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Abstract
In this paper, a compact-dictionary-based sparse representation (CDSR) method is proposed
for hyperspectral image (HSI) classification. The proposed dictionary in CDSR is dynami-
cally generated according to the spatial and spectral context of each pixel. It can effectively
shrink the decision range for classification, and reduce the computational burden since the
compact dictionary is composed of the classes correlated with the target pixel in terms of
spatial location and spectral information. In order to obtain better spatial context infor-
mation, a spatial location expanding strategy is designed for spreading local explicit label
information to a wider region. Experimental results demonstrate the effectiveness and supe-
riority of the proposed method when compared with some widely used HSI classification
approaches.

Keywords Classification · Compact dictionary · Hyperspectral image ·
Sparse representation

1 Introduction

Compared with multispectral images, hyperspectral images contain more spectral informa-
tion which consists of hundreds of different spectral bands, as shown in Fig. 1a. These
continuous narrow spectral bands can reflect more detailed, potential, and discriminative
land cover information [1, 3, 8]. As shown in Fig. 1b, it can present the spectral differences
of different materials clearly on part of bands in HSI. In recent years, the HSI processing
has been widely used in target detection [8], precision agriculture [13], military application
[20], environmental monitoring [26] etc.

HSI classification plays a key role in HSI applications. It aims at assigning a specific
label to each pixel so that it describes ground object more precisely [6, 14]. During the last
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Fig. 1 (a) Visual hyperspectral data cube; (b) Spectral curve of some land covers in Indian Pines dataset

decade, many efforts have been made to complete this task. The SVM-based HSI classifica-
tion frames are the most classical method, Camps-Valls and Melgani et al. make excellent
contributions in this area [2, 23]. In addition, multinomial logistic regression [21], adap-
tive artificial immune network [19], gaussian process [31], the graph-based model [12, 29]
and subject projection [38] are the commonly used classifier in HSI area. All these above
mentioned approaches have achieved good classification performance in different aspects
by combining their own advantages and the characteristics of HSI. Recently, deep learning
architectures have been presented promising performance in various fields such as image
segmentation [28], video analysis [37] and HSI classification. To the authors’ knowledge,
Chen et al. [5] first introduced the deep learning architecture into HSI classification by
utilizing a multilayer stacked autoencoders to extract high-level features. Thereafter, many
improved deep learning approaches were developed to obtain a more excellent perfor-
mance. For instance, Zhang el al. [42] utilized recurrent neural network (RNN) to extract
local spatial sequential features for HSI classification. Cheng et al. [7] further improved the
classification accuracy by exploring the features generated from different layers in convo-
lutional neural networks (CNN), and designing a unified metric learning based framework
to alternately learn spectral-spatial features.

As we know, the superior of deep learning depends on large amount of labeled data.
However, the reliable labeled samples are limited in HSI areas for the high cost of time and
labor charge in labeling. As stated by Pan et al. [25], some traditional approaches still out-
perform the deep-learning based frame. As a traditional machine learning technique, sparse
representation (SR) has made remarkable achievements in many research areas such as
dimensionality reduction [15], image annotation [16], video semantic recognition [17]. The
outstanding advantage of this technique is that it does not require large amount of samples
to train the model, and no training is required in the residual-based classification model.
Thus, many SR based methods are developed for HSI classification. For example, Chen et
al. [4] introduced the Laplacian constraint and the joint representation of test sample to the
sparsity model, which effectively utilized the neighboring spatial information. Yuan et al.
[39] presented a SR method, which contained more discriminative information by utilizing
the set-to-set distance. Fu et al. [11] proposed a shape-adaptive SR classification method,
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which sufficiently exploited the spatial information through constructing a shape-adaptive
local region for each target pixel. In general, the aforementioned SR based methods can
be categorized as full-sized dictionary based SR. This type of dictionary is composed of
the entire training samples and grouped by classes. Simultaneously, another type of tech-
niques associated with dictionary learning were proposed [30, 33, 35], which learned a more
representative dictionary from training samples.

Both the two types of SRmethods have achieved good performances in terms of accuracy
in HSI classification. However, when adopting the full-sized dictionary, the sparsity model
may cost much time to solve the coefficients by greed pursuit algorithms, since each target
pixel needs to compare with all atoms in the dictionary for searching the most approximate
one within each iteration [4, 11, 36, 39]. For the dictionary learning methods, although the
learned dictionary may have fewer atoms than full-sized dictionary, the learning procedure
is time consuming. In addition, the learned dictionary is not grouped clearly by classes in
general such that it cannot be directly used to make a decision for the classification, resulting
in an extra classifier to deal with the obtained coefficients [30, 33].

