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Abstract
Deep features extracted from the convolutional layers of pre-trained CNNs have beenwidely used
in the image retrieval task. These features, however, are in a large number and probably cannot be
directly used for similarity evaluation due to lack of efficiency. Thus, it is of great importance to
study how to aggregate deep features into a global yet distinctive image vector. This paper first
introduces a simple but effective method to select informative features based on semantic content
of feature maps. Then, we propose an effective channel weighting method (CW) for selected
features by analyzing relations between the discriminative activation and distribution parameters
of feature maps, including standard variance, non-zero responses and sum value. Furthermore, we
provide a solution to pick semantic detectors that are independent on gallery images. Based on the
aforementioned three strategies, we derive a global image vector generation method, and dem-
onstrate its state-of-the-art performance on benchmark datasets.
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1 Introduction

Artificial intelligence plays an import role in daily life and economic activities nowadays [22].
It refers to kinds of fields, such as speech recognition [37], image processing [38], video
processing [9], anomaly detection [23] etc. Image retrieval, including the text-based image
retrieval (TBIR) [42], content-based image retrieval (CBIR) [28] and cross-modal retrieval [13,
49, 50], is an important application of artificial intelligence. CBIR also known as query by
image content (QBIC) and content-based visual information retrieval (CBVIR), is aimed to
efficiently search similar images from a large-scale image dataset for a given query image. One
of key problems for the task of CBIR is to represent images effectively and efficiently. Image
representations [14, 16] based on hand-crafted local descriptors (e.g. SIFT [21]) has been
extensively investigated for over a decade in CBIR. However, with deep networks popularized
by Krizhevsky et al. [20] in 2012, recent research focus has begun to shift to deep learning
based methods, especially the convolutional neural networks (CNNs).

Image representations based on convolutional networks are increasingly permeating in
various application domains including image classification [6, 24, 32, 44], object detection
[4, 19, 35], semantic segmentation [25, 39, 54], image processing [26, 27, 52] etc. After
training a CNN on a huge annotated dataset, e.g. ImageNet [36], the activations of the
convolutional or fully connected layers capture semantic information of images, and therefore
can be used for representing images. In the field of CNNs-based image retrieval, early works
[3, 33] directly adopted global features obtained from fully connected layers to represent
images. In order to improve the invariance of CNNs representations, Gong et al. [10] proposed
a multi-scale orderless pooling (MOP-CNN) method, in which the representations extracted
from the fully connected layers for local patches were at multiple scale levels, and the
representations were performed orderless VLAD pooling before concatenating the features.

With the further research on image retrieval based on CNNs, recent works demonstrated
that convolutional layers contain more visual information on edges, corners, patterns, and
structures which are suitable for image retrieval [1, 2]. In other words, relevant information
contained in convolutional layers that may be not suitable for classification is still preserved for
instance retrieval. However, deep features extracted from convolutional layers are usually in a
large number, and are hardly for similarity computation without aggregation due to large
memory footprint and low efficiency. Thus, it is popular to aggregate derived deep
convolutional features into a global descriptor. Off-the-shelf CNN features extracted from
convolutional layers can be directly aggregated via spatial max pooling or sum pooling [10].
Despite efficiency, image vectors generated by max- and sum-pooling are not discriminative
enough to result in state-of-the-art performance. Several recent works [5, 11, 47] have
demonstrated that it is quite important to select features inside the region-of-interest (RoI)
and to employ appropriate weighting schemes for the final aggregation.

Some recent works have focused on applying supervised fine-tuning to pre-trained CNN
models [11, 12, 31]. When suitable training data is available, the image representations can be
re-trained end-to-end. The fine-tuning process can significantly improve the performance of
specific tasks. However, fine-tuning usually needs to spend large efforts on collecting,
annotating and cleaning of suitable training dataset, which is not always feasible.

Inspired by aggregation methods with feature selection and weighting, we propose a
feasible semantic-based image representation method in this paper. As shown in Fig. 1, the
proposed global image vector generation method called RCSA contains three components:
RoI selection, channel weighting and semantic-based aggregation. The RoI selection scheme,
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which is denoted by RSC, is based on specific channels according to discriminative semantics
and achieves excellent performance. The channel weighting (CW) scheme is obtained by
analyzing the relations between the activation and various parameters (e.g. non-zero response)
of feature maps. The final aggregation process dubbed CSBA is similar with SBA [17], while
the difference is that, in the current work, we make it be independent of datasets. By
incorporating the schemes of RSC, CWand CSBA, we finally derive our image representation
method RCSA to aggregate deep convolutional features into a global image vector.

To be clear, we summarize the major contributions of this paper as follows:

1. Based on the different semantics of various feature maps, we select several specific
channels of features to obtain an unsupervised RoI selection method RSC. This process
is implemented prior to the aggregation of features. We will demonstrate that RSC
performs very well and even better than the handle ground-truth box of query images
on the Oxford5k dataset [29].

2. The relations between the discriminative activation and several parameters of feature maps,
including standard variance, non-zero response and sum value, are analyzed in the work.
Based on this research, we successfully propose an effective channel weighting method
CW, and demonstrate its remarkable performance with both sum-pooling and CroW [18].

3. We improve and generalize the process of picking the semantic detectors in SBA [17].
Compared with SBA, our method CSBA chooses semantic detectors based on images
sampled from Flickr, rather than the gallery images. It is worth noting that the new semantic
detectors are obtained in once and can be applied for different datasets, which is more general
than that in the original SBA in which the detectors should be calculated every time for each
dataset. Besides, the new method even performs better on the instance retrieval task.

