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Abstract
No-reference image quality assessment (NR-IQA) aims to evaluate the perceived quality
of distorted images without prior knowledge of pristine version of the images. The quality
score is predicted based on the features extracted from the distorted image, which needs to
correlate with the mean opinion score. The prediction of an image quality score becomes
a trivial task, if the noise affecting the quality of an image can be modeled. In this paper,
gradient magnitude and Wiener filtered discrete wavelet coefficients are utilized for image
quality assessment. In order to reconstruct an estimated noise image, Wiener filter is applied
to discrete wavelet coefficients. The estimated noise image and the gradient magnitude are
modeled as conditional Gaussian random variables. Joint adaptive normalization is applied
to the conditional random distribution of the estimated noise image and the gradient magni-
tude to form a feature vector. The feature vector is used as an input to a pre-trained support
vector regression model to predict the image quality score. The proposed NR-IQA is tested
on five commonly used image quality assessment databases and shows better performance
as compared to the existing NR-IQA techniques. The experimental results show that the
proposed technique is robust and has good generalization ability. Moreover, it also shows
good performance when training is performed on images from one database and testing is
performed on images from another database.
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1 Introduction

Recent advances in technology has resulted in a rapid increase in the use of multimedia
content, which consists of audio, images and videos. Image acquisition systems and trans-
mission mediums introduce distortions and artifacts in images that result in a degradation
of their quality. Human beings who are the end-user of the multimedia content demands
high-quality, while network providers strive for scalable and adaptable solutions. A trade-
off between perceptual quality of multimedia content and the resources has to be reached.
Therefore, a need for system that can perform image quality assessment (IQA) has gained
importance. The IQA techniques can be broadly categorized into subjective and objective
IQA. IQA performed by human beings is known as subjective IQA, which suffer from
certain drawbacks, like tedious nature of the task, a large amount of time required for eval-
uation, and the results may vary depending upon the mood of the evaluator. This yields a
need for designing new techniques that can perform IQA without human evaluators based
on objective features extracted from distorted images. These IQA techniques are known as
objective IQA techniques.

Objective IQA techniques are categorized into full reference IQA (FR-IQA), reduced
reference IQA (RR-IQA), and no-reference IQA (NR-IQA). FR-IQA techniques [1, 9, 14,
37, 48] can only assess the image quality when the reference image is available. Structural
similarity index (SSIM) and peak signal to noise ratio (PSNR) are commonly used FR-IQA
techniques [8]. Quality score prediction performed by FR-IQA techniques may not correlate
with the perceptual quality score of the distorted image because FR-IQA used pixel-wise
approach. In real world scenarios, reference image is usually not available, therefore FR-
IQA techniques have limited applications. In comparison to FR-IQA, RR-IQA techniques
[4, 27, 28, 41, 54, 67] require some parameters extracted from the reference image to per-
form IQA. Similar to FR-IQA, RR-IQA techniques also require parameters extracted from
the reference image, which are not be available in the majority of the real world scenarios.
NR-IQA techniques [11, 18, 22, 29, 38–40, 46, 55, 65, 68] does not require any prior infor-
mation regarding the reference image to perform IQA, due to which these techniques are
widely acceptable for many applications.

Several NR-IQA techniques that extract features in spatial and transform domain have
been proposed. In transform domain methods, image is decomposed into various subbands
also called channels by using series of linear filters. The aim of this processing is to mimic
the human visual system. Researchers have used different sets of linear filters and decompo-
sitions based on the requirement, computational complexity, and perceptual quality. These
include discrete cosine transform (DCT) [47], Gabor decomposition [33], discrete wavelet
transform (DWT) with steerable pyramids [36], curvelet [24], and shearlet [20] etc. In the
spatial domain methods, NR-IQA techniques have utilized this ability of gradient magni-
tude to predict the image quality score [15, 19, 23, 61]. In [58], gradient magnitude (GM)
and laplacian of Gaussian (LOG) have been used to predict the quality score. The technique
follows a two-step approach i.e., identification of distortion type and quality score predic-
tion. GM-LOG exploits the joint statistical relationship between the local contrast features
of LOG and GM. Joint adaptive normalization based on gain control and divisive normal-
ization models on the local neighborhood is used to remove the spatial redundancies of GM
and LOG coefficients.

Many NR-IQA techniques have used DCT, DWT, GM-LOG and spectral domain fea-
tures [26, 47, 58, 62] to de-correlate the images and assess the distortion in the image, but
none of these methods try to estimate the noise within the image. The estimation of noise
affecting an image makes IQA a trivial task and it can help in a better prediction of the
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image quality score. Wiener filter can be used with DWT to estimate the noise in the image.
DWT coefficients are conditionally independent Gaussian variables and since noise is usu-
ally estimated by a stationary zero mean Gaussian variable therefore, noise can be estimated
using a Wiener filter [44]. To the best of our knowledge no existing NR-IQA technique
has used Wiener filter to estimate the noise affecting an image for the prediction of image
quality score despite of its ability to model noise.

