the image frame was divided, and it can be seen that the ITF value increased as
the K value increased, and then decreased again. This result was slightly different for each
image frame but was fixed at 20, which was the K value showing the most stable performance.

2.4 Similarity-constrained optimization

Since the k-means clustering algorithm does not use the random function found in
RANSAC, similar results were obtained in several experiments on the same image. Figure 7
shows a comparison of the results of outlier elimination for 100 trials between RANSAC and
the k-means clustering-based method for the same frame. Although both methods were able

Fig. 5 Matching using each cluster center point
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Fig. 6 ITF results according to K value

to produce similar mean results, the standard deviation (SD) of the k-means clustering-based
method was about 57% lower than RANSAC as shown in Table 1.

The feature points between the previous frame and the next frame can be predicted
by using the transformation matrix T representing the inter-frame conversion relation. We
denote the ith feature point on the arbitrary frame t by xi

t . Let xi
t moves to xi

t+1 through
the transformation matrix T . In this feature matching process, the type of error which may
occur is type 2, as shown in Fig. 8.

In Fig. 8, error #1 occurs because the corresponding feature point is actually located at
the xi

t+1 on the frame (t + 1). On the other hand, if the xi
t+1 is moved to the feature point

on the frame t through the inverse transformation matrix T −1, it moves to the xi
t and the

error #2 occurs. These errors are defined as a residual error er as shown in (7), and the
components of the transformation matrix T are optimized in such a direction as to minimize
the residual errors.

er =
n∑

i=1

{[
T × xi

t − xi
t+1

]2 +
[
T −1 × xi

t+1 − xi
t

]2}
. (7)

Fig. 7 Comparison for matching accuracy of features for RANSAC and K-mean clustering-based method:
a an example image of test image sequences, b result data for ITF metric
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Table 1 ITF Result data
comparison with RANSAC and
K-means

Method ITF(mean) ITF(SD)

RANSAC 31.29 1.3442

K-means 31.29 0.5733

The transformation matrix T consists of a 2×2 rotation matrix and a 2×1 translation com-
ponent. Moreover, it is divided into similarity or affine transformation matrices according
to the characteristics of the rotation matrix component.

The similarity transformation matrix has the property that the scale of the 2 × 2 rota-
tion matrix component changes constantly, and so it has an advantage in that the size and
direction of the structure in the image can be kept constant. On the other hand, if an affine
transformation matrix is used, the degrees of freedom to compensate for the whole image
region are higher than for the similarity transformation matrix because the 2 × 2 compo-
nent has the property of varying independently. However, if the optimization algorithm is
repeatedly applied to minimize the residual error, the size and direction of the structures in
the image are distorted due to the high degrees of freedom. Figure 9 shows the result image
using either the similarity or affine matrix as the transformation matrix.

If the similarity transformation matrix is used as in Fig. 9a, the size and direction of the
structure in the image will be maintained even if the optimization algorithm is executed
several times. However, if the affine transformation matrix is used as in Fig. 9b, there is
a problem in that the size and direction of the structures in the image become distorted.
Therefore, if the optimization algorithm is used in the digital image stabilization technique,
it is advantageous to use the constraint that can maintain the similarity characteristic.

To use the similarity transformation property defined by nonlinear equations as a con-
straint condition, we use the Lagrange multiplier λ, which is a representative method of
using constraint equations as a constraint condition for transformation matrix T and is
defined as

λ
(
t11

2 + t21
2 − t12

2 − t22
2
)

, for T =
⎡
⎣ t11 t12 t13

t21 t22 t23
0 0 1

⎤
⎦ . (8)

Fig. 8 Errors of the feature matching
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Fig. 9 Comparison of stabilization results: a similarity matrix, and b affine matrix

The similarity transformation matrix T has the nonlinear characteristic of t211 + t21
2 −

t12
2 − t22

2 = 0, thus if a Lagrange multiplier is used as the constraint condition expression,
the result can be kept close to 0 at all times. Finally, from (7) and (8), we can define the
Lagrangian to reduce the residual error, which can be expressed as

L
(

xi
t , λ

)
= er + λ

(
t11

2 + t21
2 − t12

2 − t22
2
)
. (9)

The objective function er in (9) minimizes the positional error for accurate feature point
matching between the previous frame and the next frame, and the latter part of (9) is
the constraint to maintain the characteristics of the similarity transformation matrix using
the Lagrange multiplier. Therefore, we can solve (9) as the similarity-constrained opti-
mization method. Since (9) has several nonlinear equations, we use sequential quadratic
programming (SQP), which is a representative technique of nonlinear optimization.