4. Finally, we present our image representation method through the combination of RSC,
CW and CSBA. Extensive experiments demonstrate that RCSA achieves the state-of-the-
art performance on benchmark image retrieval datasets.

Fig. 1 The whole framework of our proposed method. The mask, which is used to select the RoI, is generated by
several specific channels of features based on semantics. The semantic-based aggregation constituted by RSC,
CW and CSBA is applied to generate the final representation
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This work is an extension of our previous work [45], and this paper introduces more related
methods and contains more details about the proposed methods. Besides, performance of each
part of proposed methods in the retrieval task is conducted. Furthermore, the possibility to
further improve the performance is discussed in the current work.

The remaining of this paper is organized as follows. Section 2 discusses related
works. Section 3 presents the details of our main contributions, including the method
to select the RoI, the strategy to get the channel weights, the process to get the CSBA
features and the way to get the final semantic-based aggregation vector. Section 4
gives a wide range of experiments to comprehensively evaluate the proposed methods.
Section 5 discusses the possibility to further improve the aggregate scheme. Section 6
concludes the current work.

2 Related works

To get global representation for image retrieval, RoI selection and weighted aggregation are
often applied on the convolutional features. The related works of these two lines will be briefly
reviewed in this section.

2.1 Selection of RoI

The discriminative information about the object semantics is useful for the selection
of RoI [48, 56, 57]. As for the feature maps of CNNs, the semantic meaning has been
analyzed by some works [51, 55]. Wei et al. [47] proposed a selective convolutional
descriptor aggregation (SCDA) method based on the activated region of feature maps,
and this method got a good performance on the fine-grained image retrieval. In this
method, they added up the last convolutional layer activation tensor through the depth
direction to get a 2-D tensor named Baggregation map^, and the region on the
aggregation map with value larger than the average value was selected as the
interesting region.

Do et al. [8] attempted three different masking schemes for selecting RoI, including SIFT-mask,
SUM-mask, andMAX-mask. Among those methods, the SUM-mask scheme was similar with that
proposed by Wei et al. [47], and the MAX-mask, which was generated by the maximum local
feature of each feature map, provided the best performance on image retrieval tasks.

Both Baggregation map^ and BMAX-mask^ seem to perform well on images containing
single object. However, we find that these methods may not work when images not only
contain the search objects but also have some other notable objects. To illustrate this
phenomenon, Fig. 2 presents two images of Oxford5k dataset and their aggregation maps.
For better visualization, the aggregation maps are overlaid to their original images by a
multi-layered process. The first sampled image has rare noisy objects and most space of
the image are filled by the objects of interest. It can be seen that the RoI selection method
with the aggregation map works very well on the image. While the aggregation map to
select the RoI fail to work on the second image, in which not only the search object but
also other objects are contained. In this case, the most obvious activated part by the
aggregation map is not the building but the red car and the flag. In order to avoid the
drawback mentioned above on selecting RoI, in this work, we propose a simpler but more
effective method based on the semantic meaning of feature maps.
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2.2 Weighted aggregation

Babenko and Lempitsky [53] found that a simple global representation based on sum-pooling
convolutional features and centering prior principle (SPoC) performed remarkably well
without high-dimensional embedding. Razavian et al. [34] adopted maximum activations of
the whole convolutional layers (MAC) as an image representation, in which the discriminative
activations might be suppressed due to global max-pooling leading to a poor performance
compared with sum-pooling [53]. Later, Tolias et al. [41] proposed a method to get regional
maximum activation of convolutions (R-MAC), in which a strategy was used to aggregate the
maximum activation over multiple spatial regions sampled on the convolutional layer using a
fixed layout. Hoang et al. [43] embedded the selected local convolutional features to higher-
dimensional space using various embedding methods before implementing aggregation with
democratic aggregation method [15]. The results showed that the T-emb [15] embedding
method and democratic aggregation achieved the most outstanding performance on the task of
instance retrieval. Most recently, Chen et al. [5] further improved the performance of R-MAC.
They proposed a method to generate regions through feature clustering based on feature
similarity, which was different with the regions in original R-MAC that were square in shape
and defined independent of the image content.

As for the recent researches of sum-pooling, Kalantidis et al. [18] proposed a non-
parametric method to learn weights for both spatial locations and feature channels. In their
work, the spatial weight derived from the spatial activation and the channel weight derived

(a) (b) (c)

Fig. 2 Visualization of aggregation maps. (a) Images sampled from Oxford5k (b) Heat maps of aggregation
maps, the warm (red) region is the activated region (c) Original images multiplied by the corresponding heat
maps
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from channel sparsity were used on the aggregation process accompanying the sum-pooling.
This approach (CroW) obviously improved the performance of sum-pooling on convolutional
features. Inspired by the features of SPoC and CroW, Wang et al. [46] improved the original
CroW significantly. They extended SPoC by adaptively determining the center point of RoI for
the spatial weight, and proposed element-value sensitive channel weighting strategy to obtain
channel weights.

Most recently, based on the semantic content of feature maps, Xu et al. [17] proposed a
method to create image representation via semantic-based aggregation (SBA). In their method,
N discriminative channels were chosen as semantic detectors which were called as
Bprobabilistic proposals^, and then these detectors were used to weight the feature maps
respectively obtaining N group regional features. After aggregation, N group features were
concatenated to one final representation. This method gets rid of the limitation of representa-
tion dimensionality and makes it possible to obtain representations with higher dimension by
simple aggregation and concatenation.