This paper proposes a new NR-IQA technique that takes advantage of the multi-
resolution statistical properties of DWT coefficients for the estimation of noise in the
images using Wiener filter. The proposed technique also offers the advantage of combin-
ing spatial and transform domain features. The task of IQA becomes trivial and straight
forward if the noise present in the image can be estimated. Gradient magnitude and
DWT is computed for the distorted image. Wiener filter is applied on the DWT coeffi-
cients of the image to estimate the noise. The estimated noise image is constructed by
taking the inverse DWT. Joint adaptive normalization is applied on the gradient magni-
tude and the estimated noise image to extract features that are statistically independent of
each other. These features are given as input to compute the image quality. Most of the
success contributed to the newly proposed technique arises from the Wiener filtered fea-
tures, which characterize various image semantic structures like lines, edges, and corners.
These structures are closely related to the perceptual quality of images. Wiener filtered
DWT coefficients are sensitive to intensity changes in the image. Moreover, the Wiener
filtered DWT coefficients based features respond well to local contrast in a small spa-
tial neighborhood. These characteristics allow the proposed technique to correlate well
with perceptual quality of image. The major contributions of the proposed technique
are:

1. Wiener filtered DWT coefficients are used to estimate noise affecting the image to
better predict the quality score.

2. Three new universal IQA methods are proposed based on the estimated noise image
and Gradient magnitude features, which improve the natural scene statistics (NSS) of
extracted features for better image quality score prediction.

3. To better represent noise affecting the image, decomposition level for DWT is deter-
mined using PSNR between the Wiener filtered and the distorted image.

4. The proposed technique shows better performance in predicting image quality and
provides a robust model that is independent of the database.

Rest of the paper is organized as follows. Some recent NR-IQA methods are reviewed
in Section 2. Section 3 explains the proposed methodology. Section 4 presents the
experimental results followed by conclusion in Section 5.

2 Related work

NR-IQA techniques are broadly divided into two categories i.e., distortion specific and gen-
eral purpose techniques [36]. In distortion specific techniques, prior information regarding
the type of distortion affecting the image is available [3, 6, 16, 49, 50, 53]. These techniques
show better performance, but in practical scenarios the distortion type affecting the image
is not known, which limits their application. In contrast to distortion specific techniques,
general purpose NR-IQA techniques require no prior information regarding the distortion
type affecting the image. General purpose NR-IQA techniques used either opinion unaware
features [34, 59, 64] or opinion aware features [2, 24, 26, 58].
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Recently some NR-IQA techniques based on opinion unaware features have been pro-
posed, which do not require any training over difference mean opinion score (DMOS) for
the prediction of image quality score. Natural image quality evaluator (NIQE) [34] is an
opinion unaware NR-IQA technique that extracts features in spatial domain and does not
require training on DMOS. NIQE extracts a collection of quality aware statistical features
based on a corpus of natural images. The extracted features are then fitted on a multivariate
Gaussian (MVG) model. A multivariate Gaussian fit extracted from the corpus of natural
images is used to compute the quality of the test image by measuring the distance between
the features extracted from the test and pristine images. Integrated local natural image qual-
ity evaluator (IL-NIQE) is also an opinion-unaware NR-IQA technique [64], which extracts
natural scene statistics (NSS) based features that are used to learn a MVG distribution. The
distance between the MVG distribution of natural and distorted images is used to assess the
quality of images. IL-NIQE is based on NIQE, but it differs from NIQE in terms of qual-
ity aware features and global MVG model. In [59], a codebook representation using raw
image patches and soft descriptors are used to predict the quality of images. The technique
is termed as codebook representation for no-reference image assessment (CORNIA). Opin-
ion unaware NR-IQA techniques are highly dependent on the quality and content of images
in the corpus. Furthermore, the performance of these techniques is limited by the number
of images in the corpus i.e., the performance decreases if the set of images in the corpus
is small [57]. Although opinion unaware NR-IQA techniques offer an attractive proposi-
tion of requiring no training for IQA, but the ultimate users of images are usually human
beings. Due to this reason subjective evaluation performed by human beings is considered
as standard and DMOS is the best solution for image quality assessment.

Opinion aware NR-IQA techniques require DMOS values evaluated by human observers
for training the prediction model. Majority of the opinion aware NR-IQA techniques pro-
posed in literature have used NSS properties of images to predict the quality score. NSS
based techniques work under the assumption that natural images follow a regular pattern,
which is disrupted in the presence of distortion. NSS based NR-IQA techniques measure
the deviation in statistics between the natural and distorted images to assess the quality of
images. NSS based features can effectively represent the degradation in images therefore,
they are the most commonly used.

Blind image integrity notator using DCT statistics (BLIINDS-II) utilizes DCT to predict
the quality score of images [47]. Twenty four features are extracted using DCT, which are
given as input to the Bayesian inference model for the prediction of quality score. Wavelet
transform often substitutes typical Fourier transform based on the property of concentrating
significant data into a fewer coefficients. In image quality assessment the use of wavelet
transform is wide and varied. In [13], just noticeable blur (JNB) concept and the wavelet
transform is used to develop blur objective quality metric. This model rely on human visual
system (HVS) and used psychometric functions to approximate the perceived blur in the
edge image. In [31], the ability of wavelet transforms to extract high frequencies has been
exploited for edge analysis. Multi-scale wavelet based structure aids in blur image qual-
ity assessment, which represent the gradient information of the color images. In [60], the
probability of blur detection based on granularity, sharpness, and L1-norm estimation of the
given image in DWT is cumulated to form a metric for quality assessment.

