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Abstract

In this work, we propose to reduce the complexity of HEVC video encoding by predicting the
split decisions of coding units. We use a sequence-dependent approach in which a number of
frames belonging to the video being encoded are used for generating a classification model. At
each coding depth of the coding units, features representing the coding unit at that particular
depth are extracted from both the present and previously encoded coding units. The feature
vectors are then used for generating a dimensionality reduction model and a classification
model. The generated models at each coding depth are then used to predict the split decisions
of subsequent coding units. Stepwise regression, random forest reduction and principal
component analysis are used for dimensionality reduction; whereas, polynomial networks
and random forests are utilized for classification. The proposed solution is assessed in terms of
classification accuracy, BD-rate, BD-PSNR and computational time complexity. Using seven-
teen video sequences with four different classes of resolution, an average classification
accuracy of 86.5% is reported for the proposed classification system. In comparison to regular
HEVC coding, the proposed solution resulted in a BD-rate loss of 0.55 and a BD-PSNR of
—0.02 dB. The average reported computational complexity reduction is found to be 39.2%.

Keywords HEVC - Pattern recognition - Video compression

1 Introduction

The High Efficiency Video Coding (HEVC) standard is one of the successors of the well-
known MPEG-4 AVC (H.264 or MPEG-4 Part 10). It is designed to target various
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applications, especially those dealing with Ultra High Definition (HD) content. The HEVC
project was formally initiated when a joint Call for Proposals was issued by the ITU-T Video
Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG) in
January 2010 [30]. The prime focus was directed towards significantly improving the com-
pression performance relative to existing standards.

After its completion in January 2013, the HEVC standard provides twice the com-
pression capabilities as that offered by its predecessor. Given that the appropriate encoder
settings are used, around 50% bit-rate reduction is possible, while maintaining minimal
video quality level loss [21]. However, this coding efficiency is introduced at the cost of
increasing the encoding computational complexity, which can reach up to 40% more than
that of H.264/AVC [34].

Among other factors, both the enhanced compression efficiency and the increased
encoding computational complexity can be attributed to HEVC’s usage of flexible
partitioning structures. HEVC uses quad-tree Coding Tree Units (CTUs), Prediction Units
(PUs), and Residual Quad-Trees (RQTs) rather than macroblocks (MBs). In order to
achieve the best configuration in terms of selecting the optimal partitioning structure, an
exhaustive rate-distortion optimization (RDO) process takes place, which is the main
reason behind the intensification of the computational complexity. Most of the encoding
time involves recursively repeating the RDO process at each Coding Unit (CU) depth level
for each structure, where every combination of encoding structure is tested and the one that
minimizes the rate-distortion (RD) cost is chosen [31].

Several early termination algorithms for optimizing the encoding process in HEVC
can be found in the literature, where their aim is to reduce the computational
complexity while any minimizing performance degradation. Among many, some
approaches utilize the textural or structural characteristics of a given CU [1, 7, 9,
12, 22, 24, 28, 35, 38, 40, 41], while others use machine learning techniques [4, 6,
11, 14-17, 29, 36, 39]. The optimizations are not limited to HEVC inter-coding as
some also considered enhancing intra-coding [16, 22, 24, 28]. In this field of research,
utilizing machine learning techniques as a tool to minimize RD efficiency losses is
limited, and most algorithms proposed do not achieve superior results in terms of
computation complexity reduction without introducing significant video quality level
losses.

In this work, we use a sequence-dependent approach to model the relationship
between CU feature variables and split decisions. The feature variables are extracted
from both the present CU and its surrounding spatial and temporal CUs. Additionally, we
use dimensionality reduction techniques for the three CU depths of 64 x 64, 32 x 32 and
16 x 16. This is needed to reduce the number of extracted features. The feature extraction
and modeling is also performed at three CU coding depths. We use stepwise regression,
random forest reduction and principal component analysis (PCA) for dimensionality
reduction. Moreover, we utilize polynomial networks and random forests for
classification.

This paper is organized as follows. Section 2 presents a review of algorithms proposed in the
literature that are reduced the encoding computational complexity. The overall CU split
prediction system proposed is overviewed in Section 3. The feature extraction process and
dimensionality reduction are discussed in detail in Section 4 in addition to the classification
tools and arrangements used in this work. The experimental setup and experimental results are
presented in Section 5. Lastly, Section 6 concludes the paper.
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2 Related work

As mentioned earlier, HEVC introduced significant coding efficiency improvements at the
cost of increasing the computational complexity. Therefore, existing research work is
conducted to limit this computational complexity whilst minimizing the adverse effect on
compression efficiency. The work reported in [1, 7, 9, 12, 22, 24, 28, 35, 38, 40, 41]
investigated the textural or structural characteristics of CUs at a given CU depth to optimize
the HEVC encoding procedure. [41] proposed an inter-prediction optimization scheme,
where the CTU structure is analyzed in a reverse order. Alternatively, a subjective-driven
complexity control approach is presented in [7], which examines the relationship between
visual distortion and maximum depth of all largest CUs. Another complexity control
algorithm is proposed in [12], where an early termination condition is defined at each CU
depth based on the content of the video sequence being encoding, the configuration files
and the target complexity.