The SBA method achieves comparable performance with the state-of-the art methods even
with the same dimensional representation after dimensionality reduction. However, in the
original SBA, the channels used as detectors were obtained based on gallery images. Firstly,
they extracted features of all images in the dataset, and then aggregated each of them to a 512-
dimensional vector by sum-pooling. Variance of each channel of those vectors was calculated
and channels with top N variance value were selected as the detectors. That means for each
dataset, the original method has to analyze the dataset to get channels. Fortunately, in this
work, we found that the standard variance of each feature map has a strong correlation with
semantics. Based on which, we propose an effective method to select weighting channels
independent on the datasets.

3 Methodology

Figure3 shows the detail framework of our method which would be presented in this section.
As shown in Fig. 3, the branch 1 is the selection of RoI, which will be presented in the section
3.2; the branch 2 is the process of getting channel weights, and this method will be presented in
the section 3.3; the selection of maps working as detectors in branch 3 and the subsequent
process to combine these methods to get final representation will be discussed in section 3.4.
For a start, we will introduce the notations used in the paper.

Fig. 3 The detailed framework of the proposed image representation method
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3.1 Preliminary

Notations used in this paper would be introduced in the following. The term Bfeature map^ is
one channel of convolutional features; Bfeatures^ indicates feature maps of all channels in a
convolution layer; and the term Brepresentation^ indicates the final d-dimensional vector of
aggregated features used for retrieval.

Features extracted from a convolutional layer is an order-3 tensor Twith h ×w × k elements,
which includes a set of 2-D feature maps S = {Sn} (n = 0,1,…,k-1). Sn of size h ×w is the n-th
feature map of the corresponding channel (the n-th channel). We denote the deep convolutional
features as V = {v0(i,j), v1(i,j),…,vn(i,j),…, vk-1(i,j)}, where (i,j) is position on one feature map
(i∈{1,…,h}, j∈{1,…,w}).

3.2 Selecting RoI

In the following, we propose our RoI selection method, and then present the selection results.
Note that this work is only based on the pre-trained model VGG16 [40] and none fine-tuned
model is adopted.

Method It has been reported that each channel of feature map is activated by special patterns
according to fixed semantic content [17]. To illustrate this, several feature maps extracted from
the geometries image are visualized in Fig. 4. It can be seen that the 146th channel tend to be
activated by the columnar structure, and the 343rd and 394th channels are mostly activated by
the cone and arc respectively, while the 447th channel is only activated by the sphere. Thus, it
is possible to use those feature maps to locate the object. We do not mean to adopt all the
channels related to the search object but utilize only a very small number of feature maps
which can locate the object. Since a specific channel is activated by a specific pattern, the
feature maps selected to locate the object would not share the same channel for different kinds
of query objects. In the current work, we focus on the retrieval task on buildings. However, if it
works on the building it would be possible to work on other kinds of object research, and one
need to do is to select appropriate channels for the specific task.

For getting the reasonable channels to select the RoI, we visualized feature maps and chose
three channels which are most useful for the selection of RoI. Figure 5 shows sampled images
of Oxford5k dataset and heat maps of specific channels. Consistent with what reported by Xu
et al. [51], the 360th feature map is most activated by the body of building. Thus the 360th
feature map is possible to be used to detect the building region. It can be seen from the Fig. 5
that the activated region of the 360th feature map is not always continuous on the building
regions but may be sparse such as that of third image in the left. Therefore, the 360th feature
map is hard to be used as the detector to locate the object directly. A possible solution is to

Original

image

Heat maps of different channels

343rd146th 394th 447th

Fig. 4 Feature maps visualization of several geometries
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detect the boundary of the object and then select it with a continuous box. This process is
shown in the first line of Fig. 1 with the label of BInitial detection^. Another problem is that, as
shown in the Fig. 5 and the initial box selection result in the Fig. 1, even though the 360th
feature map is activated by the body of buildings, it fails to be activated by the rooftops which
are always to be conical and sharp. Based on the fact that different feature maps are activated
by different parts of the object, we choose two other feature maps which are activated by the
conical shape and sharp shape respectively as shown in Fig. 5. It can be seen that the 292nd
feature map is almost activated by the conical shape and the 358th feature map is always
activated by the sharp shape. With the 292nd and 358th feature maps, we can successfully
detect the upper boundary of the building as shown in the first line of Fig. 1 with the label of
BCoboundary detection^. Then, updating the selection box detected by the 360th feature map
with the upper boundary detected by 292nd and 358th feature maps (the uppermost boundary
is adopted) we can obtain the final selection box. The schematic of the selection process is
shown in the first line of Fig. 1.