In distortion identification-based image verity and integrity evaluation (DIIVINE) [36],
DWT over three scales and six orientations is used to extract a feature set. These features
are subjected to support vector classification (SVC) for the prediction of distortion type
and subsequently given as an input to support vector regression (SVR) for the prediction of
quality score. Complex distortion identification-based image verity and integrity evaluation
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(C-DIIVINE) has used complex DWT over two scales and six orientations [62]. A com-
plex Gaussian mixture model, generalized Gaussian distribution and Cauchy distribution
is used to model the complex DWT features. In C-DIIVINE, the distortion type affecting
the image is determined using SVC and then quality score is predicted using SVR. In [63],
quality aware features are extracted using joint generalized local binary pattern (GLBP).
The images are decomposed into multi-scale subbands using Laplacian of Gaussian. These
subbands are encoded with GLBP and the quality aware features are formed from the joint
GLBP histograms, which are given as input to SVR to predict image quality score. In [5],
free energy based brain theory is used to extract three group of features i.e., HVS features
using free brain theory, structural information and gradient information. The extracted fea-
tures are given as input to SVR to assess the quality of image. The major disadvantage of
opinion aware NR-IQA techniques is the requirement of large number of DMOS for training
a robust model that can predict the quality score of images. Execution time and computa-
tional expense is of vital importance when designing the NR-IQA techniques for real-time
scenarios. It is established in literature that GM-LOG is less computationally complex and
also captures local image features effectively in comparison to many NR-IQA techniques.
These properties motivate us to use image gradient and estimated noise image using Wiener
filtered DWT coefficients for NR-IQA.

3 Proposedmethodology

Figure 1 presents the proposed methodology for NR-IQA using Wiener filtered wavelet
coefficients and gradient magnitude. The DWT and GM is applied to the input distorted
image. Wiener filter is applied on wavelet coefficients to estimate the noise affecting the
image in wavelet domain. Inverse DWT is then applied on filtered DWT coefficients to
reconstruct the estimated noise image N(i, j). Joint adaptive normalization is then applied
on N(i, j) and GM(i, j) of the distorted image to extract feature vector Fv , which are given
as input to the SVC for classification of distortion type and computation of threshold value
TH . The threshold value indicates the confidence with which the distortion affecting the
image is believed to belong to a certain distortion type. If the total number of distortion
types are ℵ then, the extracted features are given to ℵ distortion specific regression models
to compute ℵ quality scores. The ℵ quality scores are combined together using threshold
value to compute a single universal quality score that contains contributions from all the
distortion types. The details of each block are as follows.

Fig. 1 Block diagram of the proposed NR-IQA model using Gradient magnitude and Wiener filtered discrete
wavelet coefficients features
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3.1 Discrete wavelet transform (DWT)

DWT has been extensively used in many imaging problems including NR-IQA. Fourier
transform only provides information about the frequency component of the image. However,
DWT uses windows of variable size to provide spectral as well as spatial information of the
image. DWT provides precise frequency and time information at low and high frequencies
respectively. This property makes DWT suitable for analysis of irregular patterns such as
noise. Two dimensional DWT is given as,

Wφ(q0, m, n) = 1√
AB

A−1∑

i=0

B−1∑

j=0

I (i, j)φq0,m,n(i, j),

W t
ψ(q,m, n) = 1√

AB

A−1∑

i=0

B−1∑

j=0

I (i, j)ψt
q,m,n(x, y), t = {Hor, Ver ,Dia} (1)

where I represents the input image, q0 is an arbitrary starting scale, Wφ(q0,m,n) represents an
approximation of I (i, j), Wψt(q,m,n) represents the horizontal. vertical and diagonal details
of I (i, j). φq,m,n and ψt

q,m,n are given as,

φq,m,n(i, j) = 2q/2φ(2q i − m, 2qj − n),

ψt
q,m,n(i, j) = 2q/2ψ(2q i − m, 2qj − n). t = {Hor, Ver ,Dia} (2)

3.2 Gradient magnitude

Human visual system is highly sensitive to image local structures, which are effectively
captured by the image gradient. IQA techniques proposed in [15, 19, 23, 61] have utilized
this ability of gradient magnitude to predict the image quality score. The gradient magnitude
of image is calculated as,

GM =
√

(hx ⊗ I )2 + (hy ⊗ I )2, (3)

where hx and hy are gradient windows in horizontal and vertical direction respectively, and
⊗ denotes the convolution operator.