In [40], the authors present a hierarchical structure-based fast mode decision scheme.
A fast CU decision algorithm is presented in [38], where the coded block flag and RD
costs are checked to determine if intra- and inter- PUs can be skipped. In [35], a two-
layered motion estimation based fast CU decision process is proposed, which uses the
sum of absolute differences (SAD) estimation to extract the SAD costs for a CU and its
sub-CUs. [22] speeds up the HEVC intra-coding process mainly by using encoded CU
depths and RD costs of co-located CTU to predict both the current CU’s depth search
range and the RD cost for CU splitting termination. Local texture descriptors or image
characteristics were used in [9, 24, 28] to allow faster CU size selection. A spatiotem-
poral based CU encoding technique is explored in [1], where sample-adaptive-offset
(SAO) parameters were utilized to predict the textural complexity of the CU being
encoded. The work in [5] introduces an interesting approach for predicting CU splitting
based on deep learning using a reinforced learning algorithm. The algorithm is also
capable of predicting the reduction in rate-distortion cost. The solution is applied to all-
intra configuration and results in a BD-rate loss of 2.5%. In [8], the authors proposed an
offline training algorithm based on random forests to predicting early termination of CU
splitting. Neighboring CU sizes are also used in determining the depth of the current CU.
The algorithm is applied to all-intra mode and reported a complexity reduction of 48.3%
with a BD-rate increase of 0.8%.

Other approaches utilized the Bayesian decision rule and other machine learning techniques
to improve the time complexity of an HEVC encoder. For instance, the work in [15, 16] uses
the Bayes’ rule to optimize PU and CU skip algorithms, respectively. In [14], the authors
present a joint online and offline learning-based fast CU partitioning method that uses the
Bayesian decision rule to optimize the CU partitioning process. The Bayesian decision theory
is also utilized in [29] along with the correlation between the variances of the residual
coefficients and the transform size to enhance the PU size decision process. Alternatively, a
fast CU splitting and pruning algorithm is proposed in [4], which is applied at each CU depth
according to a Bayes decision rule method based on low-complexity RD costs and full RD
costs. A fast CU size and PU mode prediction algorithm that uses the k-means clustering
method is introduced by [17].

On the other hand, [11] presents an early mode decision algorithm based on the Neyman-
Pearson approach. In [36], a fast pyramid motion divergence (PMD)-based CU selection
algorithm is proposed, where a k nearest neighbors (k-NN) like method is used to determine
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the optimal CU size. The work in [39] used a machine learning-based fast coding unit (CU)
depth decision method, where the quad-tree CU depth levels are modeled as a three-level of
hierarchical binary decision problem. The work proposed in [6] implemented early termination
techniques on CUs, PUs, and TUs using a set of decision trees grown with the aid of Waikato
Environment for Knowledge Analysis (WEKA) [10], an open source data mining tool.

3 System overview

In the proposed prediction system, the first 10% of frames of a video sequence are used for
training. Hence, modeling and prediction will be specific to one video as opposed to training
the classification system using many video sequences. The former training approach is known
as “video-dependent” modeling, while the latter is known as “video-independent” modeling.
The problem with the video-independent modeling is that it follows a one-size-fits-all ap-
proach in which there is an implicit assumption that the videos used for training are suitable for
predicting the CU split decisions of all other videos. Video-dependent modeling, on the other
hand, makes sure that the prediction model is most suitable for predicting the CU split
decisions of the remaining video content.

The concept of video-dependent modeling was previously introduced by the author in [23,
25, 27]. The first 10% of video frames were used for training and the prediction model is then
used throughout the sequence in a video transcoding context. If needed, the training can be
repeated periodically or in the case of detecting scene cuts. Reducing the percentage of train
frames might result in a less accurate classification model as the number of feature vectors in
the train set are reduced. Increasing the percentage, on the other hand, might result in a more
accurate classification model. However, the time at which the model is applied to predict the
split decisions of CUs will be delayed which decreases the overall gain in terms of compu-
tational complexity.

Figures. 1 and 2 present the flowcharts of the proposed training system where FV refers to
Feature Vectors. Figure 1 illustrates the data collection process of the training system. The
video encoder will run with normal compression operations for the first 10% of the video
frames during which, for each CU, features are extracted and recorded at the highest level,
which is typically 64 x 64. The corresponding split decision is also recorded. If the encoder
decides to split the CU, then the split decisions at the 32 x 32 and 16 x 16 levels will be
recursively calculated during which, the training system will record the features and corre-
sponding split decisions at 32 x 32 and 16 x 16 CU levels. The details of the selected feature
variables are discussed in the next section.

The output of this data collection process is three sets of data. Each data set contains feature
vectors and the corresponding split flags for 64 x 64, 32 x32 and 16 x 16 CU levels. The
second step in the training system is to map the feature vectors to the split decisions. This is
illustrated in Fig. 2. The result of this step is 3 training models that can be used for the
prediction of CU split decisions at 64 x 64, 32 x 32 and 16 x 16 CU levels. Prior to model
generation, there is an optional dimensionality reduction step. Again, this is applied at the three
CU levels and the dimensionally reduced models are stored and used for reducing the
dimensionality of the feature vectors during the testing phase, as shall be explained next.
The system modeling and dimensionality reduction techniques used in this work are explained
in the next section.
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Fig. 1 Flowchart of data collection during the training phase

Once the system is trained, the generated models are used to predict the split decisions of
the remaining CUs of the underlying video sequence. This process is illustrated in Fig. 3.
Basically, feature variables are extracted at the highest CU level, which in this work it is 64 x
64. The corresponding train model is then used to predict the split flag. If predicted as ‘no
split,” then early termination is applied. Otherwise, the second train model is applied for each
of the 32 x 32 CU levels and 4 split flags are predicted. If any of the flags are predicted as
‘split’, then the process is repeated at the 16 x 16 CU levels using the third train model. At each
level, feature vectors are calculated and reduced in dimensionality if required. Again, dimen-
sionality reduction models are calculated during the training phase.
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Fig. 2 Flowchart of CU split
modeling in the training phase
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This section introduces the proposed feature extraction and dimensionality reduction process.
It also reviews the machine learning techniques used.

