
Human fall detection using normalized shape aspect ratio

Weidong Min1,2 & Song Zou1 & Jing Li1,3

Received: 5 March 2018 /Revised: 14 September 2018 /Accepted: 18 October 2018 /
Published online: 5 November 2018
# Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
In video surveillance, automatic human fall detection is important to protect vulnerable groups
such as the elderly. When the camera layout varies, the shape aspect ratio (SAR) of a human
body may change substantially. In order to rectify these changes, in this paper, we propose an
automatic human fall detection method using the normalized shape aspect ratio (NSAR). A
calibration process and bicubic interpolation are implemented to generate the NSAR table for
each camera. Compared with some representative fall detection methods using the SAR, the
proposed method integrates the NSAR with the moving speed and direction information to
robustly detect human fall, as well as being able to detect falls toward eight different directions
for multiple humans. Moreover, while most of the existing fall detection methods were
designed only for indoor environment, experimental results demonstrate that this newly
proposed method can effectively detect human fall in both indoor and outdoor environments.

Keywords Human fall detection . Falling toward different directions . Indoor and outdoor
environments . Normalized shape aspect ratio

1 Introduction

Real-time detection of unpredictable events and abnormal human behavior can prevent further
damage from happening. As an example of abnormal behavior detection, automatic human fall
detection in video surveillance plays an important role in protecting vulnerable groups from
falling, Especially, with the rapid growth of the aging society, fall injuries have become the
second leading cause of accidental death, and studies have shown that medical outcomes are
largely dependent on response and rescue time [2, 14].
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A few of fall detection methods have been developed in recent years, some of which were
summarized in a survey together with principles and approaches [23]. They can be categorized
into the following three major types: i) wearable sensor-based; ii) ambience sensing-based; and
iii) vision-based. The methods based on wearable sensors equipped on the human body acquire
acceleration and position information of human motion in order to find out whether it is in
accord with the features of human fall [3, 9, 16, 18]. These sensors include speed sensors,
accelerometers, position sensors and three-axis accelerometers [3, 9, 21], which were also
adopted in smart phones for fall detection [21]. However, this kind of methods are poor in
terms of sensitivity, and thus are prone to give false positives. Moreover, they require each user
to wear sensors that may be uncomfortable, inconvenient and uneconomical. In this way, it is
unpractical to detect humans wearing no sensors in public places. In addition, it is difficult to
judge holistic movement of a human only by a limited number of sensors for collecting the
movement information, which leads to some false positives in falls. As an initial attempt, data
from multiple sensors were used to reconstruct a 3D human body to detect falls [16]. However,
the method could not detect falls toward different directions.

Ambience sensing-based methods arrange a number of sensors in the scenes to determine
whether a human is going to fall by detecting the floor vibration, the electric current
generated near the fall site, the fall sound, and so on [26]. In [30], multiple sensors were
deployed in the home environment, while accelerometer offered an inexpensive way to
detect falls. After the user’s approximate position was calculated by Received Signal
Strength Indicator, image processing was used to determine the user posture when alerts
happened. In [37], a Gaussian mixture model (GMM) supervector was created to model
each fall as a noise segment by using the audio signal from a single far-field microphone. A
support vector machine built on a kernel between GMM supervectors was employed to
classify audio segments into falls and various types of noise. Being poor in anti-interference
and environmental factors, this method may have a high false positive rate, and thus can
only be used for fall detection in some special circumstances.

Due to the limitations of the above-mentioned methods, vision-based fall detection using
the video data captured from a single camera or multiple cameras has gained more and more
attention in recent years and become one of the most widely used fall detection technologies,
such as 2D video analysis. Human fall detection based on a single camera is a problem of
detecting human fall behavior analyzing three-dimensional motion from a two-dimensional
real-time dynamic video streams. 2D images of the human’s shape have been widely used to
detect falls [1, 6, 8, 12, 17, 25, 28, 32, 34, 37]. In [6, 18, 32], the ratio of the height to the width
of a rectangle was used to determine whether a human falls. In [32], only the falls in two
directions were detected by the spatial-temporal analysis of the SAR. In [6], the falls in the
indoor environment were detected according to different human postures. In [17], three
features were used, i.e. the human shape aspect ratio, the effective area ratio and the center
variation rate, to detect human fall, but this method is complex and would fail since the human
shape aspect ratio changes with the relative position of the camera and the target. In [28], the
Canny detector was used to detect the human profile edge and the body shape based on shape
deformation. Chua et al. [8] presented a new video-based fall detection technique based on
human shape variation, where only three points are used to represent different regions of a
human body, namely the head, body, and legs. Other works used external ellipses that closely
encapsulate the contour of the human body to represent its shape [12, 25, 34, 37]. The ellipse
method calculated the inclination of the human body and the ground to determine whether the
human body began to fall or has already fallen down. It was also capable of removing the
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humans carrying elongated objects such as a long-handled vacuum cleaner in order to obtain
more accurate enclosing ellipse.