The selection of the initial starting point in the optimization algorithm is a very impor-
tant issue and in the proposed method, it starts as near as possible to the global minimum
because we initially use the transformation matrix with MSURF. In addition, the stopping
criteria are also important because the optimization algorithm requires a lot of computa-
tional time or divergence. Figure 10 shows the conditions for finding the minimum residual
error point in the initial start condition for SQP. The tolerance setting, which is the condi-
tion for stopping the algorithm, is set such that the change amount �x of the transformation
matrix T component is 10−10 and the change amount �f of the residual error r is 0.1. Actu-
ally, during the operation of the algorithm, since the change amount of the transformation
matrix T component and the change amount of the residual error r are both confirmed, the
minimum point can be found by repeating the algorithm about several dozen times.

Figure 11 is an example of the optimization results for the residual error applied to the
sequential quadratic programming method based on the setting value. In [16], it can be seen
that the residual position error value of approximately 4.05 reduced through the initial k-
means clustering converges to around 1.6 as the optimization algorithm proceeds. Finally,
we can confirm that the variation of the position error converges to a setting threshold value
of 0.1 or less, and the minimum point is judged only after being conducted 24 times in total.

Through the similarity-constrained optimization process, we can make the robust
transformation matrix T and stabilize the image sequence using it.



16498 Multimedia Tools and Applications (2019) 78:16489–16506

Fig. 10 Conditions for finding points with minimum residual error using SQP

3 Experiments

3.1 Experimental environment

3.1.1 Image dataset and comparisonmethods

We conducted an experiment to investigate the accuracy of the image stabilization tech-
nique. Figure 12 shows example images five different types of image sequences for
evaluation. Figure 12a is a typical static scene sequence with no changes in the background,
while Fig. 12b is an image sequence taken by the camera moving from left to right with
the background; since the camera and the background move at the same time, the mov-
ing path of the camera can be canceled, and the images only reflect changes according to
the photographing angle. Figure 12c includes a complex background having an excessive
amount of feature information that can be a problem in image stabilization techniques using
feature points or subspace detection techniques, while Fig. 12d is a drone hovering image
sequence often occurring in real life. Finally, Fig. 12e is a dynamic image sequence taken
under the condition that the camera and foreground objects in the image sequence move
simultaneously.

In order to compare the performance of the image stabilization method, we selected four
methods: original data without stabilization, methods from [13] and [6], and the proposed
method; we evaluated their performance for the five image sequences shown in Fig. 12.

3.1.2 Evaluation

To compare image stabilization performance, we use ITF to evaluate the relative stabiliza-
tion results between the image frames, which can be defined as

IT F = 1

NF − 1

NF −1∑
k=1

PSNR (k), (10)
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Fig. 11 Residual error optimization using SQP

where NF represents the total number of frames, and the peak signal-to-noise ratio (PSNR)
represents the maximum signal-to-noise ratio; this is derived as

PSNR (k) = 10 log
IMAX

MSE (k)
, (11)

Fig. 12 Example images of five image sequence conditions for evaluation: a fixed camera, b horizontal
moving camera with fixed objects, c fixed complex background, d forward moving camera with momentary
vertical and horizontal motion, e forward moving camera with forwarding moving objects
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Fig. 13 Experimental results for five image sequences

in which

MSE (k) = 1

N

w−1∑
x=0

h−1∑
y=0

(Ik (x, y) − Ik+1 (x, y))2, for (x, y) ∈ Snb, (12)

where w, h, and IMAX represent image width, height, and peak intensity values in input
image I , respectively; and N and Snb mean the non-blank region and the number of non-
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blank pixel for input image I , respectively. The value of I(x, y) used in (12) represents the
intensity value at position (x, y), and the difference in brightness value at the same position
between consecutive frames is defined as an error.

3.1.3 Experimental results

We evaluated accuracy for the five cases. In the cases of (a) and (c), the position of the cam-
era was fixed, thus they can be considered as static scenes whereas in the cases of (b), (d),
and (e), the position of camera was continuously changed, and so they can be considered as
dynamic scenes. Figure 13 illustrates the experimental results frame by frame for five image
sequences and Table 2 shows the mean and SD for the ITF values. In Table 2, the higher the
mean ITF value is, the higher the accuracy of the performed image stabilization, while the
lower the ITF SD is, the higher precision of image stabilization has been performed.

As shown in Table 2, for most of the image dataset, the mean and SD for the ITF values
obtained using the proposed method were better than those using the existing ones. In the
case of (a), the proposed method showed a lower mean ITF value of 0.36 dB for [13] and
0.04 dB for [6], respectively. It stems from that images in (a) include relatively complex
objects, and it reduce the stabilization accuracy, as influencing determination of the number
of cluster in outlier removing step using the k-means algorithm. According to the mean ITF
values, the proposed method exhibited enhancements over [13] and [6] of 0.24 dB and 0.27
dB in the case of (b), 0.29 dB and 2.06 dB in the case of (c), 11.47 dB and 2.86 dB in the
case of (d), and 1.4 dB and 1.38 dB in the case of (e), respectively. The evaluation results
demonstrate that the proposed method was superior to the existing methods under static and
dynamic scene conditions in terms of stabilization accuracy.