4.1 Feature extraction and dimensionality reduction

In this work, feature extraction is applied at each of the three coding levels (i.e. 64 x 64, 32 x
32 and 16 % 16). Common to all levels are features extracted from surrounding CTUs. The
surrounding CTUs are previously encoded and include the CTUs at the following locations
relative to the current CU: left, top-left, top, top-right and co-located from the previous frame.
The total number of surrounding CTUs is therefore 5. The complete list of extracted features
and their description are listed in Table 1, where MVs refer to Motion Vectors. The first 15
features in Table 1 belong to the current CU, whereas the remaining 55 features belong to
surrounding CTUs. The total number of features is therefore 70.

As illustrated in Fig. 2 above, the dimensionality of these features can be reduced prior to
generating the training model. In this work, we generate experimental results with and without
dimensionality reduction. We propose the use of the following dimensionality reduction
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Fig. 3 Flowchart of applying the train models to predict the CU split flags
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techniques: stepwise regression, principle component analysis (PCA) and reduction based on
random forests. In the following, we briefly summarize the use of each relative to the proposed
solution. It is important to mention that all dimensionality reduction techniques are applied to
the train data set as illustrated in Fig. 2. The generated model is then applied to the test data set.

Stepwise regression is a feature selection algorithm; however, it can be used as a dimen-
sionality reduction technique as reported in [26]. In this work, we treat the feature vectors of
CUs as predictors and the split decisions as response variables. As such, the problem can be
formalized in a regression context. The idea of stepwise regression is to start with one feature
variable and compute its correlation with the split decision. Then, another feature variable is
added and the correlation is computed again. The significance of adding another feature
variable is assessed by means of examining the P value at a 0.05 level of significance. If the
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Table 1 Feature variables representing CUs

Feature (length) Description

CU depth (1) Coding depth: 0=64 %64, 1=32x32,2=16x16

Prediction mode (1) 0 =inter, 1 =intra

PU type costs (11) PU RD cost of (Skip, 2Nx2N, 2NxN, Nx2N, NxN, 2NxuN, 2NxdN,
INx2N, and rNx2N), and intra-PU modes (2Nx2N and NxN)

Merge flag (1) Merge flag of current CU

Skip flag (1) Skip flag of current CU

Total distortions of surrounding CTU (5) Total distortion cost of each of the surrounding CTUs

Average coding depths of Surrounding ~ Average coding depth of each CTUs of the surrounding CTUs
CTUs (5)

Variance of coding depths of surrounding Variance of coding depth of each CTUs of the surrounding CTUs
CTUs (5)

Average and variance of MVx and MVy  Average and variance of MVx and MVy of surrounding CTUs for
of surrounding CTUs (40) lists List0 and List]. Normalized by frame distance.

added feature variable is found significant, then it is retained; otherwise, it is removed from the
list of variables. Likewise, once a variable is retained, the stepwise regression algorithm
proceeds by revisiting the previous feature variables and reassessing their significant, taking
into account that a new variable has been retained. The algorithm terminates when there are no
further feature variables to add or to eliminate. A full description of the algorithm can be found
in [20].

Once applied to the train data set at 64 x 64, 32 x 32 and 16 x 16 CU levels, the result of the
stepwise regression is simply 3 sets of indices of the retained feature variables, one set for each
CU coding depth. These indices can be used to reduce the dimensionality of the feature vectors
during the testing phase. Since we are using a video-dependent approach to learning in this
work, the number of retained feature variables varies from one video sequence to the other.
Full information about the experimental setup are given in the experimental results section;
nonetheless, for completeness, we briefly discuss the results of applying the stepwise regres-
sion algorithm here. The number of retained variables for each video sequence is given in
Table 2. The table lists the average number of retained CU variables with QP values of {22, 27,
32 and 37}. Since 3 models are generated, the table lists the retained variables at 64 x 64, 32 x
32 and 16 x 16 CU coding levels. A full example showing specific names of retained variables
for the RaceHorses sequence is shown in Table 3.

In this work, we also experiment with dimensionality reduction using random forests. In
this approach, we generate a large set of trees against the CU split decision. Each tree is trained
on a small number of feature variables. The usage statistics of each feature variable can be used
to find an informative subset of features. More specifically, if a feature variable is repeatedly
selected as best split, it is consequently a good candidate to retain. More information about this
algorithm can be found in [18].