With the selected channels we can acquire the exact coordinates of the predicted bounding
box. As mentioned before, each feature map is a h ×w 2-D tensor. We denote the vn (i, j) as the
value at the position (i, j) on the n-th feature map Sn; denote Xn,j and Yn,i as the sum of vn along
the column and row direction respectively, and X n,Yn denote the average value of Xn,j and Yn,i:

X n ¼ 1

w
∑
w

j¼1
X n; j ¼ 1

w
∑
w

j¼1
∑
h

i¼1
vn i; jð Þ ð1Þ

Yn ¼ 1

h
∑
h

i¼1
Yn;i ¼ 1

h
∑
h

i¼1
∑
w

j¼1
vn i; jð Þ ð2Þ

The 360th feature map is used in the initial detection process of box boundaries. For the
detection of left boundary, let j of X360,j increase from 1 till the value of Xn,j satisfies

Original

image

Heat maps of different channels

358th292nd 360th

Original

image

Heat maps of different channels

358th292nd 360th

Fig. 5 Visualization of feature maps that can be used to select the RoI. The first column of each subfigure are the
input images sampled from Oxford5k dataset, and the following images are heat maps of three specific channels
of pool5 layers from VGG16
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X 360; j≥αX n; j, where α is a coefficient. Then the coordinate of left boundary is obtained which
is the value of j at this position. With the same process we can get the other three boundaries.
The coefficient α is set as 0.6 in initial detection process for all boundaries. The next is to
update the upper boundary with the 292nd and 358th channels. Since the activated region by
the peak of conical or sharp is always tend to be a point, the average value of whole feature
map is used in this section, which is defined as:

Ωn ¼ 1

h� w
∑
h

i¼1
∑
w

j¼1
vn i; jð Þ ð3Þ

Let ϕn, i to be the max value of vn(i, j) in the i-th row, which is:

ϕn;i ¼ max vn i; 1ð Þ; vn i; 2ð Þ;⋯; vn i; jð Þ;⋯; vn i;wð Þf g ð4Þ
Similar with the detection method in the initial detection process, make i of ϕn, i increase from
1 till the value of ϕn, i satisfies ϕn, i ≥ βΩn, and the coordinate of upper boundary is the value of
i at this position. Both of the 292nd and 358th channels are used for the above process, and the
uppermost boundary is adopted as the new upper boundary to update the bounding box
obtained in the initial process. The coefficient used in this process β is 0.05.

Qualitative evaluation The evaluation of the proposed method to select the RoI is presented
in this section. Since that the query images of Oxford building supply the ground-truth
bounding boxes, it is desirable to compare the given ground-truth bounding boxes with that
predicted by our proposed method.

We qualitatively evaluate the proposed method to select the RoI on all query images of
Oxford building dataset. Figure 6 presents the comparing results, where red boxes are ground-
truth boxes and the green are predicted by our method. According to these figures, one can see
that the predicted bounding boxes can cover the object building very well. Compared with the
ground-truth boxes, the predicted boxes even get better selection in some cases. For instance,
in the third image from last of the first row, the predicted box is smaller than the given one, and
covers the object building with fewer noisy background; in the sixth image of the second row,

Fig. 6 Object localization bounding box of all query images of Oxford building. The ground-truth bounding box
is marked as the red rectangle, while the predicted one is marked in the green rectangle
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the predicted box also covers the object building with fewer irrelevant background informa-
tion, and these results preliminarily demonstrate the reliability of our method.

3.3 Systematic investigation on channel weights

As mentioned above, various feature maps of different channels are activated by different parts
of the object. We can observe all of those feature maps and choose several feature maps to be
the detectors of RoI, however, it is impossible for us to analyze all feature maps to learn the
weight of each channel individually. Therefore, a unified standard of measurement for the
channel weight is needed. Kalantidis et al. [18] implemented the channel weight in their work
with the sparsity of each channel. Wang et al. [46] improved this channel weight by replacing
the sparsity of each channel with sum value. However, comprehensive researches on the
channel weight are still lacking. In this section we tend to give a systematic investigation on
this aspect and to get a more reasonable method to generate channel weights.

Besides the sparsity and sum value of channels used in the previous works [18, 46], the
standard variance is also taken into account in the current work. In order to get intuitive
relation between the feature map and those parameters, we sampled several images from
Oxford5k dataset and draw heat maps of all feature maps. Heat maps with top 10 value of
corresponding parameters are shown in Fig. 7, and those feature maps are arranged in
descending order. For the direct comparison with the rest two parameters, the sparsity is
replaced by the non-zero response, which is defined as:

Ψn ¼ ∑
h

i¼1
∑
w

j¼1
1jvn i; jð Þ > 0f g ð5Þ

As shown in these figures, there are many feature maps activated by the irrelevant background
(boxed by green boxes) in these channels with top 10 non-zero response. This is because the non-
zero response or sparsity only considers the activated area and ignores the intensity of activation,
leading to the result that the background may take a large weight in these feature maps with large
value of non-zero response. For instance, in the third image of Fig. 7 (a), the feature map with the
largest non-zero response is almost activated by the background, since the background (sky and
ground) takes a larger proportion than the object building in the original image. That means the non-
zero response or the sparsity might not be an optimal parameter for the setting of channel weights.
Compared with non-zero response, the standard variance and sum value show better relevance with
semantics of channels. As shown in Fig. 7 (b), only two feature maps are mainly activated by the
ground which is not related to the object building. As for the sum value, as Fig. 7 (c) shows, the
number of feature maps activated by the noisy objects is more than that in Fig. 7 (b) while it shows
much better than that presented by the non-zero responses.