Inspired by the issues mentioned above, we expect to design a simple and effec-
tive dictionary, which is both thinner than the full-sized dictionary and still grouped by
classes. Moreover, we also pursue no complex updating and iterations in the processing.
Accordingly, in this paper, we proposed a compact-dictionary-based SR method for HSI
classification. Similar to the full-sized dictionary, the designed compact dictionary is still
grouped by classes. While, it no longer consists of the entire training samples but some
specific classes of training samples. These classes are determined by the known neighbor-
ing labels of target pixel and the spectral similarity between target pixel and the center of
each class of training samples. Besides, a spatial location expanding strategy is developed
to further exploit the spatial information. During the classification, the compact dictionary
is adaptively determined for each test pixel and its size is less than the full-sized dictionary.
Also, it is noted that no iteration is required in the formation of the compact dictionary when
compared with dictionary learning methods. Therefore, the time consumption of CDSR for
HSI classification would be reduced.

To sum up, the major contributions of our work are summarized as follows. 1) A cus-
tomized compact dictionary for each test pixel is constructed to eliminate the interference
of unrelated classes, and reduce the computational burden in the HSI classification. 2) A
spatial location expanding classification strategy is designed: first, the unlabeled neighbors
of labeled pixels are classified; then these unlabeled neighbors become labeled pixels; con-
tinue this process until all test pixels are classified. The expanding strategy can make full
use of the spatial contextual information during the generation of compact dictionary.

The rest of the paper is organized as follows. In Section 2, some related works are briefly
reviewed. In Section 3, the detailed descriptions of the proposed compact dictionary based
sparse representation are provided. In Section 4, experimental results on three commonly
used hyperspectral images are presented. Finally, a conclusion and future work are given in
Section 5.

2 Related works

Most of HSI classification tasks completed by SR are on the basis of the observation that
the hyperspectral pixels in the same class are located in a low-dimensional subspace in
many cases [4, 41]. Consequently, each pixel x in a hyperspectral image can be sparsely
represented by an appropriate dictionary constructed by or learned from training samples.
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Let x ∈ RB be a B-dimensional spectral vector representing a pixel in HSI, D ∈ RB×N be
the dictionary and α ∈ RN be the sparse coefficient vector, then the above process can be
formulated as

x = Dα (1)

where B is the number of bands of HSI and N represents the number of atoms in D.
In HSI, in view of the fact that the pixels within an appropriate size of window belong

to the same class with high probability. Hence, using a region to replace the single spectral
pixel would be better to descript the land cover information, and the (1) can be modified as

X = DA (2)

where X = [x1, x2, · · · , xQ] ∈ RB×Q is neighboring matrix, which is stacked by neigh-
boring spectral vectors within a

√
Q × √

Q window centered at target pixel x; A ∈ RN×Q

is the corresponding coefficient matrix; for the dictionary, in [4], it is designed as D =
[D1, · · · ,Dc, · · · ,DC] ∈ RB×N , where C represents the categories of land covers, N

denotes the number atoms in dictioanry, Dc = [dc
1,d

c
2, · · · ,dc

Nc
] ∈ RB×Nc is the subdic-

tionary constructed by Nc training pixels of the cth class and
∑C

c=1 Nc = N . To obtain the
sparse coefficient matrix A, the (2) can be reformulated as the follow optimal problem:

Â = argmin
A

‖X − DA‖F , s.t . ‖A‖row,0 ≤ K (3)

where ‖·‖F denotes the Frobenius norm, K represents the sparse constraint, and ‖·‖row,0 is
called joint sparse norm which guarantees that the nonzero rows have the same index. This
means that the neighboring pixels and the target pixel share the same sparse support but
have different weight value, because the pixels within the window are assumed as the same
class. Through applying Simultaneous Orthogonal Matching Pursuit (SOMP) algorithm [4],
an approximate solution can be achieved. Then, the class of target pixel x can be directly
determined by the minimal total residuals:

Class(x) = argmin
c

‖X − DcÂc‖F , c = 1, 2, · · · , C. (4)

The model reviewed above is the classical joint sparse representation classification (JSRC).
After that, many efforts have been made, mainly focused on three aspects and corresponding
to the three parts in (2), neighboring matrix X, sparse coefficient matrix A, and dictio-
nary D. The shape-adaptive joint sparse representation (SASR) [11], weighting prior sparse
representation (WPSR) [32] and spatial-aware dictionary learning (SADL) [30], are the
representative methods that follow the aforementioned three schemes respectively.