Some human detection methods in fall detection were discussed in literature, includ-
ing the Gaussian Mixture Model (GMM) [27, 31, 32], the CodeBook background
subtraction method [6, 11, 34], the improved background subtraction method [12] and
the simple prospect detection method [22]. In an complex environment, especially in
outdoor scenes, there are many factors affecting human detection and continuous track-
ing, such as human reflections and shadows, lighting changes, shaking branches, and
partial occlusions. In [7], region-based ConvNet detector was applied to detecting the
target, which achieved high accuracy with substantial training data. However, deep
learning-based detection methods need GPU to accelerate the computation, which is
not always available in the laboratories. Human tracking obtains the human’s continuous
moving trajectory and related information such as the speed and the shape. MeanShift
[10] finds the most likely target location in the current video frame, and then tracks the
humans. The temporal analysis of human motion feature is important to judge human
fall. In [19], an approach was presented for complex activity recognition comprising of
temporal pattern mining (TPM) and adaptive Multi-Task Learning (MTL). TPM captures
the intrinsic properties of activities, while adaptive MTL uncovers the relatedness among
activities and selects discriminative features. In [20], an efficient algorithm was proposed
to identify temporal patterns among actions and utilize the identified patterns to represent
activities for automated recognition.

In recent years, deep learning has greatly improved the accuracy of human action
recognition [33, 36]. Although deep learning-based fall detection methods [1, 24, 35]
show superior performance in terms of accuracy, it suffers from inferior performance in
regard to speed. In order to achieve high accuracy, a number of videos containing fall
actions need to be collected to train the neural network, but collecting such specific videos
is not an easy task.

In this paper, we propose an automatic human fall detection method based on human
motion tracking and the normalized shape aspect ratio (NSAR) in real-time videos. The human
shape information and the aspect ratio has already been used in several previous works for fall
detection [5, 13, 15, 27–29]. Compared with the existing works, our proposed method has the
following advantages:

(1) It introduces the normalization since the change of the shape aspect ratio is caused by the
relative postures and the distance between the human body and the camera.

(2) It employs the normalized shape aspect ratio together with the moving speed and
directions to better detect human fall towards eight different directions.

(3) It smoothes the curve of the NSAR over time to eliminate the influence of hands and legs
swinging back and forth.

(4) It is designed to be suitable for both indoor and outdoor environments.

The remainder of this paper are organized as follows. Section 2 overviews the major steps of
our proposed method. Section 3 discusses human object detection and motion tracking.
Section 4 explain the shape aspect ratio and its application to fall detection. The concept,
algorithms and advantages of the normalized shape aspect ratio for fall detection are described
in details in Section 5. Section 6 illustrates the experimental setup and results followed by
Section 7 offering conclusions and future work.
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2 Method overview

The human fall detection method proposed in this paper mainly includes the following six
components: i) calibration; ii) bicubic interpolation; iii) table of calibrated shape aspect
ratio(CSAR); iv) index table; v) analysis of motion characteristics; and vi) fall detection.
These steps are either conducted offline or online, i.e., the calibration and bicubic interpolation
of calibrated shape aspect ratio are processed offline, while the other steps are implemented
online. The method overview is given in Fig. 1.