According to the Fig. 7, the standard variance and sum value seem to be more appropriate in
generating the channel weight comparing with the sparsity. In themethod of CroW [18], the channel
weight is set by a logarithmic function of sparsity, where the weight of channel shows a positive
correlation with the channel sparsity. The explanation given by the authors of CroW about this
positive relation is that channels with frequent features occurrences are already strongly activated
while infrequently occurring features could provide important signals. However, we tend to think
that those feature maps only activated by a small part of the object, such as the 292nd and 358th
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channels which are activated by the conical shape and sharp shape, are still very import since they
may represent the key features of object but are more sparsity and have a smaller value of standard
variance and sum value. Whatever, expressions which present negative correlation between the
channel weight and standard variance or sum value are needed. Besides the logarithmic function

Original

image

Heat maps with top10 value of non-zero responses

Large value Small value

Original

image

Heat maps with top10 value of standard variance

Large value Small value

Original

image Large value Small value

Heat maps with top10 value of sum

(a)

(b)

(c)

Fig. 7 Images sampled from Oxford5k and corresponding heat maps arranged by various parameters. (a)
Arranged in descending order according to non-zero responses, (b) Arranged in descending order according to
standard variance (c) Arranged in descending order according to sum value
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which is similar with that used in CroW, linear function, exponential function andGaussian function
will be tested in the current work. Expressions of these functions are listed in Eqs. 6–9.

Linear function:
Bn ¼ −σQ*

n þ 1 ð6Þ
Exponential function:

Bn ¼ exp −Q*
n

� � ð7Þ
Logarithmic function:

Bn ¼ log
εþ ∑iQ

*
i

εþ Q*
n

� �
ð8Þ

Gaussian function:

Bn ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp −

Q*
n
2

2σ2

( )
ð9Þ

where Bn is the n-th channel weight; σ is a coefficient which optimized value for linear
function and Gaussian function is 0.6 and 0.8 respectively; ε is a small constant added for
numerical stability like that in CroW; Q*

n is a normalized parameter defined as:

Q*
n ¼

Qn−Qmin

Qmax−Qmin
ð10Þ

where Qn is the concerned variable of the n-th channel and it can represent the standard
variance or sum value of the channel; Qmin and Qmax represent the minimum and maximum
value of interested variable (standard variance or sum value) among all channels of one image
features extracted from the pool5 layer.

3.4 Semantic-based aggregation

As mentioned in the section of related works, in the original aggregation method SBA, the
channels used as semantic detectors are obtained based on gallery images. In the following, an
improved method (CSBA) which can get rid of the dependence on the dataset is presented.
When this aggregation method proposed in this section is combined with the previous
proposed RSC and CW, the whole semantic-based aggregation method can be obtained.

Algorithm 1. Selection of discriminative channels

Input: 60 building images picked from Flickr

Output: N channel number

fc=0

For feature maps of 60 images

For channel C of feature maps

If standard variance of channel C appears among top 50 value of feature maps 

fc+=λ
f={f0, f1,…,fc,…,f511}

N channels C are selected with top N value of fc
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It has been shown that the standard variance value of each 2-D feature map has obvious relation
with the semantic content, which makes it possible to use the channels whose feature maps are in a
great value of standard variance to act as the semantic detectors in SBA. In the current work, we
sampled 60 building images1 fromFlickr to pick the detector channels.With these images,we count
the frequency of each channelwhen their standard variance value of the featuremap appears among
the top 50 in all feature maps of each image. ThenN channels with top N frequency are selected to
replacethosechannelsactingassemanticdetectors inSBA.Thedetailprocessofselectionisshownin
Algorithm1.Since the featuremapwith larger standardvariancehasmorediscriminative content, as
shown inFig. 7, a coefficientλ is adoptedbasedon their standardvariancevalueof each featuremap:

λ ¼ log ∑
50

n¼1
n
.
n

� �
ð11Þ

where nmeans the order of a featuremap in the descending-ordered featuremaps sorted by standard
varianceof one image.Theweighted frequency is shown inFig. 8, and the number of channels (N) is
25asrecommendedintheSBA.Thesechannelsareusedtoreplacethatactingassemanticdetectors in
the original SBA for different datasets.

After getting the detector channels, 25 feature maps can be acquired from features S of each
image according to the selected channel number. With the selected feature maps, series
weighted and sum-pooled representations can be obtained:

ψn Ið Þ ¼ ∑
h

i¼1
∑
w

j¼1
wn i; jð ÞS i; jð Þ ð12Þ

The coefficients wn are the normalized weights based on the activation values vn(i, j) of one
selected feature map:

wn i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vn i; jð Þ

∑
h

i¼1
∑
w

j¼1
vn i; jð Þ2

 !1=2

vuuuuut
ð13Þ

Concatenating these representation, a global 25 × k-dimensional representation can be obtain-
ed:

ψ Ið Þ ¼ ψ1 Ið Þ;ψ2 Ið Þ; :::;ψ25 Ið Þ½ � ð14Þ
The final CSBA representation ψCSBA(I) is generated when the global representation ψ(I) is
processed by l2-normalization and PCA whitening. This representation can derive the RSCA
representation, which combines the RSC, CW and CSBA, when the features S in Eq. 12 is
multiplied by the mask of RSC and each representationψn(I) is weighted by channel weights (CW).

4 Experiments and results

The performance of each part of the proposed semantic-based aggregation method, including
the RoI selection method RSC, channel weighting method (CW) and improved aggregation

1 https://github.com/ShawnWXS/filckr_building
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methods CSBA, on image retrieval task is tested respectively. The retrieval results of the final
representation generated by the whole semantic-based aggregation process are compared with
previous state-of-the-art results.