2.1 SASR

The SASR considers that the fixed-size square window used in JSRC may be inappropriate,
since the center pixel and the neighboring pixels in the same square window may belong
to different classes, especially in complex areas of HSI. Thus, SASR designed a shape-
adaptive window � for each pixel by utilizing the local polynomial approximation (LPA)
filtering technique and the intersection of confidence intervals. Then, a shape-adaptive
neighboring matrix can be constructed as Xsa = [x1, x2, · · · ], xi ∈ �, and the SASR can
be formulated as follows:

Â = argmin
A

‖Xsa − DA‖F , s.t . ‖A‖row,0 ≤ K . (5)



Multimedia Tools and Applications (2019) 78:15011–15031 15015

The final class of test pixel can be determined by the minimal residual:

Class(x) = argmin
c

‖Xsa − DcÂc‖F , c = 1, 2, · · · , C. (6)

2.2 WPSR

Similar to SASR,WPSR also noted the possible differences of pixels within the neighboring
window, and it is not directly focused on the expression of neighboring matrix, but intro-
ducing weighting coefficient into sparse coefficient and relaxing the sparse constraint. The
model of WPSR can be expressed as follows:

min
A

1

2
‖X − DA‖2F + λ1‖A‖1 + λ2

∑

i,j

wi,j‖ai − aj‖22 (7)

where λ1 and λ2 are the regularization parameters. wi,j is the weight coefficient, used to
measure the spectral similarity among pixels in neighboring window. The larger weight
value indicates the higher similarity. In WPSR, the wi,j is obtained by the sparse subspace
clustering method [9]. Once the sparse coefficient matrix is solved, the label of test pixel
can be determined by the similar minimal residual rule as (4) and (6).

2.3 SADL

Different from many SR based classifiers, whose dictionary is directly composed of the
complete set of training samples and grouped by classes. SADL is a data-driven model,
and its fundamental goal is building a representative and discriminative dictionary to better
represent the test pixel. The dictionary of SADL is learned from the samples, rather than
directly composed of them.

Let {yi}i=I
i=1 denote the set of all spectral vector in HSI. To integrate the spatial informa-

tion into the dictionary learning, the spectral vector is separated into some groups according
the spatial context, i.e.,Y = [Y1, · · · ,Yg, · · · ,YG], the details of SADL can be formulated
as follows:

min
D,A

‖Y − DA‖2F +
G∑

g=1

γg‖Ag‖2,1 s.t ∀n ‖dn‖2 ≤ 1 (8)

where γg is the regularization parameter for the gth group, Ag is the corresponding sparse
matrix forYg , and ‖Ag‖2,1 denotes the sum of l2 norm of the rowsAg . The dictionaryD and
sparse matrix A can be solved by an alternatively iterative scheme. While, it is noted that
the label of test pixel cannot be determined by the minimal residual rule since the learned
D has no grouping structure. Accordingly, an extra classifier must be involved to deal with
the sparse coefficient.

In this paper, our attention also focuses on the construction of the dictionary. In the
construction procedure, the complex updating and iterator are avoided compared with the
dictionary learning technique. And the constructed dictionary is expected to be more thinner
than full-sized dictionary but still keep the grouped structure.

3 Proposed CDSR for HSI classification

In this section, we present the details of the proposed approach from three aspects, i.e.,
the determination of spatial label set, the determination of spectral set as well as the final
classification model. The flowchart of the proposed CDSR is shown in Fig. 2.
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Fig. 2 The flowchart of the proposed CDSR

3.1 Determination of spatial label set

Generally, many spatial-spectral classifiers integrate the spatial information depending on
the assumption that neighboring pixels tend to have similar spectral characteristics [10, 41].
However, they may ignore that the labels of neighboring pixels potentially provide the target
pixel with an explicit reference. In this paper, the explicit information is used to shrink the
size of the dictionary.

Through scanning a p × p window centered at target pixel, it is easy to obtain a spatial
label set Sspa which is composed of the known labels within the window. While limited
by the number of training data and its spatial distribution, the obtained Sspa is an empty
set sometimes if the test data is classified in random order. Therefore, a spatial location
expanding strategy, which spreads the limited and local label information to a wider region,
is proposed to deal with this case. The detailed expanding strategy is summarized to the
following steps:

Step 1: index the positions of pixels adjacent to the label-known pixels;
Step 2: classify the unprocessed neighboring test pixels obtained by step 1;
Step 3: repeat step 1 and 2 until all unprocessed test pixels are handled.