Figure 13 illustrates the resulting images of the ground truth comparison with respect to
the five different image type sequences. The left, middle, and right columns represent the 1st
100th, and 200th frames, respectively, in each image sequence. Moreover, the first to fourth
rows demonstrate the stabilized images using the original image sequence, [6, 13], and the
proposed method, respectively. To compare the methods easily, base lines are marked with
red dashed lines in each image.

As shown in Fig. 13a, most methods except the original image sequence showed simi-
lar stabilization performances, which was stable for this case. In the case of Fig. 13b, we
can see that the proposed method always showed the best performance because it always

Table 2 Mean and SD for the ITF values

Condition ITF Value Original [13] [6] Proposed

(a) Mean 20.59 28.91 28.59 28.55

SD 8.12 5.00 4.73 4.77

(b) Mean 18.84 31.91 31.88 32.15

SD 3.52 3.63 11.77 2.70

(c) Mean 21.61 28.36 26.59 28.65

SD 13.51 17.84 17.23 16.77

(d) Mean 25.16 20.76 29.37 32.23

SD 8.66 212.15 18.62 24.97

(e) Mean 19.48 28.10 28.12 29.50

SD 3.62 5.55 6.49 3.75
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Table 3 Computation time
comparison Image Size [13] [6] Proposed

FPS 720 × 1280 20.44 13.95 13.39

360 × 640 29.12 23.31 22.54

pointed to a similar reference point. The results using [6] did not show good performance
since the method is optimized for dynamic image sequence experiments with many cam-
era movements. Moreover, in [13], as the optimization algorithm proceeded, the degrees of
freedom of the transformation matrix became high resulting in the size and direction of the
structures in the image becoming distorted. On the other hand, since the proposed method
maintained similarity as the optimization algorithm proceeded, the size and direction of the
structures in the image were kept constant.

In Fig. 13c, [6] showed the worst ITF performance compared to the other techniques,
while [13] and the proposed method gave similar good mean and SD values. However, when
comparing their values in Table 2, we can confirm that the proposed method has the best
performance in terms of ITF value. Figure 13d shows the ground truth comparison of the
drone image sequence. Compared with the other techniques, the proposed method showed
the most stable results and obtained the best ITF mean value. However, it can be seen that
the ITF SD greatly varied as the image sequence progressed because drones do not maintain
consistent performance and many rolls in the x-axis direction occur when hovering. With
[13], it is evident that the algorithm was no longer able to proceed due to image distortion
from the 200th frame onward, while with [6], the overall ITF performance was consistent
but the mean ITF value was lower than the proposed method (see Table 2).

The experimental results in Fig. 13e show a zooming effect in which the size of the
background in the image changes because the camera moved forward. Since the proposed
method compensates for camera shake by counteracting the shaking of the whole image, the
size of the structure in the image became smaller due to the zoom effect, which illustrates a
limitation of the proposed method that should be considered in future research. Furthermore,
although [6, 13], and the proposed method showed similar ITF mean values, Table 2 shows
that the proposed method obtained the best ITF mean and SD performance.

We also evaluated computation time for two cases; image size : 720 × 1280 and
360 × 640, because an algorithm based on a feature point depends on the size of the image
and the computation time. The computation speeds (fps) of conventional approaches and
the proposed method are compared in Table 3. The experiments were done with a AMD
Ryzen 7 1700 8 Core 3.0GHz CPU with 16GB RAM and GTX1080 GPU. It can be shown
that real-time implementation of image processing algorithms is possible only when fps
results from 20 or higher are obtained. Although the proposed algorithm is slower than
color information-based method, the result of the computation speed shows that proposed
algorithm can be applied in real-time for small images.

4 Conclusions

In this paper, we propose an advanced image stabilization technique consisting of three
steps. First, local motion features are detected using the MSURF algorithm. Second, outliers
are removed from local motion using k-means clustering to remove outliers when detecting
global motion, which up to now, has been achieved using the RANSAC algorithm. However,
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the latter method has a problem in that the result is different each time the algorithm is exe-
cuted because it uses the random function several times to determine the outliers. However,
k-means clustering applied to remove outliers can guarantee the repeatability of the image
stabilization results because it does not use the random function in the calculation process.
Third, the calculated transformation matrix is optimized using the similarity-constrained
optimization method. Digital image stabilization techniques use a similarity matrix, an
affine matrix, or a projective matrix as a transformation matrix. Since the affine matrix or
the projective matrix has high degrees of freedom of the transformation matrix components,
this can result in a problem whereby the size and direction of the structures in the image
may become distorted as the optimization algorithm proceeds. Therefore, constraints that
maintain the similarity characteristics of the transformation matrix are needed for the opti-
mization algorithm to proceed, and the similarity-constrained optimization method is able
to do this during optimization. From the experimental results, we confirmed the superior-
ity of the proposed algorithm over previously reported ones by applying it to various image
sequences.
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