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Abstract
In recent years, human action recognition systems have been increasingly developed to sup-
port a wide range of application areas, such as surveillance, behaviour analysis, security,
and many others. In particular, data fusion approaches that use depth and colour infor-
mation (i.e., RGB-D data) seem to be particularly promising for recognizing large classes
of human actions with a high level of accuracy. Anyway, existing data fusion approaches
are mainly based on feature fusion strategies, which tend to suffer of some limitations,
including the difficult of combining different feature types and the management of miss-
ing information. To address the two problems just reported, we propose an RGB-D data
based human action recognition system supported by a decision fusion strategy. The sys-
tem, starting from the well-known Joint Directors of Laboratories (JDL) data fusion model,
analyses human actions separately for each channel (i.e., depth and colour). The actions are
modelled as a sum of visual words by using the traditional Bag-of-Visual-Words (BoVW)
model. Subsequently, on each channel, these actions are classified by using a multi-class
Support Vector Machine (SVM) classifier. Finally, the classification results are fused by a
Naive Bayes Combination (NBC) method. The effectiveness of the proposed system has
been proven on the basis of three public datasets: UTKinect-Action3D, CAD-60, and LIRIS
Human Activities. Experimental results, compared with key works of the current state-of-
the-art, have shown that what we propose can be considered a concrete contribute to the
action recognition field.
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1 Introduction

Vision-based human action recognition is a fascinating and challenging field of the mod-
ern computer vision. Systems designed to support this field interpret automatically human
actions from a set of observations acquired by different sensors, such as RGB cameras,
thermal cameras, Time-of-Flight (ToF) cameras, and others. In the last two decades, these
systems have been increasingly used in various application areas, including monitoring and
surveillance [28, 57, 71], healthcare and rehabilitation [7, 22], robotics [11, 55], and many
others, as reviewed in [1, 2, 67]. Most of the existing works generally use one or more
conventional RGB cameras [18, 73]. These devices are extremely effective for this kind of
applications, but they have different well-known limitations, such as sensitivity to the illu-
mination changes, inability to provide useful information on overlapping subjects, difficulty
of handling the viewpoint variations, management of the background clutter, and so on. The
recent widespread of low-cost sensors able to provide a depth map of an area of interest
(e.g., Microsoft Kinect, Asus Xtion Pro) has led to consider also their use within human
action recognition systems [2, 60]. These sensors are able to address some of the previously
introduced limitations (e.g., overlapping subjects) but, at the same time, they suffer of other
limitations, such as sensitivity to the sunlight, interference issues due to the cameras placed
one facing each other, error measurements introduced by the reflective materials, and so on.
In addition, depth maps are not able to provide the aspect of the surface of an object or a
subject. To overcome the limitations of the RGB cameras and depth sensors, respectively,
and to join their main strengths, many researches, in the last years, have been focused on
the design of approaches to efficiently fuse depth and colour information [47, 65].

Multi-sensor data fusion is an open problem in computer vision aimed to coherently
merge together different data types to provide a better interpretation of actions or events
that occur within a video sequence [37]. One of the most popular models that describes the
process of combining different data coming from various sources is the Joint Directors of
Laboratories (JDL) data fusion model [26]. This model (shown in Fig. 1) can be considered

Fig. 1 JDL data fusion model. Source: Input data streaming (i.e., RGB-D data); Level 0: Pre-processing of
the acquired video sequences (e.g., pixel adjustment, noise reduction, and so on); Level 1: Estimation and
prediction of the subjects’ state on the basis of the inferences due to the observations (i.e., SIFT and SURF
feature extraction from the RGB and depth streams and clustering by using the BoVW); Level 2: Estimation
and prediction of the subjects’ state on the basis of the inferred relations among them (i.e., the sets of visual
words are classified, on each stream, by using a multi-class SVM and then fused together by using a NBC);
Level 3: Estimation of the current actions/events and prediction of the next actions/events on the basis of
the available information; Level 4: Meta-level that monitors the data fusion process to assess the real-time
system performance; Support Database: Maintaining of native information; Fusion Database: Maintaining of
the fused information; HCI: Interaction between the system and one or more subjects
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Table 1 Association between the JDL data fusion model and the system’s functionalities

Level Main process Main methods Main functionalities

0 Detection RGB and depth streams Data acquisition

1 Attribution Descriptor extraction (SIFT, SURF)
bag of visual world

Feature extraction clustering

2 Aggregation Multi-class support vector machine
bayes naive fusion

Information fusion action recognition

a functional framework to define the set of functions by which to implement any kind of
data fusion system. In our context, we have adopted part of this model to define and develop
the proposed human action recognition system. In particular, we have customized the first
three levels of the model to fit the proposed system and removed the last two levels since
they are neither suitable nor necessary to the functionalities of what we propose.