3.3 Wiener filter

Wiener filter works by minimizing the error between the observed signal and desired signal,
which is generally considered as minimum mean square error filter. The wavelet coefficients
are assumed to be conditionally independent random variables. The parameters for these
wavelet coefficients are spatially varying and can be estimated by neighborhood in the adja-
cent scales and spatial locations. The noise in image is modeled as stationary independent
zero-mean Gaussian variables. As both the wavelet coefficients and noise are modeled as
Gaussian distribution, therefore noise can be estimated using Wiener filter [12]. The wavelet
coefficients are computed over the distorted image, which can be written as,

W(m, n) = sm,n + ηm,n (4)

where W(m, n) are the wavelet coefficients including approximation, horizontal, verti-
cal and diagonal details, sm,n are the coefficients of the clean image, and ηm,n are the
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coefficients of noise component. Noise affecting the image in wavelet domain is estimated
using Wiener filter as,

�(m, n) = qm,n − σ 2
n

qm,n

, (5)

where �(m, n) is the estimated noise in wavelet domain, σ 2
n is the variance of ηm,n and

q(m, n) is calculated as,

qm,n = Qm,n

M
, M = (2R + 1)2 (6)

where R is the size of subbands and Qm,n is calculated as

Qm,n =
∑

i

∑

j

W 2
m−i,n−j . (7)

The estimated noise image is then computed by applying the inverse DWT on estimated
noise in wavelet domain as,

N(i, j) = 1√
AB

∑

m

∑

n

�φ(q0, m, n)φq0,m,n(i, j)

+ 1

AB

∑

t=Hor ,Ver ,Dia

∞∑

q=q0

∑

m

∑

n

�t
ψ (q,m, n)(i, j), (8)

where �φ(q0, m, n) represents the approximation and �t
ψ (q,m, n) represents the horizon-

tal, vertical and diagonal details of the noise component. The noise image obtained using
inverse DWT is then used to extract features for NR-IQA.

In order to show the significance of Wiener filtered DWT coefficients, the Euclidean
distance between the marginal distribution of pristine and distorted images are calculated.
The feature set, which gives larger Euclidean distance is considered to be better for IQA.
Figure 2 shows the plots for distribution of LOG and Wiener filtered DWT coefficients

Fig. 2 Marginal distribution of LOG features in comparison to Wiener filtered DWT coefficients a Images
b LOG features c Wiener filtered DWT coefficients
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for pristine and synthetic images. It can be observed that the marginal distributions for the
Wiener filtered DWT coefficients show larger difference for synthetic and natural images
as compared to LOG coefficients. Therefore, Wiener filtered DWT coefficients show bet-
ter performance as compared to LOG features. This is also validated by the Euclidean
distance of 0.1091 and 0.2355 between the top row pristine image and bottom row syn-
thetic image for the LOG feature distribution and Wiener filtered DWT coefficient features
respectively.

Figure 3 shows the change in marginal distribution of LOG features and Wiener fil-
tered DWT coefficient features over varying levels of Gaussian blur distortion type. It can
be observed that the difference between the marginal distributions of pristine and distorted
images for the Wiener filtered DWT coefficients show larger difference than the distribution

Fig. 3 Marginal distribution of LOG features in comparison to Wiener filtered DWT coefficients for varying
levels of Gaussian blur distortion a Images b LOG features c Wiener filtered DWT coefficients



Multimedia Tools and Applications (2019) 78:14485–14509 14493

of LOG features. This is also validated by measuring the Euclidean distance between the
distributions of LOG features and Wiener filtered DWT coefficients of pristine and dis-
torted images with different levels. The Euclidean distance for the Wiener filtered DWT
coefficients between the pristine and distorted images for level 1, level 2, level 3 and level 4
distortion is 0.2398, 0.2655, 0.2965, 0.4089 respectively. In comparison the Euclidean dis-
tance for the LOG features between the pristine and distorted images for level 1, level 2,
level 3 and level 4 distortion is 0.0768, 0.1131, 0.1386, 0.1552 respectively. It can be seen
that the Euclidean distance increases as the level of distortion increases for both the LOG
features and Wiener filtered DWT coefficients, but Euclidean distance is higher for Wiener
filtered DWT coefficients, which shows that Wiener filtered DWT coefficients will perform
better than LOG features.

3.4 Joint adaptive normalization (JAN)

GM and Wiener filtered DWT coefficients remove significant amount of redundant infor-
mation present in the image but correlation among neighboring pixels also known as
local redundancy may still be present. This is also valid for other bandpass based fea-
ture extraction techniques such as discrete cosine transform, Laplacian of Gaussian, mean
subtracted contrast normalized coefficients etc. The local redundancies are removed by
using adaptive gain control [7] or divisive normalization models [30, 45]. These techniques
divide the image into channels of different frequencies and then normalize each coeffi-
cient with the average energy of a local neighborhood, which is centered at the current
coefficient. This kind of normalization whitens the image and causes loss in the contrast.
In the proposed technique, the features are divided into two channels i.e., GM and N .
Unlike [30, 45] where normalization is performed over each channel, joint normalization
of GM and N is performed to remove the correlation between gradient image and the esti-
mated noise image. JAN is performed on GM(i, j) and N(i, j) components of the image
as,

G̃M(i, j) = GM(i, j)

GI (i, j) + ε
, (9)

ÑI (i, j) = N(i, j)

GI (i, j) + ε
, (10)

where ε is a small positive constant to avoid numerical instability when GI is small, which
is calculated as,

GI (i, j) =
√

��(l,k)∈�i,j
ω(l, k)F 2

I (l, k), (11)

where �i,j is a local window centered at (i, j) and whose size is dependent on a spatially
truncated Gaussian kernel ω of scale 1, ω consists of positive weights whose sum is equal

to 1, and FI =
√

G2
M(i, j) + N2(i, j).