The graphic illustration of spatial location expanding strategy is shown in Fig. 3.

Fig. 3 Illustration of spatial location expanding strategy. Green blocks represent the training pixels, the
blocks with other colors represent the test pixels that should be classified after each expansion
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3.2 Determination of spectral label set

The obtained Sspa is beneficial to determine a relatively small scope for the compact dic-
tionary, while it tends to be invalid in certain case. For instance, as shown in Fig. 4, the
true label of target pixel is not contained in Sspa for there is no label-known pixels of the
same class in the scanning window. And this case often appears in the regions that are not
adjacent with training data. Under this case, the target pixels will suffer from misclassifica-
tion. As a result, spectral information is introduced to obtain a more reliable scope for the
compact dictionary.

Similar to Sspa , a spectral label set Sspe is obtained by measuring the spectral similarity
between the neighboring matrix X of the target pixel and each subdictionary Dc. Since it is
necessary for all test samples to measure the spectral similarity, a similar average strategy
that has been also used in [34] is applied to X and Dc to speed up this procedure. Next, the
detailed procedure of getting Sspe is given as follows:

Step 1: apply the average strategy to X and Dc to obtain the neighboring center u and the
subdictionary center vc, c = 1, 2, · · · , C, i.e.,

u = 1

Q

Q∑

q=1

xq (9)

vc = 1

Nc

Nc∑

i=1

dc
i , c = 1, 2, · · · , C. (10)

Step 2: use the spectral angle mapper (SAM) [43] to measure the spectral similarity
between u and vc for its simplicity and efficiency, i.e.,

sam(u, vc) = arccos

∑B
b=1(ub × vc

b)√∑B
b=1(ub)2

√∑B
b=1(v

c
b)

2
, c = 1, 2, · · · , C (11)

where uc
b and vc

b denote the bth entry of u and vc, respectively.
Step 3: sort all sam(u, vc) with ascending order, and use the classes corresponding to the

J smallest sam value to form the spectral label set Sspe, where J ≤ C and J is
called spectral similarity level for the convenience of following description.

Fig. 4 Improper circumstances for determining the scope of compact dictionary just considering spatial
information. (i.e., Sspa does not contain the true label of test sample)



15018 Multimedia Tools and Applications (2019) 78:15011–15031

3.3 Incorporation of spatial and spectral information to design the compact
dictionary

The final scope for target pixel is determined by the union of Sspa and Sspe; and an index
used to form the compact dictionary can be defined by

� = Index(Sspa ∪ Sspe) (12)

where Index(·) is designed for getting the subdictionary index of corresponding class in
full-sized dictionary D. Then, the compact dictionary D̃ can be determined as

D̃ = D� (13)

where D̃ ∈ RB×Ñ , Ñ is the number of atoms in D̃, andD� denotes the part ofD correspond-
ing to the index�. Compared with the overcomplete dictionaries designed by manymethods
[4, 11, 39], the proposed compact dictionary turns to be undercomplete when the number
of training data is small. In fact, as stated by [24], the overcomplete dictionary is not nec-
essarily required for classification tasks, but plays a great role to reconstruction tasks. For
example, methods proposed by [24] and [27] achieve the good classification performance
when using the undercomplete dictionary.

After obtaining the compact dictionary, we use (3) and (4) with the corresponding
compact dictionary D̃ to complete the classification task, i.e.,

Â = argmin
A

‖X − D̃A‖F , s.t . ‖A‖row,0 ≤ K (14)

Class(x) = argmin
c

‖X − D̃cÂc‖F , c ∈ Sspa ∪ Sspe. (15)

For a more clear representation, the detailed procedure of CDSR is summarized as
Algorithm 1.
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4 Experiments and analysis

4.1 Comparisonmethods andmetrics

To demonstrate the performance of the proposed CDSR, several related methods have been
used for comparison, i.e. SVM [23], SVM-CK [2], OMP [4], JSRC [4], SASR [11], SADL
[30] and NLSS-RNN [42]. SVM and SVM-CK are the classical and popular SVM-based
HSI classifiers; OMP, JSRC, SASR and SADL are the SR-based methods, where SADL
employs the technique of dictionary learning, while the others adopts the full-sized dictio-
nary; NLSS-RNN is the popular deep-learning based approach, where a novel local spatial
sequential feature was constructed and then was fed into the RNN for classification. In addi-
tion, the above methods can also be classified into two categories according to the use of
spatial information. For a more clear representation, they are organized into a table as shown
in Table 1. In this paper, three commonly used quantitative metrics are used to evaluate the
performance of these methods. 1) Overall accuracy (OA): It denotes the ratio of correctly
classified test samples in total test samples, i.e., the sum of correctly classified test samples
divided by the total number of test samples. 2) Average accuracy (AA): It refers to the mean
value of classification accuracy for all individual classes. 3) Kappa coefficient (KA): It is a
statistic criteria in terms of omission and commission errors and can be used to measure the
degree of agreement between classification result and ground truth. It can be computed by
a confusion matrix, the detailed information is available in [18].