Table 1 summarizes how the implemented processes and techniques have been mapped
within the first three levels of the JDL data fusion model. The multi-modal data acquisition
is performed at Level 0. Subsequently, at Level 1, the Scale-Invariant Feature Transform
(SIFT) [48] and Speeded Up Robust Features (SURF) [9] descriptors are extracted from
the RGB and depth streams, respectively. In addition, these descriptors are clustered by
using the Bag-of-Visual-Words (BoVW) model [20]. Finally, at Level 2, the sets of visual
words are classified, on each stream, by using a multi-class Support Vector Machine (SVM)
classifier [16]. Finally, the classification results are fused together by using a Naive Bayes
Combination (NBC) [45] strategy. From a practical viewpoint, the proposed customization
of the JDL data fusion model performs, at Level 0, the detection of subjects within the area
of interest, while their interpretation is achieved at Level 1. Finally, at Level 2, the final
decision on the recognized actions is taken.

According to the JDL data fusion model, there are, in general, three main strategies
to fuse information (Fig. 2): raw level fusion (also named low level fusion), feature level
fusion (also named medium level fusion), and decision level fusion (also named high level
fusion). In the first strategy, the sensors directly provide data as an input to the fusion pro-
cess, which derives a more accurate aggregate data than the individual sources. The feature
extraction and classification processes are performed uniquely on this latter data. In the sec-
ond strategy, different feature vectors (e.g., shapes, colours, trajectories) are fused to obtain
more complex features on which a final classification step is carried out. Finally, in the last
strategy, each sensor individually acquires data, extracts features, and classifies them. A
final decision is taken by evaluating together the different classifications. Usually, raw level
fusion is used when data come from homogeneous multi-sensors (e.g., two or more RGB
cameras) [39]. In this case, techniques for raw data fusion typically involve well-known esti-
mation methods, such as Kalman filtering and many others, as summarized in [26]. When,
instead, the system is composed of heterogeneous multi-sensors (e.g., RGB-D cameras),
strategies based on feature level fusion or decision level fusion are preferred. The choice
between the last two strategies depends on several aspects, including kind of area of interest
and assigned task. The feature level fusion strategies are often supported by robust tech-
niques (e.g., multiple kernel learning [50], canonical correlation analysis [15]) that are used
to combine different classes of features in an unique pattern by which to identify a specific
human action. Although widely used, these strategies have many limitations. In particular,
a first critical aspect regards the combination of different feature types, and a second is
related to the achievement of a final decision when the information of one or more sensors is
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(a) Raw level fusion

(b) Feature level fusion (c) Decision level fusion

Fig. 2 Typical fusion strategies. In each figure, si ∀i ∈ [1..n] ⊂ N is a specific source (e.g., an RGB stream),
the FE block is the feature extraction process, the CL block is the classification process, the Res block is
the result’s container. In a, rfs and FF(rfs) are the univocal representations of the fused data and the result
of the feature extraction process on it, respectively. In b and c, the f (si ) is the result of the feature extraction
process on each si . In b, the FF(s) is the univocal representation of the fused features, while in c, each ci

∀i ∈ [1..n] ⊂ N is the result of the classification process related to each source si

missing. Decision level fusion strategies can offer a good compromise to overcome the two
limitations just reported. They are based on the assumption that each sensor can contribute
to make more or less reliable the classification of a specific human action. These strategies
are often based on the customization of different probabilistic methods (e.g., NBC [45],
Dempster-Shafer’s approach [39]) designed to produce a ranking of the most plausible rec-
ognized actions. In our context, we have considered this last class of strategies to implement
a robust decision mechanism. In the next subsection, motivation and contribution of the
proposed paper are highlighted.

1.1 Motivation and contribution

The system proposed in this paper presents some novelties compared to the current state-
of-the-art:

– It has been developed by fitting the implemented processes and techniques within
the first three levels of the JDL data fusion model (see Table 1). This aspect allows
the system to inherit the basic characteristics of the model, including versatility and
extendibility.

– It is the first action recognizer that uses a decision fusion strategy based on an NBC
technique supported by both a BoWV based clustering and a multi-class SVM on each
acquired stream (see Section 3).