4.1 Experiment setting

The proposed methods are evaluated on four benchmark datasets, including Oxford5k [29],
Paris6k [30], Oxford105k and Paris106k. Oxford5k dataset contains 5063 building photos
with 55 queries including 11 landmarks, and Paris6k contains 6392 building photos with 55
queries including 11 landmarks. Oxford105k and Paris106 are extensions of Oxford5k and
Paris6k respectively by adding other 100,000 distractor images collected from Flickr.

The off-the-shelf pre-trainedVGG16 [40] is used in this paper. Deep convolutional featuresmaps
are extracted from the pool5 layer and the number of channels is k= 512. For fair comparison with
the related retrieval methods, we learn the PCA and whitening parameters on Oxford when testing
on Paris and vice versa. The mean Average Precision (mAP), which is defined as the average
percentage of same class images in all retrieved images after evaluating all queries, is used to
evaluate the retrieval performance. Additionally, all images are in the original size and not any resize
process is adopted in this paper.

4.2 Implementation details

When the RSC is adopted in the retrieval task, the feature maps S obtained from the pool5
layer would be treated by a mask map before the aggregation. The mask mapM with the same
size as a feature map is generated by the RSC:

Mi; j ¼ 1 if x0≤ j≤x1 and y0≤ i≤y1
0 otherwise

�
ð15Þ

where x0 and x1 are the positions of left and right boundaries of predicted bounding box; y0 and
y1 are the locations of upper and lower boundaries of the box. ThenM is used to select the deep
convolutional features within the predicted box. The descriptor v(i, j) should be kept when
Mi,j = 1, while Mi,j = 0 means the position (i, j) is not inside the box:

F ¼ v i; jð ÞjMi; j ¼ 1
� 	 ð16Þ
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Fig. 8 Channels with top 25 weighted frequency are used to replace those channels acting as semantic detectors
in SBA
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where F is the selected descriptor set which will be aggregated into the final representation for
image retrieval.

The aggregation processes of CSBA is similar with the original works. The
difference between the CSBA and the original SBA is just the selection method of
channels which are used as semantic detectors. Note that in the current CSBA, the
selection of detectors never depends on the datasets. As for the implementation of the
proposed channel weighting (CW) method, it is applied to the features after aggrega-
tion like most of similar works [18, 46]. In the whole semantic-based aggregation
process (RCSA), the channel weights are implemented on the aggregated vector
treated by each detector of CSBA before concatenation.

When the process is carried out on an Intel® Core™ i7–4790 quadcore CPU
running at 3.6GHz and 8GB of RAM, the aggregation process takes around 81 ms
for a query image with resolution of 768 × 1024 pixels, which can be capable to meet
the real-time online research.

4.3 Performance of RSC

The retrieval performance of RSC is presented in Table 1. The simple sum-pooling and CroW
are adopted in the aggregation process. Under the item of method of selecting region, BNone^
means features are extracted from the original images, BGround-truth box^ means features are
extracted from the queries within the ground-truth box and BRSC^ means features extracted
from original images are treated by the RSC selection process. As shown in this table, since the
ground-truth box filters parts of background noises, the use of it can significantly improve the
retrieval performance for both cases with simple sum-pooling aggregation and CroW aggre-
gation. Compared with the handled ground-truth box, when the proposed RSC is only adopted
on the query images, this unsupervised RoI selection method even gets better retrieval
performance with the aggregation method of sum-pooling. When the CroW is implemented,
although the performance of RSC is slightly poor than ground-truth box on the dataset of
Oxford5k, it still gets better performance on dataset of Paris6k. If the RSC is implemented on
both of query images and index images, encouraging results are presented on both cases with
aggregation methods of simple sum-pooling and CroW.

Note that the performance with RSC and simple sum-pooling method even better than the
original CroW method (in which the representation of query image is obtained within the
ground-truth box). Combining the RSC and CroW would greatly enhance the performance as

Table 1 Performance of RSC on the image retrieval task

Method of selecting region Aggregation Dim Dataset

Query Images Index Images Oxford5K Paris6K

None None Sum 512 68.0 77.7
Ground-truth box None Sum 512 69.6 78.6

RSC None Sum 512 69.7 78.6
RSC RSC Sum 512 72.4 80.9
None None CroW 512 68.3 79.1

Ground-truth box None CroW 512 70.8 79.7
RSC None CroW 512 70.6 81.4
RSC RSC CroW 512 74.1 83.8
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shown in the last line of the table. These results further indicate the effectiveness of the
proposed method to select RoI and filter the information of irrelevant background.

4.4 Impact of the parameters of channel weights

The parameters of channel weights (CW) contains two parts, namely, the variable Q (standard
variance or sum value) and the weighting function Bn, i.e., linear function (linear), exponential
function (exp), logarithmic function (log) and Gaussian function (Gauss). To test the perfor-
mance of channel weighting method with different parameters, the aggregation method Crow
is adopted in this section, and the channels weights of Crow are replaced by the proposed
weights. Table 2 shows the performance of different variables (standard variance and sum
value) and weighting functions on retrieval task. The best result of same dimensionality is in
bold. It can be seen that the performance under almost every weighting function with standard
variance and sum value is better than that of the original CroW, which demonstrates the
effectiveness of standard variance and sum value on the calculation of channel weights.
Particularly, for the dataset of Paris6k, when the channel weight is acquired by sum value
and exponential function, the mAP increases by at least 2% compared with CroW with 512,
256, and 128 dimensional representations. Overall, the channel weight based on sum value
outperforms that based on standard variance, and the exponential function performs better than
other functions. Therefore, the sum value and exponential function is adopted for the channel
weights (CW) generating method.