4.2 Experimental settings and results

For the SVM based methods, we choose the radial basis function (RBF) as the kernel
function, the regularization term and kernel parameter are obtained by cross-validation tech-
nique. For OMP and JSRC, the optimal parameters are set to be the same as [4]. The
parameters of SASR and SADL are also set as the same as the original paper [11, 30] respec-
tively. For the proposed CDSR, the neighboring window size remains as the same as JSRC
(i.e., 7×7, 15×15, 11×11 for Indian Pines, Salinas and Pavia University, respectively), since
there is no difference in describing the test samples with neighboring information between
JSRC and CDSR; the sparse constraint K is set to 3 by referring to [11]. The scanning win-
dow size and spectral similarity level J are determined by three-fold cross-validation. In the
following, the optimal experimental results are presented by different methods in the case
of above parameters on three HSI datasets, and all results are the average values on ten runs.
For the NLSS-RNN, the detail data listed in following table are derived from the original
paper [42].

Indian Pines dataset Indian Pines dataset was collected over the Indian Pines test site
in North-western Indiana via Airborne/Visible Infrared Imaging Specrometer (AVIRIS)

Table 1 The characteristics of comparison methods

Types of methods Spectral-spatial classifer Only spectral classifer

SR-based (dictionary learning) SADL –

SR-based (full-sized dictionary) JSRC, SASR OMP

SVM-based SVM-CK SVM

Deep-learning-based NLSS-RNN –
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sensor, the ground materials can be classified into 16 classes, the spatial size of this scene
is 145 × 145, and its spatial resolution is 20 m. The original data contains 220 bands with
the same size corresponding to the different narrow wavelength. 20 polluted bands were
removed. Thus, only 200 bands were used in the experiment.

We randomly extract 10% labeled pixels from each class as the training set and the rest
as the test samples, as shown in Table 2. The classification accuracies obtained by various
classifiers are also shown in Table 2. As can be seen, the accuracies of spectral-spatial
classifers (i.e. SVM-CK, JSRC, SASR, SADL, NLSS-RNN) are obvious higher than that
of the only spectral classifers (i.e. SVM, OMP). The reason is that the integration of spatial
information can enhance the robustness of single spectral pixel to noise. Moreover, it is easy
to observe that the proposed CDSR outperforms the other classifiers in terms of OA, AA
and KA. And in most land cover categories, CDSR achieves the highest accuracy among
all these classifers. Especially, there is no misclassification for class 1, 4, 6, 7, 8, 13 and
14. Such effectiveness of CDSR comes from the fact that the spatial location expanding
strategy provides more precise scope for compact dictionary since the Indian Pines dataset is
composed of many smooth regions. And the fewer classes contained in compact dictionary
mean less interference from other unrelated classes to the sparse coefficients. Besides, the
superior performance of CDSR can be partly attributed to that it not only exploits the label
information of training samples, but also takes full advantage of the class information of the
classified test samples during the classification.

In order to further verify the performance of the proposed CDSR, we test all mentioned
methods using training samples obtained by manually block sampling as shown in Fig. 5b

Table 2 Overall, average, and per class accuracy (%), and kappa coefficient of indian pines data set with
different methods