– It is robust to the different lengths of the acquired video sequences. In fact, thanks to
the use of both keypoint descriptors and BoVW, the system processing is independent
from the video frame rate. This aspect allows to recognize human actions even in sub-
sequences of arbitrary length. In addition, thanks to the use of the keypoint descriptors,
it is possible to detect better the local image details, even in presence of scale, rota-
tion, and translation, thus improving the recognition rate of the actions. Despite the
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method we propose does not treat explicitly the temporal sequences, the advantages
just reported above, including the temporal independence, and the ability of the method
to synthesize an action occurred over time, allow to the system to achieve very good
performance. Actually, this feature has been inspired by some works in the current
literature that, for similar goals, have used temporal independence strategies [21, 75].

– Most of the works in human action recognition are focused on feature level fusion
strategies [47, 51] and often remarkable results are obtained [62]. Despite this, these
strategies present different limits [59, 63]. First of all, the fusion of heterogeneous fea-
ture vectors can be considered a very hard task. In addition, when ad-hoc algorithms
are designed to manage together these vectors, the extendibility property is not usu-
ally maintained. Finally, when a classifier is designed to work on multi-modal data, the
unavailability of a single source can provoke the failure of the entire recognition pro-
cess. To overcome these problems, the proposed system is based on a decision fusion
strategy able to support the consistent treatment of the incoming data since it is pro-
cessed separately for each source. Thanks to this last aspect, the fusion process can be
performed by well-known statistical approaches [24]. The system improves the recog-
nition performance with respect to the single modalities and, at the same time, it is
effective and robust with respect to the dual modality (see Section 3).

– In the current literature, this kind of systems is evaluated by using either the 2-Fold
Cross-Validation (2FCV) in which the best performance is sought through the most
appropriate division, in two equal parts, i.e., training and evaluation, of the videos con-
tained inside the dataset, or the Leave-One-Out Cross-Validation (LOOCV) in which
the same goal is pursued, but looking for an optimal division based on different per-
centages, i.e., ninety percent for the training and ten percent for the evaluation [32]. To
provide a wide comparison with the current state-of-the-art, we have reported results
with both metrics by using the UTKinect-Action3D dataset, a very popular collection of
videos containing different action types [70]. In both cases, the results have shown that
the proposed system can be considered a concrete contribution to the current literature
in human action recognition. To confirm the validity of the obtained results, we have
also tested the system with other two datasets: LIRIS Human Activities [69] and CAD-
60 [64, 65]. The first is a collection of challenging videos also oriented to surveillance
aims. The second is a collection of RGB-D video sequences of humans performing
daily activities. All the additional tests have confirmed the good performance of the
system (see Section 4).

The rest of the paper is structured as follows. In Section 2, selected key works of the
current state-of-the-art that use a single or a dual modality are presented. Section 3 describes
the proposed method underlining the logical RGB-D based architecture. Section 4 reports
the experimental results and discusses the comparison of the proposed system with respect
to the selected key works of the current literature. Finally, Section 5 concludes the paper
and highlights key considerations.

2 Related work

As depicted in Fig. 3, human action recognition systems based on an RGB camera, a depth
sensor, or an RGB-D camera can be divided into two main classes. The first class (single
modality) can be in turn divided into two sub-classes containing the colour-based sys-
tems [8, 10, 14, 46] and the depth-based systems [25, 32, 49, 58, 70], respectively. The
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Fig. 3 A Taxonomy for human action recognition systems. Single modality (i.e., an RGB camera or a depth
sensor). Dual modality (i.e., an RGB-D camera)

second class (dual modality) contains instead all those systems that fuse together colour and
depth information to achieve a better recognition performance [17, 47, 50, 51, 65].

The human action recognition by color-based approaches is a very active research area
and different methods, in recent years, have been proposed. A first reference work is shown
in [46], where the authors use a set of Space-Time Interest Points (STIPs) to recognize
realistic human actions in unconstrained videos. The classification process is subsequently
performed by using a multi-class SVM. Other works have instead used the BoVW model
achieving very interesting results. A first example is reported in [8], where the authors
uses it to represent actions as a sequence composed of histograms of visual features. Each
sequence is treated as a string where each histogram is considered as a character. The clas-
sification process is performed by using different SVM classifiers with a string kernel that
uses the Needleman-Wunsch edit distance. Another example is presented in [14], where the
authors propose a BoVW-like model in combination with a 2D descriptor (Harris-SIFT)
and a motion vector histogram for the detection of human actions in video streams. The
last two works show how the clustering of visual features (or, in general, visual words)
can be profitably used to reach high performance even in complex video sequences. In
particular, the works highlight how the well-known issue of the BoVW model, i.e., the
management of the temporal information between consecutive frames, can be suitably
faced. Anyway, the use of only one RGB channel can present different limitations due
to several aspects, such as illumination changes, overlapped subjects, and many others.
For these reasons, recently, other sensors have been explored to support this application
area.