To calibrate the camera in a specific scene, CSAR is gathered uniformly via human walking
through the whole video sequence. Then, the CSAR of each pixel in the image is calculated by
bicubic interpolation of the gathered CSAR, which would be utilized to normalize the shape
aspect ratio (SAR) of the tracked human. The results of bicubic interpolation form a table of
CSAR of each pixel in the scene image stored in memory. The human shape is segmented
from background and SAR is computed based on the bounding box enclosing it. The table of
CSAR is indexed by the centric of the bounding box, and then the SAR is divided by the index
value. Afterwards, we calculate and record the motion characteristics of each tracked human,
including the moving trajectory of the human centroid, the moving speed history and the
bounding boxes enclosing the human shape. If the NSAR of human changes substantially, the
human body is judged as fall. The calculation of NSAR together with the moving speed and
directions for detecting human fall will be discussed in details in Section 5.

3 Human object detection and motion tracking

3.1 Foreground detection

We adopt the foreground detection algorithm in [38], where only the body positive movement
of the human is detected and to be judged whether it is consistent with human fall conditions.
The algorithm uses a Gaussian mixture model to model the color distribution observed in any
particular pixel in order to segment the foreground from background. The morphological

Fig. 1 The overview of the proposed human fall detection method
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transformations such as erosion and dilation are then utilized to eliminate small patches and
connect big patches. After that, the image patches whose area is bigger than a threshold are
selected as humans.

Thismethod can efficiently detect humans in a general environment. As an example, Fig. 2 shows
a video frame and the human subject detected by the algorithm.When the human iswalking from left
to right throughout the video scene, s/he can be correctly detected across the whole walking process.

3.2 Human motion tracking

In this paper, we adopt the object tracking algorithm in [10] to find the most probable target position
in the current video frame by MeanShift. The dissimilarity of the color distribution between the
target model and the target candidate is expressed by a metric derived from the Bhattacharyya
coefficient [4]. In the initial video frame, we firstly track a rectangle window defined for the area of
the human. Then,MeanShift is used in the color space to track its area. The search for the new target
location in the current frame starts at its estimated location in the previous frame. When the human
moves, the algorithm estimates his/her most probable location in the current frame by maximizing
the Bhattacharyya coefficient. The algorithm is fast and efficient for tracking non-rigid objects, and
thus is quite suitable for human fall detection in real-time video monitoring.

The Bhattacharyya coefficient is defined by:

ρ ¼ ∫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p xð Þq xð Þdx

p
ð1Þ

where p(x) and q(x) are the relative density functions for the discrete location of the target
model, respectively. The derivation of the Bhattacharyya coefficient involves the estimation of
the densities p and q, for which the histogram formulation is employed. The discrete density q
is estimated from the m-bin histogram of the target model, as defined by:

q ¼ quf g; u ¼ 1; 2;⋯;m ∑
m

u¼1
qu ¼ 1 ð2Þ

Similarly, the discrete density p is estimated at a given location y from the m-bin histogram of
the target candidate, as defined by:

p yð Þ ¼ pu yð Þf g; u ¼ 12;⋯;m ∑
m

i¼1
pu ¼ 1 ð3Þ

Fig. 2 Human detection: (a) is a video frame and (b) shows the human detection result using the foreground
detection algorithm in [18]
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Applying Eq. (2) and Eq. (3) to Eq. (1), the Bhattacharyya coefficient is recomputed by:

ρ yð Þ ¼ ρ p yð Þ; q½ � ¼ ∑
m

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pu yð Þqu

p
ð4Þ

Let {x1, x2,⋯, xn} be the pixel locations of the target model obtained from the color density
function f(x). The target kernel density is given by:

qu ¼ ∑
n

i¼1
K X ið Þδ b X ið Þ−u½ � ð5Þ

where K is a kernel weight function. Based on color density estimation, the MeanShift
algorithm detects various candidate locations to maximize the Bhattacharyya coefficient as
defined in Eq. (4) in order to obtain the most probable location y of the target in the current
frame. Using Taylor expansion around the values pu(y0), the Bhattacharyya coefficient in Eq.
(1) is approximated by:

ρ p yð Þ; q½ �≈ 1

2
∑

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pu y0ð Þqu

p
þ 1

2
∑
n

i¼1
wiK X ið Þ ð6Þ

where

wi ∑
n

u¼1
δ b X ið Þ−u½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qu

pu y0ð Þ
r

ð7Þ

In Eq. (6), since the first item does not change dramatically with different y, the Bhattacharyya
coefficient is maximized when the second item reaches its maximum value. The maximum
Bhattacharyya coefficient is achieved through the iterations in the MeanShift algorithm. This is
done by deriving the new location y1 from the current location y0, given by:

yi ¼ ∑
n

u¼1
X iwiG y0−xið Þ= ∑

n

u¼1
wiG y0−xið Þ ð8Þ

In this way, a human body can be continuously tracked based on the most probable location
from the previous frame to the current frame when s/he walks. Figure 3 is an example of
human tracking results when a human walks in a video scene, in which the green rectangle
represents the detected human subject and the blue line records the walking path of the
body centroid.