Class �Train �Test SVM SVM-CK OMP JSRC SASR SADL NLSS-RNN CDSR

1 5 41 58.14 87.66 44.88 90.49 98.78 94.63 95.12 100.00

2 143 1285 73.99 90.73 55.81 95.42 97.03 93.91 98.21 99.50

3 83 747 72.14 92.15 51.06 93.20 98.53 95.15 99.60 98.15

4 24 213 62.67 85.23 37.56 93.47 93.99 91.97 97.18 100.00

5 48 435 85.41 94.99 82.92 93.98 98.00 96.44 97.93 98.37

6 73 657 89.48 96.77 91.58 95.92 97.91 99.19 98.33 100.00

7 3 25 77.90 79.45 73.60 85.20 98.80 100.00 96.00 100.00

8 48 430 94.85 98.41 93.98 99.05 100.00 100.00 100.00 100.00

9 2 18 48.32 60.70 28.89 50.56 87.78 90.00 94.44 97.78

10 97 875 73.90 88.80 63.94 90.82 95.68 93.35 97.60 99.98

11 246 2209 77.67 92.02 71.38 96.30 98.74 97.85 99.28 99.33

12 59 534 77.96 90.98 42.77 89.01 95.97 91.63 98.31 98.48

13 20 185 90.63 98.66 90.97 88.43 99.14 99.41 100.00 100.00

14 126 1139 93.25 98.03 89.78 99.04 100.00 99.78 99.21 100.00

15 39 347 66.07 92.58 36.14 94.38 95.24 98.56 98.85 99.86

16 9 84 98.84 99.03 89.76 84.88 98.10 94.17 100.00 88.93

OA – – 79.98 92.90 68.77 94.77 97.89 96.53 98.75 99.34

AA – – 77.57 90.39 65.31 90.01 97.11 96.00 98.13 98.77

KA – – 0.758 0.917 0.655 0.933 0.976 0.968 0.990 0.993

The bold denotes the best result among all methods
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(a) (b) (c) (d ) (e)

(f ) (g) (h) (i ) (j )

Fig. 5 Classification maps of Indian Pines in block sampling and the corresponding overall accuracy.
(a) Ground Truth, (b) Training data, (c) Test data, (d) SVM (64.74%), (e) SVM-CK (62.38%),
(f) OMP (59.02%), (g) JSRC (72.54%), (h) SASR (75.54%), (i) SADL (67.47%), (j) CDSR (79.32%)

(i.e., each class of training samples are gathered together and not distributed in all regions
of the same class). It can be seen from Fig. 5d–j that many regions without training data
suffer from misclassification for all methods. The main reason is that the selected training
samples with the block sampling are unable to well cover the spectral variations of the same
land-cover class in different regions and the mentioned spatial-spectral methods only utilize
the local spatial information. However, CDSR still achieves the best results compared with
other classifiers. Also, by introducing the spectral information, CDSR can handle those
regions that are not adjacent with training data (e.g. most of pixels enclosed by red line are
also recognized correctly as shown in Fig. 5j.

Salinas dataset The scene of Salinas dataset is located at Salinas Valley, California. 16
land covers were labeled in this area for groundtruth. The spatial size of the Salinas image
is 512× 217, and the spatial resolution of this image is 3.7 m per pixel. After discarding 20
water absorption bands, the remained 200 bands were used as the input of classifiers.

The Salinas dataset consists of many homogeneous regions and its spatial resolution is
very high. In order to better demonstrate the superior performance of the proposed meth-
ods, we only extract 1% label-known pixels as training samples and the rest of label-known
pixels are used to test the classification model as shown in Table 3. The visual classifica-
tion maps are shown in Fig. 6. It can be observed that almost all classifiers make an obvious
misclassification in the upper left area marked by yellow and blue of their corresponding
classification maps except the proposed CDSR. The reason for this phenomenon lies in the
fact that the spectral differences of these two area (corresponding to the untrained grapes
and untrained vinyard in the land) are very small, and the local spatial information used in
these specal-spatial classifiers (i.e. SVM-CK, JSRC, SASR, SADL, CDSR) is beneficial to
eliminate the influence of noise samples but it is not obvious for increasing the discrimi-
nation of spectral feature among land covers. While, for the CDSR, it can exclude many
extraneous classes that are unrelated with target pixel in terms of spatial location from the
decision range by using the designed compact dictionary, and the introduced spatial loca-
tion expanding strategy can spread the local explicit label information to a wider region.
Therefore, the CDSR obtains a more smoother classification map than other spectral-spatial
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Table 3 Overall, average, and per class accuracy (%), and kappa coefficient of salinas data set with different
methods