The depth-based approaches [19, 23, 53] adopt different sets of features compared with
those obtained by the RGB cameras [2, 44]. In particular, these approaches are often based
on the measurement of specific parts (i.e., joints) of the human skeleton models that are
derived by the processing of the depth maps [3, 5]. An example of these approaches is
reported in [70], where the authors use a global feature representation of the entire sequence.
More specifically, the authors propose an action recognition system that uses the histograms
of 3D joint locations as a compact representation of postures. The temporal evolutions of
these latter, represented by visual words, are modelled by discrete Hidden Markov Mod-
els (HMMs). This approach allows authors to manage the different lengths of the video
sequences, which is one of the main issues during the classification process. However,
also these systems present several limitations, such as the misinterpretation of some move-
ments or the sharing of specific movements in different action classes [56]. Like for the
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RGB cameras, also the action recognition by depth sensors can fail in crowded or chal-
lenging scenarios due to the occlusions. To support these issues, the work presented in [41]
describes a BoVW based approach that combines motion and 3D information to improve
the action recognition performance with a low movement rate. Anyway, the systems
implemented by consumer depth sensors tend to suffer of different limitations, including
sensitivity to the sunlight, error measurements related to the reflective materials, and many
others.

To take advantages from the classes of techniques that treat the single modalities, i.e.,
colour-based or depth-based, recent years have seen several research groups intensify the
efforts on fusion techniques. The most popular solutions are based on feature level fusion
strategies. A first key work is described in [47], where the authors propose a human action
recognition system based on a coupled hidden conditional random fields model. In [50],
instead, the authors present a system whose fusion of colour and depth information is per-
formed by a Multiple Kernel Learning (MKL) approach. Starting from the idea of using
the fusion step from a deeper level, the work proposed in [62] describes a new hierarchi-
cal Bag-of-Words (BoWs) feature fusion technique based on multi-view structured sparsity
learning to merge atomic features from RGB and skeletons. As previously introduced (see
Section 1.1) and remarked in [43], the feature level fusion strategies have several limita-
tions, including difficulties in merging heterogeneous features, difficulties in managing the
lack of information, and many others.

In the context reported above, a particular reference is due to the use of the Convolutional
Neural Networks (CNNs) [19, 23]. In very recent years, some researchers have started to
explore their use to address the human action recognition area, thus obtaining remarkable
results [17, 31, 36]. In [31], for example, the authors define a new representation able to
provide emphasis to the key poses associated with each action. The features obtained from
motion, in RGB and depth video streams, are given as input to a CNN to learn the discrim-
inative features. In [17], instead, the authors propose an action recognition method based
on a mixture of RGB and depth skeletons, supported by a deep CNN. Finally, in [36], the
authors propose an original framework that combines CNN streams of RGB-D and skeletal
data for the recognition of challenging human actions.

Unlike the previous works, this paper proposes an RGB-D human action recognition
system based on a decision level fusion strategy. The proposed architecture based on the
customization of the JDL data fusion model provides an alternative method and a concrete
contribution to the current literature.

3 RGB-D based human action recognition system

In Fig. 4, the logical architecture of the proposed system is shown. Each action is rep-
resented by a video sequence that may differ in length depending on the frame rate and
time duration of the action itself. The system is composed of two main sub-modules. The
first sub-module, i.e., action recognition, extracts from each RGB and depth sequence of
frames a set of visual features. Then, each set is synthesized by means of a statistical
model. Finally, each model is labelled by using a multi-class classifier. In the training
stage, each class, i.e., Crgb and Cdepth, is empirically evaluated and associated with a
numeric weight to set its reliability level in recognizing the related action. In the second
sub-module, i.e., fusion, the reliability of the two classes is merged through a simple voting
method.



5926 Multimedia Tools and Applications (2019) 78:5919–5939

Fig. 4 Architecture of the proposed human action recognition system. In the action recognition phase, from
each RGB and depth stream a set of SIFT and SURF descriptors are extracted, respectively. Each set is
synthesized by means of a BoVW model and labelled (i.e., Crgb and Cdepth) by means of a multi-class SVM
classifier. In the fusion phase, the numerical weights of the classes are used as input of an NBC classifier to
provide the result

3.1 Action recognition phase

Initially, from each frame of the RGB and depth streams, which represent the same action,
the SIFT and SURF local descriptors are extracted, respectively. Then, each frame is mod-
elled by a BoVW technique to obtain a set of visual words. In addition, for each stream,
the different BoVW histograms are pooled to provide a unique representation of the action
in terms of sum of visual words. Finally, a multi-class SVM based on Radial-Bases Func-
tion (RBF) kernel is used to classify each action. During the training stage, a set of videos
is used both to train the system and to compute a set of numerical weights representing the
reliability of the system itself in recognizing the different action classes. In the evaluation
stage, the weights are used by means of an NBC classifier to merge the decisions of the two
channels (i.e., RGB and depth) in a unique final result. In Fig. 5 a running example focused
on depth video streams is depicted. As just reported in Section 1.1, the method we propose,
inspired by the works [21, 75], is independent from the frame rate of the video sequences.