Fig. 3 Human tracking results, in which the green rectangle represents the human subject and the blue records
the walking path of the body centroid
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4 Shape aspect ratio for fall detection

4.1 Shape aspect ratio

In tracking, a human body is detected and encapsulated in a rectangle. The difference of
telling the fall from the normal action depends on the human shape aspect ratio (SAR),
which is defined by the height of the rectangle divided by the width of the rectangle.
When a human falls, it is clear that the SAR changes dramatically, which is quite different
from the small change in normal walking. In other words, the human SAR can be either
larger than a high threshold or less than a low threshold. When a human falls, the speed
usually decreases, the body centroid moves toward the ground, and s/he may fall toward
different falling directions as shown in Fig. 4, which are: Upward, Downward, Leftward,
Rightward, Up-Left, Up-Right, Down-Left and Down-Right. The falling toward four
major falling directions, i.e., Upward, Downward, Leftward and Rightward will be
discussed first. When a human walks from left to right in a video scene, falling rightward
is also called as falling forward because the right direction in the video scene is the same
as the walking direction; and falling leftward is also called as falling backward for the
same reason.

4.2 Fall detection based on shape aspect ratio

Figure 5 shows a human walking normally from left to right and then falling forward,
backward, upward and downward. In Fig. 5, the human body was judged to fall because the
SARs change substantially. The process how SARs change is described in Fig. 6.

As we can see from the figure, four solid lines of different colors show the changes of
the human SAR when s/he walks from left to right and falls forward, backward, upward
and downward as in Fig. 5. The four dash-dot lines of different colors correspond to the
falling time of the solid line with the same color. For example, the red solid line shows
the walking involving falling backward; correspondingly, the red dash-dot line marks the
time of falling backward.

Fig. 4 The definition of eight falling directions in a video scene
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Apparently from the falling time, the SAR starts to change substantially. The SAR of
falling upward and downward increases dramatically while the SAR of falling forward and
backward decreases dramatically. In a word, the proposed method can successfully detecte
the human fall according to the SAR changes, and it further distinguishes four falling
directions using the moving directions of the human body centroid. The SAR decreases in
both falling forward and falling backward directions, while the body centroid moves
forward and backward, respectively.

5 Fall detection based on normalized shape aspect ratio

5.1 Normalized shape aspect ratio

As described above, the SAR can be used to successfully detect human fall when the ratio
changes substantially. However, the SAR of the human walking normally may be quite
different regarding the camera layouts and human locations. Therefore, we introduce the
normalized shape aspect ratio (NSAR) to tackle this problem.

Fig. 5 A human walks normally and then falls toward four different directions

Fig. 6 Four solid lines of different colors show the changes of the height, width and the human SAR when s/he
walks from left to right and falls to different directions. Four dash-dot lines of different colors correspond to the
falling time of the solid line with the same color
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For each position in the video scene, the SAR of a human walking normally is
measured for each initially-positioned camera, which is called the calibrated shape aspect
ratio (CSAR) at that position. Here, we define the NSAR as the actual SAR divided by the
CSAR. Apparently, the NSAR should be close to 1 when the human walks normally. If the
NSAR is largely different from 1, the human body is judged to be falling.

5.2 Generation of calibrated shape aspect ratio

The CSAR depends on each specific video scene, i.e. the location relationship between the
video camera and the ground. It is gathered and calculated through a calibration process
which detects the CSARs for a human walking through the whole video scene. The
process has the following four steps:

(1) Divide the video scene into N*M equal rectangles.
(2) A human walks normally along the N + 1 horizontal lines from left to right in the video.
(3) Apply foreground detection to detecting the human by a bounding box, and then record

the SAR of the box for every position.
(4) For each horizontal line, the SAR of the position, where the horizontal line intersects with

M + 1 vertical lines, is selected. Thus, the sampled CSARs are generated by the SAR of
(N + 1)*(M + 1) position which constitutes N*M equal rectangles.