4.5 Performance of CSBA

Comparison of proposed method (CSBA) and the original SBA is presented in Fig. 9, and the
performance of CSBA combined with the proposed RoI selection method (RSC) and channel
weighting method (CW) is also shown in this figure. One can see that the proposed method
based on 60 building images sampled from Flickr not only achieves the performance of SBA

Table 2 Performance of different variables (standard variance and sum value) and channel weighting functions
on retrieval task

Q Bk Datasets

Oxford5k Paris6k

Dim Dim

512 256 128 512 256 128

Standard variance linear 71.1 68.6 63.2 82.0 78.8 76.8
exp 71.2 68.6 63.5 81.9 78.7 76.7
log 71.2 68.2 63.8 80.6 76.9 75.2
Guss 71.2 68.7 63.2 82.0 78.8 76.7

Sum value linear 71.7 68.6 64.3 81.8 79.1 77.1
exp 71.9 68.8 64.4 81.9 79.3 77.3
log 71.8 68.9 64.2 81.5 78.4 76.7
Guass 71.4 68.1 64.2 81.5 78.9 76.7

Baseline (CroW) 70.8 68.4 64.1 79.7 76.5 74.6
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which based on gallery images, but even performs better on both Oxford5k and Paris6k under
all dimensionalities. Particularly, in the dataset of Oxford5k, compared with the original
method the proposed method exceeds 2.6% on mAP using 512 dimensional features. Most
importantly, the proposed CSBA makes the original SBA get rid of the dependence on the
datasets and makes it simpler and more effective.

The implementation of the proposed channel weighting method (CW) significantly im-
proves the performance of CSBA, and the smaller dimensionality the larger improvement will
be. With 128-D presentation, the utilization of CWon CSBA make the mAP increase by 2.6%
and 3.3% comparing with CSBA on datasets of Oxford5k and Paris6k respectively, and the
least gain with all dimensionality is 2.0% and 1.2% respectively. As for the performance of
RSC on CSBA, when the dimensionality of presentation is smaller, the improvement of mAP
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Fig. 9 Performance of proposed CSBA on image retrieval task. CSBA combined with proposed RSC and CW is
also tested. The setting of CSBA almost same with original SBA except for the selection of detector channels

Fig. 10 Three example queries (on the far left) from Oxford5k and the corresponding top10 results of RCSA
(top) and SBA (bottom). The false results are marked with red dashed borders
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achieved by the implementation of RSC is significant, while the RSC even plays a negative
role when the dimensionality is larger than 1024. It is perhaps caused by that more semantic
information can be contained in the representations with higher dimensionality, and in this case
those background could be helpful for the image retrieval. Overall, the CSBA can be enhanced
by both of RSC and CW.

We obtain the whole semantic-based aggregation process RCSA by combining RSC, CW
and CSBA. Several retrieved results of RCSA and SBA are presented in Fig. 10, which visually
show the better performance of the proposed method. The detail performance of the proposed
RCSA and the comparison results with other methods will be presented in the next section.

4.6 Comparison with the state-of-the-art

The comparison of the proposed RCSA with outstanding methods is presented in Table 3.
Among these methods, the improved R-MAC proposed by Chen et al. [5] achieves the state-of-

Table 3 Accuracy comparison with the state-of-the-art unsupervised methods

Method Dim Dataset

Oxford5k Paris6k Oxford105k Paris106k

CroW [18] 128 64.1 74.6 59.0 67.0
SBA [17] 128 63.9 77.0 59.1 69.0
Wang et al. [46] 128 65.8 77.9 61.4 70.5
Previous state-of-the-art 128 65.8 77.9 61.4 `70.5
RCSA 128 70.3 81.8 66.1 74.8
CroW [18] 256 68.4 76.5 63.7 69.1
SBA [17] 256 68.5 80.0 63.8 72.2
R-MAC [41] 256 56.1 72.9 47.0 60.1
Wang et al. [46] 256 70.7 80.5 66.5 74.0
Previous state-of-the-art 256 70.7 80.5 66.5 74.0
RCSA 256 75.0 84.2 71.2 77.8
CroW [18] 512 70.8 79.7 65.3 72.2
R-MAC [41] 512 66.9 83.0 61.6 75.7
SBA [17] 512 72.0 82.3 66.2 75.8
Hoang et al. [43] 512 65.7 81.6 60.5 72.4
Chen et al. [5] 512 73.8 83.9 69.7 76.4
Wang et al. [46] 512 72.8 83.0 68.1 76.3
Previous state-of-the-art 512 73.8 83.9 69.7 76.4
RCSA 512 77.5 85.2 74.8 79.1
Hoang et al. [43] 1024 72.2 83.2 67.9 76.1
SBA [17] 1024 75.3 84.2 69.3 78.2
Previous state-of-the-art 1024 75.3 84.2 69.3 78.2
RCSA 1024 79.8 86.3 77.2 80.4
SBA [17] 2048 78.2 85.4 71.1 79.7
RCSA 2048 80.9 87.5 78.4 81.8
CroW+QE [18] 512 74.9 84.8 70.6 79.4
R-MAC+AML+QE [41] 512 77.3 86.5 73.2 79.8
SBA +QE [17] 512 74.8 86.0 72.5 80.7
Previous state-of-the-art 512 77.3 86.5 73.2 80.7
RCSA+QE 512 81.9 87.6 79.6 82.0
SBA +QE [17] 1024 77.9 87.8 76.7 82.8
RCSA+QE 1024 83.9 88.8 81.8 83.7
SBA +QE [17] 2048 80.7 88.7 79.3 83.9
RCSA+QE 2048 84.9 90.2 82.8 84.9
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the-art performance with the most common representation dimension (512-D). With regard to
other dimensions, the best performance is emphasized in the table. As shown in this table, the
proposed methods RCSA outperforms the previous state-of-the-art on all four standard retrieval
datasets and all dimensionalities from 128-D to 2048-D. On specifics, the gain is at least 3.9%,
3.7%, 1.3%, 2.1% and 2.1% in mAP from 128-D to 2048-D respectively for all datasets
comparing with the state-of-the art, and the largest gain reaches 7.9% in mAP for Oxford105k
with 1024-D representation. Note that the 256-D representation of this RCSA method achieves
significantly better mAP than that of the previous state-of-the-art with 512-D representation.