Fig. 5 Running example of the action recognition phase focused on depth video streams. During the training
stage, from each frame that composes a video sequence (i.e., an action) the SURF descriptors are extracted
and clustered by means of a BoVW technique. The different histograms are pooled in an unique BoVW to
obtain a compact representation of the video. Finally, a multi-class SVM is used to label each action
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This is due to the fact that the descriptors collected by the BoVW are synthesized in a unique
measure independently from their amount. This simple, but effective approach, also allows
the system to suitably manage video sub-sequences of arbitrary length.

3.1.1 Feature extraction

The set of training video sequences produces a codebook obtained by the quantization of
the local descriptors related to each action. In other words, each frame of a video sequence
generates a visual word frequency vector and the pooling of these vectors contributes to
form an element of the codebook. In this work, two different feature extraction and descrip-
tion methods are used: SIFT and SURF. The first method has been chosen to analyse RGB
video streams thanks to its high level of reliability in recognizing human actions on this kind
of media [8, 52]. Recent works of the current literature have shown that the SURF method
is especially suitable to manage the depth video streams [66]. In particular, this method
has proven to be extremely fast and robust in analysing different kinds of depth maps. In
this work, we have used the keypoint descriptors because they allow to distinguish better
local image details than low-level features (e.g., texture, colours, edges) [6]. Moreover, they
enable the recognition of actions even in presence of slightly differences in terms of scale,
rotations, and translations.

3.1.2 Bag of visual words

For each channel, the descriptors extracted from each frame that composes a video sequence
representing an action are clustered by means of a BoVW approach. This technique is uti-
lized to easily synthesize the informative content of each frame without using complex
data, such as shape and skeleton of the subjects in RGB images and depth maps, respec-
tively. More specifically, the BoVW technique adopts a K-Means strategy [27] to partition
the descriptors of each frame, thus providing an abstraction of it in terms of visual words.
A visual word is nothing more than a sparse vector of occurrences, i.e., a histogram of the
different descriptors within a frame. All the visual words of a same video are further sum-
marized by using another BoVW whose purpose is to provide a semantic representation of
the analysed video. All the obtained representations contribute to form the codebook of the
system through which to classify the different actions. The pooling method related to an
action can be expressed as follows [54]:

wk =
n∑

i=1

wk,i (1)

where, wk is an element of the codebook, wk,i is the sparse vector of a frame i, and n is the
amount of sparse vectors for an action.

3.1.3 Multi-class support vector machine

The SVMs are state-of-the-art classifiers that have gained great popularity in a wide range
of application areas [8, 60]. In this work, a multi-class SVM classifier for human action
recognition is used. The chosen classifier utilizes the one-against-all method with an RBF
kernel [61]. The latter, given x and y as feature vectors, can be defined as follows:

K(x, y) = exp(−γ ‖x − y‖2) (2)
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where, γ is the spread of the kernel. To estimate the best value of this parameter, an auto-
matic selection based on the minimization of the similarity between the x and y vectors is
used. Notice that, the γ parameter sets the width of the bell-shaped curve. The larger the
value of γ the narrower will be the bell. Moreover, small values of γ yield wide bells. In
other words, a suitable value of γ can increase the overall accuracy of the multi-class SVM
classifier [13].

3.2 Fusion phase

The fusion phase is performed by a decision level strategy in which the results of the
classifiers linked to each channel are used as input for another classifier to obtain a final pre-
diction. In the proposed system, this last step is carried out by an NBC technique [45] due to
its high reliability in ensuring the minimum error rate during the classification process [38].
Moreover, this simple technique is particularly suitable for the required task.