Here, a random forest of 100 trees is grown, where the maximum number of decision splits
or branch nodes is set to be the initial set of 70 features. The training dataset is sampled for
each decision tree with replacement and the feature variables selected at random for each
decision split are chosen without replacement within the same decision tree. The importance of
each of these features in predicting the correct classification of a test instance from the out-of-
bag data is computed and used to select the features whose raw importance score make up 80%
of the total importance score. The out-of-bag data is the set of instances that were left out
during the training process of a given tree in the random forest.
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Table 2 Retained variables using stepwise regression

Video sequence Avg. # retained features
64 % 64 32x% 32 16x 16

RaceHorses (384 x 192) 10 11 15
BlowingBubbles (384 x 192) 4 13 12
BQSquare (384 x 192) 7 17 17
BasketballPass (384 x 192) 9 15 13
RaceHorses (832 x 448) 7 14 19
PartyScene (832 x 448) 14 27 28
BQMall (832 x 448) 14 21 22
BasketballDrill (832 x 448) 13 13 16
ParkScene (1920 x 1024) 20 30 26
Kimonol (1920 x 1024) 17 16 14
Cactus (1920 x 1024) 20 22 28
BQTerrace (1920 x 1024) 19 24 27
BasketballDrive (1920 x 1024) 16 18 23
Traffic (2560 x 1600) 22 25 26
PeopleOnStreet (2560 x 1600) 17 28 31
NebutaFestival (2560 x 1600) 16 20 24
SteamLocomotiveTrain (2560 x 1600) 18 20 24
Average 14 19 21

The number of retained variables, using random forests, for each video sequence is given in
Table 4. Similar to Table 2 above, the table lists the average number of retained CU variables
with QP values of {22, 27, 32 and 37}. Since 3 models are generated, the table lists the
retained variables at 64 x 64, 32 x 32 and 16 x 16 CU coding levels. A full example showing
specific names of retained variables for the RaceHorses sequence is shown in Table 5.

Lastly, we also experiment with dimensionality reduction using PCA. In this ap-
proach, an orthogonal transformation is used to transfer the data from the feature domain
to the principle component domain. The first principle component of the transformed
data account for the highest variability in the feature data. One drawback of PCA is that
it results in a reduced data set that cannot be directly interpreted. This is not the case for
the other two dimensionality reduction techniques used in this paper. The number of

Table 3 Stepwise regression, example retained variables for 32 x 32 depth level with QP =32

Feature (length) Retained variables

CU depth (1) -

Prediction mode (1) Prediction mode

PU type costs (11) Skip RD cost, 2Nx2N-inter RD cost, 2Nx2N-intra RD cost
Merge flag (1) -

Skip flag (1) Skip flag status

Total distortions of surrounding CTU (5) Total distortion in Left CTU, Total distortion in Collocated CTU

Average coding depths of Surrounding ~ Average coding depth in Left CTU, Average coding depth in Upper
CTUs (5) CTU, Average coding depth in Collocated CTU

Variance of coding depths of surrounding Variance of coding depth in Left CTU, Variance of coding depth in
CTUs (5) Upper CTU

Average and variance of MVx and MVy  Variance of MVx (Listl) in Left CTU, Average of MVy (List0) in
of surrounding CTUs (40) Upper Right CTU
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Table 4 Retained variables using feature importance with random forests

Video sequence Avg. # retained features
64 % 64 32x% 32 16x 16

RaceHorses (384 x 192) 8 13 10
BlowingBubbles (384 x 192) 12 14 14
BQSquare (384 x 192) 12 13 14
BasketballPass (384 x 192) 9 14 14
RaceHorses (832 x 448) 15 15 15
PartyScene (832 x 448) 13 14 14
BQMall (832 x 448) 14 15 13
BasketballDrill (832 x 448) 15 14 14
ParkScene (1920 x 1024) 15 14 14
Kimonol (1920 x 1024) 15 15 12
Cactus (1920 x 1024) 15 15 14
BQTerrace (1920 x 1024) 15 15 14
BasketballDrive (1920 x 1024) 15 15 15
Traffic (2560 x 1600) 14 14 14
PeopleOnStreet (2560 x 1600) 13 13 14
NebutaFestival (2560 x 1600) 15 15 14
SteamLocomotiveTrain (2560 x 1600) 13 14 13
Average 13.4 14.2 13.6

principle components retained depends on the chosen Proportion of Variance (PoV)
explained, which is 90% in this work. Again, the PCA is applied to the training dataset
at 64 x 64, 32 x32 and 16 x 16 CU levels. The resulting principle components are then
stored and used for reducing the test data set.

The number of retained variables, using PCA, for each video sequence is given in Table 6.
Similar to Tables 2 and 4 above, the table lists the average number of retained CU variables
with QP values of {22, 27, 32 and 37}. Since 3 models are generated, the table lists the
retained variables at 64 % 64, 32 x32 and 16 x 16 CU coding levels. Unlike stepwise regres-
sion and random forest variable selection, PCA results in a reduced data set that cannot be
directly interpreted; hence, there are no specific retained variable names to list.