3.5 Feature extraction

After JAN, the joint empirical distribution of gradient image G̃M(i, j), and noise image
ÑI (i, j) is computed. Quantization is applied to get a bivariate histogram of G̃M(i, j) and
ÑI (i, j). G̃M(i, j) is quantized into O bins i.e., g1, g2, . . . , gO , and ÑI (i, j) into R bins
i.e., l1, l2, . . . , lR . In terms of probability function, the joint empirical distribution is given
as,

F(u,v) = P(G̃M(i, j) = gu, ÑI (i, j) = lv), (12)
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where u = 1, . . . , O and v = 1, . . . , R. In order to reduce the high dimensionality of
F(u,v), smaller set of quality determining features are extracted from F(u,v). The marginal
probability functions PG and PN of G̃M(i, j) and ÑI (i, j) are then obtained as,

PG(G̃M(i, j) = gu) =
O∑

u=1

G̃M(i, j), (13)

PN(ÑI (i, j) = lv) =
R∑

v=1

ÑI (i, j). (14)

The dependency between gradient magnitude and the estimated noise image is not modeled
by PG and PN . If gradient magnitude and estimated noise image features are independent
then Fu,v = PG × PN for all u and v. An index can be defined, which measures the
dependence between gradient magnitude and estimated noise image features. It is given as,

Ku,v = Fu,v

P (G̃M(i, j) = gu) × P(ÑI (i, j) = lv)
. (15)

Usually gradient magnitude and estimated noise image features are not independent.
Therefore, using Ku,v directly as features is not a good choice since, it has the same
dimensions as Fu,v . As a substitute we can calculate the dependency of each specific
value G̃M(i, j) = gm against all possible values of ÑI (i, j) using marginal probabilities
P(G̃M(i, j) = gu) and the dependency of each specific value of ÑI (i, j) = lv against all
possible values of G̃M(i, j) using marginal probability P(ÑI (i, j) = lv). Since, QG ≥ 0,
QN ≥ 0 and

∑
m P (G̃M(i, j) = gu) = ∑

u Q(ÑI (i, j) = lv) = 1. Hence, they can be
viewed as probability distributions distributions and are given as,

QG(G̃M(i, j) = gu) = 1

O

O∑

u=1

P(G̃M(i, j) = gu|Ñ(i, j) = lv), (16)

QN(ÑI (i, j) = lv) = 1

R

R∑

v=1

P(ÑI (i, j) = lv|G̃M(i, j) = gu), (17)

where QG and QN describe the statistical interaction between normalized gradient magni-
tude features and estimated noise image features. It can be seen from Fig. 4 that the marginal
distribution for natural images and synthetic images are dissimilar. Three different combi-
nations of marginal distributions are explored to constitute three different models labeled
as GM-WFW1, GM-WFW2 and GM-WFW3. PG and PN are employed in model GM-
WFW1, QG and QN are used in model GM-WFW2 and all of the statistical features PG,
PN , QG and QN are used in the model GM-WFW3.

3.6 Quality score prediction using support vector classification and regression

The extracted features are given as input to the a pre-trained SVC that aims to identify the
distortion type affecting the input image. The input to the pre-trained SVM classifier model
are extracted features and the output is the threshold value (TH ) defining the confidence
with which a distortion type affecting the input image belongs to a certain distortion type.
The statistical features obtained in the previous step are given as input to the SVR, which
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Fig. 4 Marginal distribution of QG and QN features a Original Images b QG marginal distribution c QN

marginal distribution

aims to find a function to predict the quality score. A distortion specific regression model
for each distortion type is trained i.e., if there are ℵ number of distortion types, ℵ number of
regression models are trained and ℵ quality scores for each input image are obtained. Once
ℵ number of quality scores over each distortion type for the input image is computed using
distortion specific regression models, the overall quality score Qtotal is obtained as,

Qtotal =
ℵ∑

�=1

τ� × q�, (18)

where q� is the estimated quality score for the �
th distortion type. The weight of the

predicted quality score for each distortion type τ� is obtained by utilizing TH as,

τ�(TH , Fv) = P(℘ = ℵ�|Fv) = 1

1 + exp(−T �

H (℘))
, (19)

where P(℘ = ℵ�|Fv) is the posterior probability that random identity function ℘ belongs
to the �th distortion type i.e., ℵ�. T �

H is the threshold function value obtained from SVC for
the �

th distortion type, Fv are the extracted features for NR-IQA and � = 1 . . .ℵ.
Typically, the fitting of DMOS values is performed by using a nonlinear regression logis-

tic function, because the behavior of the subjective score given by the user is non-linear.
This non-linear mapping is used while calculating the indices of correlation constant and
error, which is described as,

xi = β1

(
1

2
− 1

exp(β2(x − β3))
+ β4Q + β5

)
, (20)

where xi is the non-linear mapped score corresponding to the predicted DMOS score x. β1,
β2, β3, β4, and β5 are the non-linear curve fitting function parameters.
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4 Experimental results

4.1 Performance evaluation parameters

The proposed method is evaluated using Spearman rank ordered correlation constant
(SROCC) and Pearson correlation constant (PCC). All the parameters measure the consis-
tency between the predicted quality score using NR-IQA techniques and DMOS. A value
close to 1 for SROCC and PCC, signifies superior performance. SROCC is given as,

SROCC = �(Xi − X̄)(Yi − Ȳ )
√∑

(Xi − X̄))2
√∑

(Yi − Ȳ )2
, (21)

where Xi = rank(Dp), X̄ = midrank(Dp), Yi = rank(D) and Ȳ = midrank(D). PCC
is given as,

PCC = �(Dp − mean(Dp))(D − mean(D))
√∑

(Dp − mean(Dp))2
√∑

(D − mean(D))2
, (22)

where Dp is the predicted quality score and D is the DMOS.