The NBC fusion technique assumes that the classifiers are mutually independent with
respect to the given class labels. This means that for each classifier Ci , an n × n confusion
matrix CMi can be computed by applying Ci to the training dataset. More specifically, let
(k, s) a cell of this matrix, then cmi

(k,s) is the number of elements whose true class label is k

and whose class is s assigned by the classifier Ci . In this context, Ni,s can be defined as the
total number of elements labelled by the classifier Ci into the class s (this value is calculated
as the sum of the sth column of CMi). By using these parameters, an n×n label matrix LMi

can be derived, in which the (k,s)th entry, i.e., lmi
(k,s), is an estimate of probability (i.e., the

numerical weight) that the true label k is actually associated to the label s for the class Ci .
In addition, let v a feature vector, then lmi

(k,s) can be computed as follows:

lmi
(k,s) = P(k|Ci(v)) = cmi

(k,s)

Ni,s

(3)

Finally, let s1, . . . , sL be the class labels assigned to v by the classifiers C1, . . . , CL.
Then, thanks to the independence assumption, the estimate of the probability that the true
class label is k, can be determined as follows:

μk(v) =
L∏

i=1

P(k|Ci(v)) =
L∏

i=1

lmi
k,s (4)

A running example of the proposed NBC fusion algorithm is shown in Fig. 6. Simplify-
ing, the reliability of the classes during the evaluation stage is derived by a pre-assessment
phase in which the same videos used for the training stage are used to compute a pre-
evaluation stage. The proposed approach presents several advantages. First, more sensors,
i.e., channels, can be added without altering the proposed architecture. Second, thanks to
the scalability of the JDL model and thanks to the simple fusion approach the system can
monitor very wide areas. Finally, thanks to the basic information required by the method,
i.e., the keypoints, the recognition can be done in real-time.

4 Experimental results

In this section, the evaluation of the proposed system and a comparison with selected key
works of the current state-of-the-art are reported. Initially, the system was tested through the
2FCV and LOOCV approaches using the UTKinect-Action3D dataset [70]. Subsequently,
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Fig. 6 Running example of the fusion phase. During the evaluation stage, an NBC classifier performs the
fusion operation. A numerical weight representing reliability in recognizing the related action is associated to
each predicted hypothesis. The final result is established by choosing the majority likelihood for each couple
of hypotheses

to confirm the validity of the obtained results and to stress the proposed method with other
challenging video sequences, the system was also tested, through the LOOCV approach,
using two other datasets: CAD-60 [64, 65] and LIRIS Human Activities [69].

4.1 Dataset description and experimental protocol

The UTKinect-Action3D dataset was created by using a single stationary Microsoft Kinect
with Kinect for Windows SDK Beta Version. The dataset contains 10 action types: walk
(WK), sit down (SD), stand up (SU), pick up (PU), carry (CR), throw (TW), push (PS), pull
(PL), wave hands (WH), and clap hands (CH). The different video sequences were acquired
through 10 subjects, where each subject performed each action twice. The acquisition was
carried out on three synchronized channels, i.e., RGB, depth, and skeleton joint locations,
of which only the first two channels were used to test the proposed system. The video
sequences were acquired at 30 frames-per-second (fps), however, since the dataset authors
recorded frames only when the skeleton was tracked, the final frame rate of each sequence
is about 15 fps. The dataset is an unique collection of videos and users can choose how splits
it in training and evaluation sequences. The UTKinect-Action3D dataset was mainly chosen
because it is one of the few datasets also used in other works to treat the topic reported in
the present paper, thus allowing a comparison with other systems. In Fig. 7 some examples
of dataset frames are shown.

The LIRIS Human Activities dataset was created by using both a Microsoft Kinect and
a Sony Consumer Camcoder. The dataset contains several video sequences showing people
performing various activities taken from daily life, such as: discussing, telphone calls, giv-
ing an item, and so on. Also in this dataset the acquisition was performed on three channels,
RGB, depth, and gray, and we have used only the first two channels. The dataset is fully
annotated, where the annotations not only report information on the action class but also its
spatial and temporal positions in the video. Moreover, the video sequences are already orga-
nized into training and evaluation partitions. The LIRIS human activities dataset was chosen
because allows the proposed system to be tested with challenging videos. In particular, we
selected the following three videos of interest: baggage, door, and object. The first simulates
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Fig. 7 Examples of actions of the UTKinect-Action3D dataset

the abandonment of a baggage in a corridor, the second captures the attempt of opening a
closed door, and the last shoots an exchange of an object between two subjects. All three
human activities are of great interest in challenging contexts, such as video surveillance and
behaviour analysis. In Fig. 8 some frames of the three actions are shown.

The CAD-60 dataset is an RGB-D dataset acquired with a Microsoft Kinect sensor at 30
fps, whose videos have a resolution of 640×480 pixels. The dataset contains 14 daily human
activities performed indoors by 4 subjects (two males and two females). The total number of
frames for each activity of each person is about one thousand. For the experiments, we have
used the setting “New Person” (a sort of LOOCV approach) described in [64]. In this setting,
the data of 3 subjects were used for training and the remaining one subject for testing. The
CAD-60 dataset was chosen because it is one of the most challenging dataset used, as for the
UTKinect-Action3D dataset, in other works related to the human action recognition field,
thus allowing a comparison on different types of video sequences. In Fig. 9 some dataset
frames are shown.