Table 5 Random forest feature importance, example retained variables for 32 x 32 depth level with QP =32

Feature (length) Retained variables

CU depth (1) -

Prediction mode (1) -

PU type costs (11) Skip RD cost, 2Nx2N-inter RD cost, 2NxN RD cost, INx2N RD
cost, Nx2N RD cost, INxX2N RD cost, 2NxdN RD cost, 2NxuN
RD cost, 2Nx2N-intra RD cost

Merge flag (1) -

Skip flag (1) Skip flag status

Total distortions of surrounding CTU (5) Total distortion in Upper CTU, Total distortion in Upper Left CTU

Average coding depths of Surrounding  Average coding depth in Upper CTU

CTUs (5)
Variance of coding depths of surrounding Variance of coding depth in Upper Right CTU, Variance of coding
CTUs (5) depth in Upper Left CTU

Average and variance of MVx and MVy —
of surrounding CTUs (40)
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Table 6 Retained variables using PCA

Video sequence Avg. # retained features
64 % 64 32x 32 16x 16

RaceHorses (384 x 192) 8 24 25
BlowingBubbles (384 x 192) 20 26 26
BQSquare (384 x 192) 20 22 22
BasketballPass (384 x 192) 19 20 21
RaceHorses (832 x 448) 19 30 30
PartyScene (832 x 448) 29 30 30
BQMall (832 x 448) 27 29 29
BasketballDrill (832 x 448) 24 24 25
ParkScene (1920 x 1024) 29 31 31
Kimonol (1920 x 1024) 29 29 27
Cactus (1920 x 1024) 27 28 29
BQTerrace (1920 x 1024) 31 31 32
BasketballDrive (1920 x 1024) 29 29 29
Traffic (2560 x 1600) 22 23 24
PeopleOnStreet (2560 x 1600) 30 34 34
NebutaFestival (2560 x 1600) 29 30 31
SteamLocomotiveTrain (2560 x 1600) 28 29 30
Average 24.7 27.6 279

4.2 Classification methods

In this work, we model the relationship between the CU features and split decisions using two
classification tools; namely polynomial networks [33], random forest [3] .

In the polynomial networks, we experiment with a second order polynomial classifier.
In the case of random forests, 100 trees are grown, where the maximal number of branch
nodes is the square root of the number of retained feature variables. This is determined
based on the out-of-bag estimates of the features’ importance in the tree ensemble. Based
on the retained features, the training dataset is sampled for each decision tree with
replacement. The variables selected at random for each decision split are chosen without
replacement within the same decision tree. As the purpose of growing trees is classifi-
cation, only one observation or class label can be seen per tree leaf. The arrangement in
which we combine the classification tools with the dimensionality reduction techniques
are presented in Table 7.

Table 7 Arrangement of classification solutions

Solution Classifier Dimensionality reduction
Stepwise & Polynomial networks with second order Stepwise regression
Polynomial expansion
PCA & Polynomial Polynomial networks with second order PCA with PoV of 90
expansion
R.F. Select & R.F. Random Forest Feature importance with random
forests
R.F. Random Forest Not used
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5 Experimental results

We assess the performance and efficiency of the proposed solutions by implementing them in
the HM reference software version 13.0 [13]. All video sequences are encoded with QPs of
{22, 27,32, and 37}. The main profile and the standard random-access temporal configuration
are used. The same motion estimation parameters are used in both the original and proposed
video coders. For a fair comparison with [14], we use the HEVC video test sequences. The
sequence resolutions are Class A (2560 x 1600), Class B (1080 pixels), Class C (800 x 480),
and Class D (400 x 240). A total of 17 video sequences are used as reported in Table 8. We ran
the experimental results on a PC with Intel Core i7-37400QM, 2.7-GHz CPU with a 16-GB
DDR3 RAM. Compression efficiency is quantified in terms of BD-rate and BD-PSNR. The
compression times using the proposed solutions are also computed and compared with the
corresponding times obtained from running the unmodified HEVC encoder. Furthermore, the
classification accuracy of the proposed classification systems is presented. We start by
reporting the classification accuracy of the CU split prediction. Table 9 presents the overall
classification accuracies of the 4 proposed solutions. These results are the average for all video
sequences coded with QPs of {22, 27, 32 and 37}. The table reports the classification results
for the 3 models generated according to the CU coding depth. The results indicate that the
average classification accuracy enhances slightly as the depth of the CU coding increases. The
results also show that the classification solutions using random forest are the most accurate. In
Table 10, the average classification results for individual video sequences using the “R.F.
Select & R.F.” solution are shown. The resolution of the video does not seem to affect the
classification accuracy. Moreover, the accuracies do not seem to vary much according to the
underlying video sequence as well.

In the following experiments, we report the coding efficiency of the proposed solutions
using a number of approaches; namely BD-rate, BD-PSNR [13] and Computational Com-
plexity Reduction (CCR). CCR is computed as

Table 8 List of video sequences used

Class D Video sequence Resolution Frame rate Bit depth
D D1 RaceHorses 384 %192 30 8
D2 BlowingBubbles 384 %192 50 8
D3 BQSquare 384 %192 60 8
D4 BasketballPass 384 x192 50 8
C Cl RaceHorses 832 x 448 30 8
C2 PartyScene 832 x 448 50 8
C3 BQMall 832 x 448 60 8
C4 BasketballDrill 832 x 448 50 8
B Bl ParkScene 1920 x 1024 24 8
B2 Kimonol 1920 x 1024 24 8
B3 Cactus 1920 x 1024 50 8
B4 BQTerrace 1920 x 1024 60 8
B5 BasketballDrive 1920 x 1024 50 8
A Al Traffic 2560 x 1600 30 8
A2 PeopleOnStreet 2560 x 1600 30 8
A3 NebutaFestival 2560 x 1600 60 10
A4 SteamLocomotiveTrain 2560 % 1600 60 10
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Table 9 Overall classification average of CU split prediction