4.2 IQA databases

Five commonly used IQA databases i.e., LIVE [51], CSIQ [17], TID2008 [43], TID2013
[42] and CID2014 [25] are used for evaluating the proposed NR-IQA models. The LIVE
database is formed at the University of Austin, Texas. The database is composed of 29
high resolution (768 × 512) 24-bits/pixel RGB color reference images with 5 types of dis-
tortions, i.e., fast fading (FF), Gaussian blur (GB), JPEG compression (JPEG), JPEG2000
compression (JP2K), and white noise (WN). The LIVE database contains a total of 779 dis-
torted images. The TID2008 contains 25 original reference images that are distorted using
17 type of distortions. Each reference image is distorted at 4 different levels of individual
distortions. TID2008 contains a total of 1700 distorted images. The distortions present in
TID2008 database are WN, additive noise in color components (ANC), spatially correlated
noise (SCN), masked noise (MN), impulse noise (IN), quantization noise (QN), GB, image
de-noising (ID), JPEG, JP2K, JPEG transmission errors (JPEGTE), JPEG2000 transmis-
sion errors (JP2KTE), non-eccentricity pattern noise (NEPN), local block-wise distortions
(LBD), mean shift (MES) and contrast change (CC). CSIQ database consists of 30 ref-
erence images that are distorted by 6 different distortions that include GB, WN, global
contrast decrements (GC), JPEG, JP2K and additive Gaussian pink noise (PN). A total of
900 images are present in the CSIQ database. The subjective quality score of 866 images
is provided. The evaluators selected for the evaluation of images were from different coun-
tries and diverse social levels. The CID2014 database consists of 23 reference images of
resolution 800 × 800. Six type of distortions are considered, which include Poisson noise
(PNO), JPEG, JP2K, GB, SGCK gamut mapping distortion (GMD) and delta GMD. Each
image is distorted at five different levels of distortion. The subjective quality scores are
obtained from 17 subjects who viewed the images at two distances i.e., 100cm and 50cm.
CID2014 database consists of a total of 690 images. The TID2013 consists of 25 pristine
images that are affected by 24 types of distortions i.e., WN, ANC, SCN, MN, high fre-
quency noise (HFN), IN, QN, GB, ID, JPEG, JP2K, JPEGTE, JP2KTE, NEPN, LBD, MES,
CC, change of color saturation (CCS), multiplicative Gaussian noise (MGN), comfort noise
(CN), lossy compression of noisy images (LCNI), image color quantization with dither
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(ICQD), chromatic aberrations (CA), sparse sampling and reconstruction (SSR). TID2013
contains DMOS of 3000 images for quality evaluation of images.

4.3 Parameter selection of gradient image and wiener filtered image

The range of variance σ for gradient image is tested between 0.5 to 0.8. It is observed that
there is no considerable difference in the overall performance of the proposed NR-IQA
technique, if σ is varied between 0.5 to 0.8 except for the case of fast fading distortion
type. The variation of σ from 0.5 to 0.8 leads to an increase in performance of spearman
correlation coefficient, from 0.90 to 0.92. Therefore, a value of 0.5 is selected for GB, JP2K,
JPEG, and WN, whereas a value of 0.8 is used for FF.

It has been observed that the performance of the proposed methodology is affected by
the level of wavelet decomposition. Therefore, for optimal performance different wavelet
decomposition levels are used for each distortion type. In order to find the correct decom-
position level for each distortion type, the decomposition level is raised from 1 to 4. PSNR
value is calculated between the attenuated wavelet coefficients and the distorted wavelet
coefficients. The level with the maximum PSNR value is chosen as the decomposition level.
Similarly, the PSNR values are plotted against the base function of wavelet transform in
Fig. 5. Haar function shows the highest ratio for WN, JP2K, GB and FF and coiflet func-
tion shows highest for JPEG. Figure 6 shows the ratio between distorted and Wiener filtered
image values for five distortion types when noise variance σ 2

n is varied. The value of σ 2
n that

produces the largest value of ratio for a certain distortion type is chosen as the σ 2
n for that

distortion type.