The proposed methods combined with query expansion are also compared with other
methods in the last part of Table 3. In the experiments, the average query expansion (QE)
[7] computed by the top 10 query results is used. It can be seen from this table that with QE the
RCSA still gets the best performance. Specifically, the gain with mAP reaches 6.4% for
Oxford5k with 512-D representation when RCSA+QE is adopted. With higher dimensional
representations, RSCA+QE increases the mAP at least 0.9% for all four datasets comparing
with that of SBA +QE.
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Fig. 11 Comparison of CSBA and CSBA*. The detector channels in CSBA* are selected dependent on the 55
query images of Oxford dataset and weighting formula Eq. 17. RCSA* is combination of RSC, CWand CSBA*
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5 Discussion

In the process of selecting detector channels in CSBA, 60 building images sampled
from Flickr and simple weighting equation Eq. 11 are adopted to make it be free of
the dependence on the dataset and avoid the complex parameters in the weighting
formula. However, we find that the channels selected with this method is not optimal.
Figure 11 presents the performance of another process to improve the original SBA,
which is donated by CSBA*. In the CSBA*, the images used to select detector
channels are 55 query images of the Oxford dataset, and the weighting formula of
Eq. 11 is replaced by the Eq. 17. The selected channels and their corresponding
weighted frequency is shown in Fig. 12.

As shown in Fig. 11, RCSA* obviously improves the performance of RCSA,
especially in the dataset of Paris6k. Table 4 shows the detail performance of RCSA
and RCSA*. It can be seen that compared with RCSA, RCSA* gets better perfor-
mance on all datasets and with all dimensionalities. The largest gain reaches 2.3%
when combined with QE with 512-D representation on Paris106k. This means that it
is possible to get appropriate detector channels in some way to further improve the
performance.

λ ¼
4
3
2
1

n≤5
5 < n≤15
15 < n≤30
n > 30

8>><
>>: ð17Þ

Table 4 Accuracy comparison of RCSA and RCSA*

Method Dim Dataset

Oxford5k Paris6k Oxford105k Paris106k

RCSA 128 70.3 81.8 66.1 74.8
RCSA* 128 71.4 83.4 67.2 76.4
RCSA 256 75.0 84.2 71.2 77.8
RCSA* 256 76.1 85.4 72.5 78.4
RCSA 512 77.5 85.2 74.8 79.1
RCSA* 512 78.4 86.9 75.3 80.7
RCSA 1024 79.8 86.3 77.2 80.4
RCSA* 1024 80.5 87.9 77.5 81.7
RCSA 2048 80.9 87.5 78.4 81.8
RCSA* 2048 81.3 88.7 78.9 83.1
RCSA+QE 512 81.9 87.6 79.6 82.0
RCSA* +QE 512 82.2 89.6 79.9 84.3
RCSA+QE 1024 83.9 88.8 81.8 83.7
RCSA* +QE 1024 84.1 90.7 82.1 85.5
RCSA+QE 2048 84.9 90.2 82.8 84.9
RCSA* +QE 2048 85.4 91.1 83.6 86.3
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6 Conclusions

To get effective global representation in CBIR task based on deep convolutional features, this
manuscript proposed and combined three strategies which formed a whole semantic-based
aggregation (RCSA) method. This RCSA global representation outperformed the previous
related works and achieved the state-of-the-art performance.

The first strategy is to select the RoI. Based on the fact that each channel of features is activated
by special patterns according to semantic content, we proposed a simple but effective method to
select RoI with several specific channels. This RoI selection method which is denoted by RSC
showed excellent performance on instance retrieval tasks. Although the selected channels to predict
bounding boxes in this paper specializes in the retrieval of buildings, the effectiveness of thismethod
shows the possibility for other objects retrieval by choosing specific channels. The second is the
channel weightingmethod. Comprehensive researches on the relation between semantic content and
several parameters of each feature map, such as sum value, standard variance and non-zero
responses, were conducted in this paper, according to which results, a channel weighting method
(CW) for aggregated features was proposed. The implementation of CW on several aggregation
methods significantly improved the retrieval performance, which indicates the availability of the
proposed CW. The last is that we successfully improved an aggregation method (SBA). Compared
with the original SBA, the improved method (CSBA) gets rid of the dependence on the datasets,
which makes it simpler and more effective.

Our future research will pay attention to a more general method for selecting the RoI.
Besides, since the channels working as semantic detectors in CSBA play a significant role in
the performance of CSBA, we will attempt to get a more efficient but simple way to obtain the
detector channels.
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