Solution 64 x 64 32x32 16 x 16 Average
Stepwise & Polynomial 83.2 85.7 86.4 85.1
PCA & Polynomial 78.5 81.9 83.2 81.2
RF Select & RF 853 86.3 86.7 86.1
RF 86.2 86.5 86.8 86.5
Average 83.3 85.1 85.8 84.7

CCR = (T imeref .7T imepropasedSolutlon) / Timeref . (1 )

Where Time,,y is the time needed for regular encoding and 7imey,poseasotution 1 the time needed
to encode a sequence using the proposed fast encoder. In Table 11, the coding results of the 4
proposed solutions are listed. As mentioned earlier, all results are obtained with QPs of {22,
27,32 and 37}. The best coding results in terms of BD-rate and BD-PSNR are achieved by the
“R.F. Select & RF” and “R.F.” solutions. The reported results also indicate that, in general, the
coding efficiency enhances as the resolution of the video increases. The effect of the proposed
solution on the video quality in terms of BD-PSNR ranges from —0.05 to —0.02 dB. This gives
a clear indication that the effect of the proposed solution on the visual quality is minimal.
Nonetheless, we show example images of regular encoding and encoding using the proposed
in Fig. 4. As shown in the figure, there are no subjective artifacts as a result of the proposed
solution.

We report the time complexity in terms of CCR% in Table 12, where sequences are referred
to by the IDs listed in Table 8. We present the CCR% for two cases; the first case is the time
savings without taking the training or the model generation time into account, while the second
case is the CCR% with the training time being taken into account. In Table 12, it seems that

Table 10 Classification accuracy of CU splits for the “R.F. Select & R.F.” solution

Sequence ID R.F. Select & R.F.
64 x 64 32x32 16x 16 Average
D1 79.0 83.8 83.0 81.9
D2 85.1 84.7 83.7 84.5
D3 82.6 87.7 87.2 85.8
D4 87.1 88.1 83.6 86.3
Cl 85.3 84.7 86.0 84.9
C2 89.7 88.3 87.8 86.8
C3 91.6 87.7 85.2 86.9
C4 89.1 88.9 87.7 87.2
Bl 88.4 90.6 89.7 87.8
B2 80.3 77.0 823 84.0
B3 89.1 86.4 88.2 87.1
B4 88.1 90.1 89.6 87.7
BS 86.6 83.8 86.6 86.2
Al 89.6 91.1 91.2 88.1
A2 91.3 87.4 83.4 87.3
A3 64.0 80.5 88.3 83.2
A4 82.7 87.0 90.7 86.5
Average 85.3 86.3 86.7 86.1
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Table 11 Coding efficiency of proposed solutions

Sequence ID  Stepwise & Polynomial PCA & Polynomial ~ R.F. Select & R.F. R.E

BD-rate  BD-PSNR  BD-rate BD-PSNR BD-rate BD-PSNR BD-rate BD-PSNR

D1 2.58 —0.12 1.42 —-0.07 1.58 —-0.08 1.48 —0.07
D2 1.84 -0.07 0.87 —0.04 0.57 —0.02 0.53 —0.02
D3 1.23 —0.06 0.75 —0.04 0.46 —0.02 0.42 —0.02
D4 4.34 —0.21 2.45 —0.11 0.33 —0.02 0.50 —0.03
Avg. 2.50 -0.12 1.38 —0.06 0.74 —0.03 0.73 —-0.03
Cl 1.74 —-0.07 2.09 —-0.08 0.84 —0.03 0.78 —0.03
C2 1.04 —0.05 1.45 —0.07 0.69 —0.03 0.51 —0.02
C3 1.94 —0.08 1.84 —0.08 0.48 —0.02 0.38 —0.02
C4 1.59 —0.07 1.74 —0.07 0.52 —0.02 0.58 —0.02
Avg. 1.58 —0.07 1.78 —0.07 0.63 —-0.03 0.56 —0.02
B1 0.83 —0.03 1.29 —0.04 0.63 —-0.02 0.62 —0.02
B2 0.43 —0.02 0.76 —0.03 0.47 —0.02 0.38 —0.01
B3 0.81 —0.02 1.10 —0.02 0.56 —0.01 0.52 —0.01
B4 0.75 —-0.02 091 —-0.02 0.48 —-0.01 0.69 —0.01
BS 1.60 —0.04 1.17 —-0.03 0.46 —0.01 0.50 —0.01
Avg. 0.88 —-0.02 1.05 —0.03 0.52 —0.01 0.54 —0.01
Al 0.66 —0.02 1.52 —0.05 0.54 —0.02 0.45 —0.02
A2 1.35 —-0.06 3.72 —-0.16 1.07 —0.05 0.98 —-0.04
A3 0.11 0.00 0.04 0.00 0.05 0.00 0.11 0.00
A4 —0.04 0.00 0.1 0.00 -0.2 0.00 —0.27 0.00
Avg. 0.52 —0.02 1.30 —0.05 0.36 —0.02 0.32 —0.02
Overall Avg.  1.34 —0.06 1.35 —0.05 0.56 —0.02 0.54 —0.02

without giving consideration to the training time, all solutions provide similar complexity
reductions. However, because some of the training solutions are more computationally
demanding, when the training time is taken into account, the range of CCR% increases from
(39.1% - 37.5%) to (38.9% - 31.8%). Clearly, the most demanding training solution is the one
that uses random forest. This is followed by random forest with dimensionality reduction. In
this work, no attempt was taken to reduce the training time. However, one solution would be to
reduce the number of train feature vectors by means of sampling, therefore reducing the model
generation time. The reported results also indicate that, in general, the CCR% enhances as the
resolution of the video increases. For comparison with existing work, we refer to the work
reported in [14, 38]. These results contain the BD-rate and time savings only. However, the
time savings are computed as

ATime = (Tref ._T imeproposedSolution) / Ti imeproposedSalution (2)

This is different than the CCR reported in Table 11 above, where time savings are
calculated by dividing by Time,eference instead of Timey,oposedsorution- For a fair comparison, in
Table 13, we calculated the time savings of the proposed solution accordingly. In Table 13, we
compare the results of our best solution against existing work.