4.4 Performance comparison

The proposed NR-IQA technique is compared with three FR-IQA i.e., PSNR, SSIM [59]
and FSIM [61] and ten NR-IQA techniques i.e., blind image quality index (BIQI) [35],

Fig. 5 PSNR values for five different types of distortions using six mother wavelet functions
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Fig. 6 Noise variance corresponding ratio between distorted and Wiener filtered image values for distortion
types a FF b WN c JP2K d GB e JPEG for different wavelet decomposition levels

BLIINDS-II [47], blind/referenceless image quality evaluator (BRISQUE) [33], codebook
representation for no-Reference image assessment (CORNIA) [59], DIIVINE) [36], blind
image quality assessment using joint statistics of gradient magnitude and Laplacian fea-
tures (GM-LOG) [58], GLBP [63], NR free energy metric (NFERM) [5], NR structural and
luminance features (NRSL) [21], PATCH-IQ [32], Hybrid [56] and improved NSS [66].
The performance is evaluated in terms of SROCC and PCC. The dataset is portioned into
two non-overlapping sets i.e., training and testing set. The training and testing is performed
1000 times by randomly selecting 80% images for training and 20% for testing. It is ensured
that there is no content overlap between the training and testing dataset. Median values of
SROCC and PCC over 1000 runs are reported. The optimal parameters for SVR regression
are computed using grid search.

Table 1 shows the overall performance of the proposed methodology in comparison to
the state-of-the-art NR-IQA techniques. A universal quality score is predicted using all the
distortion specific regression models based on threshold values TH . The SROCC and PCC
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Table 1 Overall performance comparison of the proposed scheme in terms of median value of SROCC, PCC
for LIVE, TID2008, and CSIQ databases

IQA Technique LIVE [51] TID2008 [43] CSIQ [17] Average

SROCC PCC SROCC PCC SROCC PCC SROCC PCC

PSNR [10] 0.8829 0.8821 0.8789 0.8611 0.9292 0.8562 0.8978 0.8687

SSIM [52] 0.9486 0.9464 0.9032 0.9087 0.9362 0.9347 0.9345 0.9342

FSIM [61] 0.9639 0.9612 0.9555 0.9539 0.9629 0.9675 0.9617 0.9617

BIQI [35] 0.8042 0.8280 0.8415 0.8598 0.7598 0.8353 0.7995 0.8384

DIIVINE [36] 0.9003 0.8943 0.8923 0.8867 0.8697 0.9010 0.8800 0.8974

BLIINDS-II [47] 0.9304 0.9361 0.9046 0.9197 0.9003 0.9282 0.9131 0.9305

CORNIA [59] 0.9466 0.9487 0.8990 0.9347 0.8845 0.9241 0.9151 0.9373

BRISQUE [33] 0.9393 0.9430 0.9336 0.936 0.9085 0.9356 0.9298 0.9414

NSS [66] 0.9470 0.9500 0.9260 0.9200 0.9050 0.9250 0.9295 0.9337

NR-GLBP [63] 0.9380 0.9430 0.9160 0.9480 0.9160 0.9480 0.9246 0.9433

NFERM [5] 0.9380 0.9420 0.9290 0.9520 0.9142 0.9257 0.9270 0.9399

NRSL [21] 0.9520 0.9560 0.9450 0.9519 0.9300 0.9540 0.9447 0.9563

M1 [58] 0.9278 0.9329 0.9246 0.9332 0.9035 0.9298 0.9189 0.9319

M2 [58] 0.9447 0.9489 0.9278 0.9432 0.9140 0.9408 0.9307 0.9449

M3 [58] 0.9511 0.9468 0.9369 0.9406 0.9243 0.9457 0.9390 0.9488

PATCH-IQ [32] 0.9540 0.9562 0.9321 0.9339 0.9430 0.9586 0.9430 0.9496

Hybrid [56] 0.9512 0.9573 0.7386 0.7659 0.9121 0.9152 0.8673 0.8795

GM-WFW1 0.9500 0.9528 0.9286 0.9362 0.9251 0.9321 0.9345 0.9403

GM-WFW2 0.9400 0.9427 0.9370 0.9451 0.9251 0.9652 0.9340 0.9510

GM-WFW3 0.9573 0.9583 0.9453 0.9602 0.9621 0.9721 0.9549 0.9602

scores of top two performing techniques are shown in bold. It can be observed that FSIM
gives the best performance overall, which is a FR-IQA technique and is expected to give
better performance than NR-IQA techniques. The proposed method GM-WFW3 shows the
best performance and outperforms all the NR-IQA techniques in terms of higher SROCC
and PCC scores. GM-WFW3 uses gradient magnitude and the estimated noise image using
Wiener filter for the prediction of quality score. GM-WFW2 and GM-WFW3 also show
promising results as only M3 and NRSL show better performance in comparison. Table 2
shows the performance comparison of proposed methodology with state-of-the-art NR-IQA
techniques when all the images in a particular database are considered irrespective of dis-
tortion type and a single universal quality score is computed using threshold values TH . The
bold face values in Table 2 show the top two performance values. It can be observed that the
proposed NR-IQA GM-WFW3 and GM-WFW2 shows the best performance over TID2013
and CID2014 IQA databases. The third best performing technique is also the proposed
technique i.e., GM-WFW1.