Class �Train �Test SVM SVM-CK OMP JSRC SASR SADL NLSS-RNN CDSR

1 20 1989 99.98 99.91 97.97 100.0 100.0 99.16 92.26 100.0

2 37 3689 98.23 99.44 98.50 99.90 99.82 99.63 99.76 99.94

3 20 1956 94.24 95.53 94.04 98.89 99.64 94.62 99.49 99.97

4 14 1380 97.46 97.56 99.21 70.30 99.93 95.35 99.78 97.45

5 27 2651 96.64 98.23 95.38 84.56 98.88 95.32 97.70 96.38

6 40 3919 99.46 99.97 99.49 94.29 99.97 99.46 99.77 100.0

7 36 3543 98.58 98.67 99.21 96.84 99.99 99.33 99.75 99.46

8 113 11158 78.81 89.89 72.50 96.48 97.52 95.99 94.76 99.81

9 62 6141 98.66 99.15 97.59 99.99 100.0 98.05 99.92 99.95

10 33 3245 90.74 91.11 85.66 94.10 99.00 92.87 96.95 97.90

11 11 1057 89.07 85.64 95.35 85.79 100.0 90.96 99.91 100.0

12 19 1908 97.61 97.75 99.37 86.54 99.98 96.87 99.90 100.0

13 9 907 95.75 96.78 97.57 74.49 99.66 91.25 98.79 100.0

14 11 1059 93.59 94.72 90.52 79.99 97.78 90.74 98.30 100.0

15 73 7195 76.57 84.84 58.89 93.20 94.39 95.56 93.01 98.91

16 18 1789 98.83 98.43 92.97 99.63 99.14 96.43 99.89 99.54

OA – – 90.53 94.14 86.30 94.19 98.51 96.49 97.23 99.38

AA – – 94.01 95.48 92.14 90.94 99.11 95.72 98.12 99.33

KA – – 0.894 0.935 0.847 0.935 0.983 0.961 0.970 0.993

The bold denotes the best result among all methods

approaches. Moreover, the detailed data for quantitative metrics is presented in Table 3. It is
obvious that the proposed method outperforms other algorithms. Even compared to SASR,
SADL and NLSS-RNN, the overall accuracy of CDSR is increased by 0.87%, 2.89% and
2.15%, respectively.

University of Pavia dataset Pavia University (PaviaU) dataset, which captured by the
Reflective Optics System Imaging Spectrometer (ROSIS) sensor, is of size 610 × 340 with
115 spectral bands, 12 noisy bands among all bands were removed so that we can allevi-
ate its negative effect to classification. This dataset possesses very high spatial resolution
(1.3-meter pixels), and a groundtruth labeled with 9 classes is provided.

By referring to [42], we randomly extract 9% labeled pixels from each class as a bal-
anced training set, and the rest of 91% as the test set (see Table 4). The ground truth map
and classification maps of University of Pavia are displayed in Fig. 7. It can be seen that the
Pavia University dataset consists of many long and scattered regions which are more com-
plicated than the previous two datasets. Looking closely at Fig. 7b and d, there are many
salt and pepper noise points in the homogenous regions, because the corresponding classi-
fies only take the spectral information into consideration. Furthermore, we can observe that
SASR, SASL and CDSR obtain slightly difference classification maps. All of them are very
close to the ground truth map. Hence, for a more effective comparison, the detailed quan-
titative metrics are also given in Table 4. It is easy to find that CDSR achieves the highest
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 Groundtruth map and classification maps of different methods on Salinas dataset (1% training data for
each class in random sampling). (a) Ground Truth, (b) SVM, (c) SVM-CK, (d) OMP, (e) JSRC, (f) SASR,
(g) SADL, (h) CDSR

accuracy in class 1, 2, 6 and 8. Also, it should be noted that CDSR is not as well as NLSS-
RNN in terms of OA, AA and KA. The reason may be that the small and scattered regions
in PaviaU are conductive to the spatial expanding strategy, and a relative large neighboring
window size was set in CDSR for balancing other regions. While, the neighboring window
size of this setting is not suitable for the small and scattered area. Due to this reason, class
4 and 9 get a relative lower results. In spite of this, compared with the SR-based methods,
the CDSR still achieves a comparative result for this dataset in overall.

4.3 Computational complexity and running time

For the proposed CDSR, the time-consuming steps consist of three parts: searching scan
window, calculating spectral angle mapper, and solving sparse coefficient by SOMP algo-
rithm. For a classification task with M test samples, the computation complexity of
determining spatial label set by searching scan window is O(p2M). The time complexity
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Table 4 Overall, average, and per class accuracy (%), and kappa coefficient of university of pavia data set
with different methods

Class �Train �Test SVM SVM-CK OMP JSRC SASR SADL NLSS-RNN CDSR

1 597 6034 94.44 97.47 76.04 98.21 99.20 98.59 99.67 100.00
2 1678 16971 96.11 99.47 95.13 99.97 99.99 99.79 99.90 100.00
3 189 1910 85.11 94.42 62.12 98.78 99.65 99.25 99.69 99.09