The proposed approach was implemented in C++ by VS 2017 IDE and OpenCV 3.1
framework. The implementation of the multi-class SVM is based on LibSVM [12]. Finally,

Fig. 8 Examples of actions of the LIRIS human activities dataset
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Fig. 9 Examples of actions of the CAD-60 dataset

the running environment was an Intel� CoreT M i7-4720HQ Processor, 6M cache, up to
3.60 GHz, 32 GB of RAM.

4.2 System evaluation

The system evaluation was performed in three steps. In the first, by using random sets
of videos coming from both UTKinect-Action3D and LIRIS Human Activities datasets,
the best codebook size, in terms of classification accuracy, was established. In the second,
the UTKinect-Action3D and CAD-60 datasets were used to show the effectiveness of the
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Fig. 10 In ordinate and abscissa the mean value of the system accuracy and the number, K , of established
clusters are reported, respectively
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Table 2 Accuracy results for
human action recognition in
UTKinect-Action3D dataset by
using the 2FCV approach

Method Accurancy

Zhong et al. [74] 34%

Yan et al. [72] 34%

Jia et al. [34] 35.5%

Jia et al. [33] 38.5%

He et al. [29] 47.5%

Jia et al. [32] 48%

Our 51%

system in comparison with different key works of the current literature. Finally, in the last,
the LIRIS Human Activities dataset was used to prove the effectiveness of the system in
very challenging video sequences.

4.2.1 Codebook size setting

The codebook size is derived by the number of clusters established during the training stage.
This can be considered the most critical aspect of the proposed method. In fact, on the one
hand, the creation of a small codebook allows the system to be trained quickly, albeit at the
expense of the discriminative performance of the recognizer since two different descriptors
may be assigned to the same cluster. On the other, a large codebook is time-consuming
and may be less generalizable. Anyway, the agreement among discriminative performance,
time-consuming, and generalization depends on the video content and on the video domain.
In our context, we have established the number of clusters according to a set of empirical
experiments performed by using all videos in the UTKinect-Action3D dataset. In Fig. 10,
the increment of the system accuracy according to the increment of the number of cluster,
K , is reported. In particular, the graph shows that the accuracy grows sharply until then the
number of clusters increases up to about 200. After this value, the system has an increasingly
limited benefit in accuracy in view of the computational effort required to manage an high
number of clusters during the training and evaluation stages. In our experiments, we have
fixed the codebook size K to 1000 clusters to obtain an excellent trade-off between accuracy
and performance.

4.2.2 Evaluation on the UTKinect-Action3D dataset

The experimental sessions by the UTKinect-Action3D dataset were performed by using
both approaches discussed in [32], i.e., 2FCV and LOOCV. Beyond the accuracy, also the
following well-known metrics were computed to highlight the goodness of the obtained
results [4], i.e., Precision (Prec), Recall (Rec), and F-measure (F1). In this context, the

Table 3 Accuracy results for
human action recognition in
UTKinect-Action3D dataset by
using the LOOCV approach

Method Accuracy

Zhu et al. [76] 80 %

Our 84%

Xia et al. [70] 90.9%

Gupta et al. [25] 96%
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Table 4 Confusion Matrix for human action recognition in UTKinect-Action3D dataset by using the LOOCV
approach

WK SD SU PU CR TW PS PL WH CH

WK 1.0 0 0 0 0 0 0 0 0 0

SD 0 0.90 0.10 0 0 0 0 0 0 0

SU 0 0.20 0.80 0 0 0 0 0 0 0

PU 0 0 0 1.0 0 0 0 0 0 0

CR 0 0 0 0 1.0 0 0 0 0 0

TW 0 0 0 0.25 0 0.75 0 0 0 0

PS 0 0 0 0 0 0 1.0 0 0 0

PL 0 0 0 0 0 0 0.30 0.70 0 0

WH 0 0 0 0 0 0 0 0 1.0 0

CH 0 0 0 0 0 0.40 0 0 0 0.60

Prec points out the level of probabilistic proximity between a recognized action and its
membership class, the Rec highlights the sensitivity level of the clustering, finally, the
F1 measures the effectiveness of the classifier. By using the results presented in [32] on
the UTKinect-Action3D dataset with the 2FCV approach, in Table 2 a comparison of the
accuracy of the proposed system with different key works of the current state-of-the-art is
reported.