Comparison of the proposed method with NR-IQA techniques in terms of SROCC val-
ues, on individual distortion types over three subjective IQA databases is presented in
Table 3. The NR-IQA techniques achieving the best performance in comparison to existing
NR-IQA techniques are presented in boldface. The hit-count in Table 3 is the number of
times each model is ranked best or better than existing NR-IQA techniques for a particular
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Table 2 Overall performance comparison of the proposed scheme in terms of median value of SROCC, PCC
for TID2013, and CID2014 databases

IQA Technique TID2013 [42] CID2014 [25] Average

SROCC PCC SROCC PCC SROCC PCC

BIQI [35] 0.8670 0.8692 0.7318 0.7351 0.7994 0.80215

DIIVINE [36] 0.8927 0.8953 0.7367 0.7401 0.8147 0.8177

BLIINDS-II [47] 0.8688 0.8721 0.7678 0.7692 0.8183 0.82065

CORNIA [59] 0.8821 0.8869 0.7323 0.7347 0.8072 0.8108

BRISQUE [33] 0.9119 0.9162 0.8265 0.8319 0.8692 0.87405

NSS [66] 0.9179 0.9191 0.8121 0.8167 0.865 0.8679

NR-GLBP [63] 0.9194 0.9201 0.8211 0.8231 0.8702 0.8716

NFERM [5] 0.9011 0.9040 0.8176 0.8191 0.8593 0.8615

NRSL [21] 0.9034 0.9057 0.8291 0.8301 0.8662 0.8679

M1 [58] 0.9206 0.9268 0.7910 0.7992 0.8558 0.863

M2 [58] 0.9193 0.9241 0.8056 0.8091 0.8624 0.8666

M3 [58] 0.9299 0.9341 0.8625 0.8681 0.8962 0.9011

PATCH-IQ [32] 0.9219 0.9291 0.8631 0.8695 0.8645 0.8993

Hybrid [56] 0.7186 0.7559 0.6879 0.6716 0.7032 0.7137

GM-WFW1 0.9301 0.9321 0.8651 0.8710 0.8976 0.9024

GM-WFW2 0.9319 0.9365 0.8682 0.8727 0.9000 0.9037

GM-WFW3 0.9343 0.9391 0.8732 0.8779 0.9037 0.9085

distortion type. The proposed method performs better than the state-of-the-art NR-IQA tech-
niques. It can be observed that the proposed model GM-WFW3 ranks first, having hit count
value of 48, followed by proposed model GM-WFW1, having hit-count value of 26. The
third ranked model is GM-WFW2, which has a hit count of 21.

In Tables 1, 2 and 3 training and testing is performed on images from the same database.
NR-IQA technique should be database independent i.e., the model trained on one database
should be equally affective in predicting the quality score of images in other databases.
Therefore, to establish the generality and robustness of the proposed technique, cross
database validation is performed. Table 4 presents the performance comparison of proposed
models with state-of-the-art NR-IQA techniques when training is preformed on images
from one database and testing is performed on the images from another database in terms
of SROCC score. Three databases are considered, which gives a combination of six train-
ing and test database pairs. The GM-WFW3 model outperforms the NR-IQA techniques by
achieving best SROCC scores over all the six combination pairs.

The execution time of a technique is of importance in many real-time imaging appli-
cations. Hence, the runtime is important when evaluating an NR-IQA technique. The
computational complexity of the proposed model is computed along with the existing
NR-IQA models, on Core i3@2GHz MATLAB 8.1.0.604 programming environment. The
performance comparison in terms of execution time is presented in Table 5. The proposed
method is ranked sixth in terms of execution time. However it shows the best performance
in terms of highest SROCC and PCC score. It can also be observed that the run-time of pro-
posed methods i.e., GM-WFW1, GM-WFW2 and GM-WFW3 is very close to the run-time
of other NR-IQA techniques.
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Table 5 Performance
comparison of the proposed
scheme in terms of execution
time

NR-IQA Technique Execution time (s)

BLIINDS-II [47] 476.640

DIIVINE [36] 110.050

GM-WFW1 0.890

GM-WFW2 0.920

GM-WFW3 1.125

M1 [58] 0.824

BRISQUE [33] 0.72

M3 [58] 0.67

BIQI [35] 0.625

M2 [58] 0.613

PATCH-IQ [32] 1.19

Hybrid [56] 1.16

5 Conclusion

No-reference image quality assessment has gained importance due to rapid increase in the
use of multimedia content. In this paper, three new NR-IQA models based on NSS features,
extracted using Wiener filtered wavelet coefficients and gradient magnitude is proposed.
Estimating the noise affecting the quality of an image is important since, it can make the
task of IQA trivial. In this work, Wiener filter is utilized to improve the NSS of the extracted
features for better prediction of quality score by estimating the noise in the image. Selec-
tion of optimum parameters used to compute the NSS features include the decomposition
level of DWT, basis function of DWT and standard deviation of Wiener filter. The proposed
methodology is tested on five commonly used subjective IQA databases and compared to
three FR and ten NR-IQA techniques. It is observed that the proposed method, which uti-
lizes features from both the gradient magnitude and Wiener filtered estimated noise image
i.e., GM-WFW3 outperforms the state-of-the art image quality assessment techniques, in
terms of higher SROCC and PCC score. The experimental results show that proposed tech-
nique is robust and learns a generalized model that is database independent. The proposed
technique is also competitive in terms of execution time when compared with established
NR-IQA techniques.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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