It was not to clear to the authors if the reviewed work considered the training time when
reporting the ATime%; hence, in Table 13, we report our results with and without taking into
account the training time. In the table, A1Time% refers to the time savings without training
time and A2Time% refers to the time savings taking into consideration the training time.
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Fig. 4 Example images of regular
encoding, (a & c) and encoding
with the proposed RF select & RF
solution (b & d). Image number 20
of RaceHorses and PartyScene
with QP of 27

As previously mentioned, it seems that the results of the proposed solution enhance with the
increasing sequence resolution. This is in contrast to the results reported in [14], where the BD-
rate seems to improve with decreasing sequence resolution. Moreover, the time reduction in
[14] does not seem to be affected by the resolution of the video sequences.

All in all, the results in Table 13 indicate that the proposed solution of “R.F. Select & R.F.”
has a clear advantage in terms of BD-rate and time savings. With reference to the average
reported BD-rate of existing work (i.e. 0.765 dB), the proposed solution provides an enhance-
ment of 27.1%. Additionally, this quality enhancement comes with further reduction in
computational time. More specifically, with reference to the average reported time savings
(i.e. -45.5%), the proposed solution provides an enhancement of 57% and 34% for Al Time%
and A2Time%, respectively.
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Table 12 Complexity reduction of proposed solutions using CCR (%)

Sequence  Stepwise & PCA & Polynomial R.F. Select & R.F. R.E
ID Polynomial

Without With Without With Without With Without With

train time  train time train time  train time train time  train time train time  train time
Dl 252 252 17.8 17.8 24.8 154 253 10.4
D2 33.7 33.7 31.2 31.1 32 19.7 31.8 114
D3 36.8 36.7 37 36.9 352 20.5 35.7 134
D4 34.8 34.7 31.6 31.5 30.6 17.8 32 11.1
Avg 32.7 32.6 29.4 29.3 30.6 18.4 31.2 11.6
Cl 304 30.3 27.8 27.8 31.7 28.3 31 26.0
Cc2 324 323 31.8 31.7 33.1 28.9 334 274
C3 33.6 335 32.1 32.1 33 29.2 32.1 26.6
C4 39.5 394 38 37.9 39.2 35.6 38.4 33.1
Avg 34 339 324 324 342 30.5 33.7 28.3
Bl 43.2 42.7 44.5 444 43.9 42.0 43.6 40.9
B2 41.5 41.5 42.7 42.6 44.1 43.0 42.7 41.2
B3 46.6 46.5 41.8 41.7 413 39.5 38.8 36.0
B4 47.3 47.1 47.5 47.5 48.4 46.5 49.7 46.6
B5 39.7 39.7 38.1 38.0 42.6 414 413 39.7
Avg 43.7 43.5 42.9 429 44.1 425 432 40.9
Al 47.3 46.8 47.3 44.8 48.7 46.3 48.7 46.1
A2 28.7 283 26.8 224 30.6 26.7 27.9 24.1
A3 50.2 50.2 473 44.1 51.7 50.9 52.9 52.1
A4 534 534 53.8 51.0 55.1 53.7 55.9 54.7
Avg 44.9 44.7 43.8 40.6 46.5 444 46.3 442
all Avg. 39.1 38.9 37.5 36.7 39.2 344 389 31.8

Table 13 Comparison with existing work [9, 20]

Seq. ID R.F. Select & R.F.

Random Forest

Reviewed [20]

Reviewed [9]

BD-rate AlTime% A2Time% BD-rate AlTime% BD-rate ATime% BD-rate ATime%

D1 1.58 -33.90 —-18.60 1.48 -34.60 0.90 —49.10 0.65 —26.60
D2 0.57 —49.30 -25.30 0.53 —48.40 0.33 -54.70 0.52 -36.20
D3 0.46 -59.30 -27.60 0.42 -60.70 0.47 —56.00 0.64 —43.20
D4 0.33 —45.30 -22.10 0.50 —48.20 0.65 -51.20 1.02 —28.40
Cl 0.84 —47.50 —40.30 0.78 —45.80 0.97 =57.30 1.22 —25.70
C2 0.69 -51.40 —42.10 0.51 —=52.70 0.25 -56.00 0.41 —34.30
C3 0.48 -50.80 —42.60 0.38 —48.80 0.77 -50.70 0.77 —40.70
Cc4 0.52 —66.00 —56.60 0.58 —63.50 0.52 —-53.30 1.06 -35.20
Bl 0.63 —-83.70 -77.90 0.62 —82.80 0.49 -50.30 0.40 —41.60
B2 0.47 —81.50 =77.70 0.38 -75.80 0.64 —61.80 0.46 -35.70
B3 0.56 =74.70 —69.60 0.52 —68.40 0.57 —48.00 0.48 —42.70
B4 0.48 —111.00 -103.30 0.69 —112.80 0.87 -59.90 1.13 —44.00
BS 0.46 —=75.70 =72.20 0.50 =72.50 1.33 -57.40 1.21 —46.40
Al 0.54  —101.00 —-92.00 0.45 -101.60 0.71 -55.20 0.57 —43.60
A2 1.07 —44.90 -37.40 0.98 -39.60 0.79 —42.50 0.94 —42.30
A3 0.05  —109.60 —-105.70 0.11 -113.80 0.78 —58.80 1.01 —47.60
A4 -0.23 —-128.10 -121.30  -027  -131.10 0.98 —48.70 1.43 -22.10
Avg. 0.56 -71.4 -60.7 0.54 -70.7 0.71 -53.6 0.82 -374
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Table 14 Comparison with existing work [25, 39]