The proposed system, under the mentioned experimental settings, is the one with the
highest percentage of accuracy. Since the 2FCV approach divides the dataset in two equal
parts, all the permutations of the video sequences were considered and the mean values were
computed. Since each video contains 10 actions performed twice by 10 users, we separated
them, thus obtaining 200 source sequences. The system also shows remarkable performance
in Prec = 0.667, Rec = 0.693, and F1 = 0.677. Unfortunately, the selected key works do
not report this kind of values thus preventing a comparison with them.

Regarding the LOOCV approach, in Table 3 the comparison of the proposed system with
the accuracies of other key works of the current literature is reported. In addition, in Table 4,
the related confusion matrix is shown. Notice that, for the two experimental approaches we
had to consider different sets of works because they utilized only either an experimental
way or the other. As in the previous case, we considered all the permutations of the source
video sequences and computed the mean values.

Table 5 Accuracy results for
human action recognition in
CAD-60 dataset by using the
“New Person” settings

Method Accurancy

Zhu et al. [77] 62.50 %

Karpathy et al. [35] 65.30%

Koppula et al. [42] 71.40%

Our 82.60%

Wang et al . [68] 74.70%

Hu et al. [30] 84.10%

Koperski et al. [40] 80.36

Das et al. [17] 95.58
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Table 6 Accuracy results for
human action recognition in
LIRIS human activities dataset

Video sequence Accuracy

Unattended baggage 75.5%

Force a closed door 72.2%

Exchange of object 40.5%

The accuracy results by the LOOCV approach show that the proposed system is compa-
rable with these different key works achieving satisfactory performance. Confronting these
results with the previous ones it is worth noting that the system learns quickly but requires
of a more sophisticated clustering. Anyway, the system works properly as also pointed out
by the computed additional measures, i.e., Prec = 0.850, Rec = 0.816, and F1 = 0.821.

The proposed system presents other advantages beyond the accuracy performance. First,
the JDL model provides a full support with respect to the generalization and the scalability
of the system. Second, the original pipeline allows the system to be robust to the num-
ber of heterogeneity sensors. Third, since the system adopts a decision level strategy, it is
also robust to the sensor failures. Finally, the system manages light information, i.e., the
keypoints, allowing a reduction of the computation both in training and evaluation stages.

4.2.3 Evaluation on the CAD-60 dataset

In this section, we report the overall accuracy of the proposed system when applied on
the CAD-60 dataset. Also in this case, the proposed approach obtains comparable results,
in terms of accuracy, with key works of the current literature, as reported in Table 5. The
training stage, with this dataset, was performed by using all the training video sequences
acquired by the Microsoft Kinect. The method we propose presents some weaknesses when
the scene contains interactions among subjects and objects. This is due to the fact that the
current clustering processes the descriptors without providing a pre-labelling that could
support a better management of the codebook.

4.2.4 Evaluation on the LIRIS human activities dataset

To evaluate the system in complex environments, a further experimental session was per-
formed. In particular, by using the LIRIS Human Activities dataset, three challenging video
sequences were tested. In Table 6, the accuracy results on the selected videos are reported.

The training stage, with this dataset, was performed by using all the 111 training video
sequences acquired by the Microsoft Kinect. Also in this case, the system presents a high
level of accuracy despite various adverse factors, such as: illumination changes, distance of
subjects, and occlusions. As shown for CAD-60 dataset, the proposed system presents some
weaknesses when the scene contains several subjects close to each other.

5 Conclusion

This paper presents a system for human action recognition supported by a decision level
fusion for depth and colour information. The proposed system presents some novelties
compared with the current state-of-the-art, including an original pipeline based on the
customization of the JDL data fusion model. Unlike other works, whose effectiveness is
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tested by using only either the 2FCV or the LOOCV, we have used both strategies on the
UTKinect-Action3D dataset. In addition, to confirm the obtained results, we have also per-
formed experimental sessions by using two further datasets containing challenging video
sequences: LIRIS Human Activities and CAD-60. The tests have shown that the system
can be compared with selected key works of the current literature, thus providing a con-
crete contribute to the human action recognition field. The JDL guarantees a complete
system scalability, while the decision level fusion ensures an extendibility of the system
with any set of heterogeneous sensors. The method we propose is also able to mange video
sub-sequences due to its temporal independence strategy. Despite this, we are aware that a
certain amount of semantic meaning of the video sequences is lost during the BoVW pool-
ing. For this reason, with the intent to maintain the temporal independence property, but also
to preserve the whole information contained in a video sequence, we are currently engaged
in developing an additional set of temporal features compatible with the BoVW mechanism.
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