4 276 2788 96.81 99.63 84.35 93.26 87.18 97.65 99.21 91.27

5 121 1224 99.57 99.46 99.61 98.28 100.00 99.74 100.00 97.22

6 453 4576 92.79 98.98 55.79 99.89 99.96 99.80 99.85 99.97
7 120 1210 87.55 96.91 79.17 98.53 100.00 99.40 99.34 98.47

8 331 3351 85.76 92.18 77.22 98.40 99.47 98.37 99.67 99.99
9 85 862 99.97 100.00 95.29 71.83 96.44 99.98 100.00 92.98

OA – – 94.03 98.17 83.26 98.29 98.81 99.29 99.77 99.04

AA – – 93.12 97.61 80.52 95.24 97.99 99.17 99.70 97.67

KA – – 0.922 0.974 0.772 0.979 0.987 0.991 0.997 0.989

The bold denotes the best result among all methods

of calculating spectral angle mapper is O(3CMB). By referring to [11], we know that the
main operation of SOMP lies in the scalar multiplication, and its number of computation is∑

k(QB(Ñ − k) + 2k2B + k3 + kBQ), k = 1, 2, · · · , K . Therefore, the final computation
complexity is O(M(QKBÑ + 2K3B + K2BQ + 3CB + p2)).

In this part, we also compare the running time of the mentioned methods in 4.1 with
the environment of MATLAB R2014a, Intel Core i5-4590 CPU 3.30GHz and 4GB RAM.
Because the NLSS-RNN needs another totally different environment and the original paper
does not provide the corresponding data, the running time of NLSS-RNN is not listed in
Table 5 along with other methods. It can be seen that the SVM-based methods is less time-
consuming, and the C interface called in its source code make a certain contribution. In
addition, it should also be noted that the proposed CDSR is the fastest among all SR-based
spectral-spatial classifiers including the full-sized dictionary based JSRC, SASR as well
as the dictionary learning based SADL. The reason is that the compact dictionary greatly
shortens the solution time of the sparse coefficient, and there are no additional iteration and
update operation required in the construction of compact dictionary. Although, there is no
detailed data about the time-consuming of NLSS-RNN, while, we know that the NLSS-
RNN requires 1000 iterations to ensure the convergence of the algorithm according to the
original paper [42]. Therefore, the training time of NLSS-RNN should not be too short.
Overall, the proposed CDSR is efficient.

4.4 Influence of parameters

Both scanning window size and spectral similarity level are the key parameters to influence
the scale of compact dictionary. Thus, we analyze the influence of the two parameters in
terms of classification accuracies on Indian Pines, Salinas and Pavia University datasets.
From Fig. 8a, it can be seen that with the increasing size of the scanning window, the over-
all accuracy decreases generally; in particular, when the scanning window size is expanded
to 7 × 7 or more larger, the accuracy varies little. This can be explained that the compact
dictionary contains bigger number of classes with the increasing size of the scanning win-
dow, and when the window size is large enough, the number of classes contained in the
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Fig. 7 Groundtruth map and classification maps of different methods on University of Pavia dataset
(9% training data for each class in random sampling) (a) Ground Truth, (b) SVM, (c) SVM-CK, (d) OMP,
(e) JSRC, (f) SASR, (g) SADL, (h) CDSR

dictionary will not fluctuate greatly. From Fig. 8b, it can be observed that with the higher
of spectral similarity level, the classification accuracy is gradually decreased, which can be
explained by the fact that the compact dictionary degrades to be full-sized dictionary with
the increasing spectral similarity level.

Table 5 The average running time (seconds) for ten runs on indian pines, salinas and university of pavia
datasets

Dataset SVM SVM-CK OMP JSRC SASR SADL CDSR

IndianPines 1.08 2.52 6.63 31.62 34.03 106.43 12.19

Salinas 3.42 10.63 29.50 385.12 225.56 188.39 141.64

PaviaU 8.37 16.80 32.96 445.42 679.67 266.82 135.34

The bold denotes the best result among all methods
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Fig. 8 Overall accuracy with varying scanning window size and spectral similarity level on Indian Pines,
Salinas and Pavia University

5 Conclusion

In this paper, we proposed a HSI classification method based on compact-dictionary-based
sparse representation by uniting the spatial location expanding strategy and the spectral
information. Experiments on three HSI datasets verify the performance of the proposed
method in terms of accuracy and efficiency. In the future work, we will try to further improve
the classification accuracy in block sampling by combining the global spatial information
to eliminate the influence caused by the spectral variations of the same land-cover class in
different regions.
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