Seq. ID R.F. Select & R.F. R.FE Reviewed [25] Reviewed [39]

BD-rate CCR% BD-rate CCR% BD-rate CCR% BD-rate CCR%

D1 1.58 24.80 1.48 25.30 1.99 30.90 1.26 28
D2 0.57 32.00 0.53 31.80 1.67 25.60 1.55 42
D3 0.46 35.20 0.42 35.70 2.34 33.04 1.02 53
D4 0.33 30.60 0.50 32.00 1.17 44.54 0.98 40
Cl 0.84 31.70 0.78 31.00 1.54 31.05 1.19 30
C2 0.69 33.10 0.51 33.40 2.53 39.83 1.3 44
C3 0.48 33.00 0.38 32.10 1.98 4235 1.56 43
C4 0.52 39.20 0.58 38.40 1.72 44.19 0.95 43
B1 0.63 43.90 0.62 43.60 1.54 30.34 1.8 55
B2 0.47 44.10 0.38 42.70 2.36 36.66 0.98 36
B3 0.56 41.30 0.52 38.80 2.48 43.76 1.81 51
B4 0.48 48.40 0.69 49.70 1.62 31.91 1.7 57
B5 0.46 42.60 0.50 41.30 4.60 46.00 1.39 39
Al 0.54 48.70 0.45 48.70 3.25 49.70 1.86 59
A2 1.07 30.60 0.98 27.90 1.95 38.67 1.1 39
A3 0.05 51.70 0.11 52.90 2.18 37.90 — -
A4 —0.23 55.10 -0.27 55.90 1.99 30.90 - -
Avg. 0.56 39.2 0.54 389 22 375 1.36 439

Lastly, the results in Table 14 present a comparison with the recent work reported in [36],
which uses CCR% for measuring the time complexity reduction. Table 14 lists the results for
15 video sequences that are used in both [36] and the proposed solution.

The results in the table show that the BD-rate of the proposed solution is on average 0.56,
whereas that of the proposed solutions [32, 36] are 2.2 and 1.36 respectively. This noticeable
enhancement in the BD-rate reduction comes at a slight advantage of increased computational
complexity, where the CCR of the reviewed work is 37.5% [36] and that of the proposed work
is 39.2%. The work in [32] has a CCR of 43.9% which comes at the expense of effecting the
video quality as evident in the BD-rate.

Clearly, higher computational savings are possible, however at the expense of BD-rate. For
example, the work reported in [19] proposed a solution for split prediction of CUs based on the
motion features and rate-distortion cost of the NxN inter mode. The solution reuses motion
vectors to expedite compression. The CCR results reported range from 55% to 61%. However,
this speedup comes at the expense of high BD-rate loss of 1.93% to 2.33%. The work in [37]
proposed a fast CU mode decision solution for HEVC trans-rating.

The solution uses modes and motion vectors of the correlated CUs to decide on an early SKIP
decision. It also restricts the CU depth search by estimating a weighted average of the depth levels
of correlated CUs. Additionally, CUs with a higher rate-distortions are divided into smaller CUs
without evaluating RD costs of the remaining partitioning modes. The CCR results reported
range from 55%, but again, this speedup comes at the expense of high BD-rate loss of 2.26%.

6 Conclusion

We proposed a solution for reducing the complexity of determining the CU split decisions in
HEVC video coding. The solution uses a video sequence-dependent approach to collect
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features that represent CUs at various coding depths. The features are extracted from both the
underlying CU and the previously encoded CUs. A classification model is then built based on
these feature vectors and corresponding split decisions at various CU coding depths. Addi-
tionally, dimensionality reduction is optionality used as a preprocess to model generation.
Therefore, the output of the training phase is a set of classification models for predicting split
decisions and a set of dimensionality reduction models. We have used a number of dimen-
sionality reduction and classification techniques, including stepwise regression, random forest
variable selection, PCA, polynomial classifiers and random forest classifiers. Experimental
results were carried out on many test video sequences with different resolutions. Comparison
with existing work revealed that the proposed solution has an advantage in terms of coding
efficiency and time savings. It was shown that, on average, the classification accuracy of the
CU split models is 86.5%. In comparison to regular HEVC coding, the proposed solutions
resulted in a BD-rate of 0.55 and a BD-PSNR of —0.02 dB. The average reported computa-
tional complexity reduction was 39.2%. Future work includes the investigation of model
suitability over very long sequences and the possibility of model regeneration on demand.
Future work can also include investing the suitability of the proposed work for model
generation using a sequence independent approach.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.
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