Figure 7 shows sampled CSARs generated from the collected data during the experiments.
The video scene is a rectangle area of 704-by-576 which corresponds to the camera
resolution. As we can see, the sampled CASRs apparently are quite different at different
positions. When the human walks throughout the video scene, the CSAR table is calcu-
lated by bicubic interpolation of the sampled CSARs around the pixels.

5.3 Bicubic interpolation of the CSAR

The bicubic interpolation is one of the most commonly used interpolation methods in
three-dimensional space. The algorithm interpolates the value of 16 points around the

Fig. 7 The sampled CSAR
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sample point, as shown in Fig. 8, which means it not only considers the influence of 4
directly adjacent points but also the changing rate of values between neighboring points.

In Fig. 8, P(i) ∣ i = 0, 1, …, 15} are known points where the coordinates of the point
P(5) are (0, 0). For the sake of convenience, four adjacent points are considered as a unit
square, e.g. P(5):(0,0), P(6):(1,0), P(9):(0,1) and P(10):(1,1). Suppose the values f(x, y) and
the derivatives fx(x, y), fy(x, y), fxy(x, y) are known at the four corners of this unit square.
The interpolated table can be represented by

f x; yð Þ ¼ ∑
3

i¼1
∑
3

j¼0
aijxiyi ð9Þ

The first-order partial derivatives are computed by

f x x; yð Þ ¼ ∑
3

i¼0
∑
3

j¼0
iaijxi−1y j ð10Þ

f y x; yð Þ ¼ ∑
3

i¼0
∑
3

j¼0
jaijxiy j−1 ð11Þ

The second-order partial derivative is computed by

f xy x; yð Þ ¼ ∑
3

i¼0
∑
3

j¼0
i jaijxi−1y j−1 ð12Þ

Fig. 8 Bicubic interpolation of CSAR

14340 Multimedia Tools and Applications (2019) 78:14331–14353



Applying the f(x, y), fx(x, y), fy(x, y), fxy(x, y) of P(5), P(6), P(9) and P(10) to Eq. (9), Eq. (10),
Eq. (11) and Eq. (12), respectively, there are 16 linear equations. In Eq. (9), there are 16
unknown coefficients which can be determined by

a00 a01 a02 a03
a10 a11 a12 a13
a20 a12 a22 a23
a30 a31 a32 a33

2
664

3
775

¼
1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1

2
664

3
775

f 0; 0ð Þ f 0; 1ð Þ f y 0; 0ð Þ f y 0; 1ð Þ
f 1; 0ð Þ f 1; 1ð Þ f y 1; 0ð Þ f y 1; 1ð Þ
f x 0; 0ð Þ f x 0; 1ð Þ f xy 0; 0ð Þ f xy 0; 1ð Þ
f x 1; 0ð Þ f x 1; 1ð Þ f xy 1; 0ð Þ f xy 1; 1ð Þ

2
664

3
775

1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1

2
664

3
775

ð13Þ
Finite difference is applied to computing the derivatives fx(x, y), fy(x, y), fxy(x, y) by Eq. (14) to (16).

f x x; yð Þ ¼ f xþ 1; yð Þ− f x−1; yð Þ
2

ð14Þ

f y x; yð Þ ¼ f x; yþ 1ð Þ− f x; y−1ð Þ
2

ð15Þ

f xy x; yð Þ ¼ 1

8
f xþ 1; yþ 1ð Þ− f x−1; yþ 1ð Þ− f xþ 1; y−1ð Þ þ f x−1; y−1ð Þð Þ ð16Þ

5.4 Fall detection

The process of our proposed fall detection method is given in Fig. 9. After the human body
is detected and tracked, the actual SAR is computed. The calibrated shape aspect ratio

Video Capture Human Detection and Tracking Compute SAR

Index table

Compute MGMR

( NSAR > Tmax && MGMR > Tmax )

|| ( NSAR < Tmin && MGMR < Tmin )

Fall Not Fall
Y

N

Fig. 9 The process of fall detection
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(CSAR) is indexed by the position of tracked human body. Then, the NSAR is calculated
as the actual SAR divided by the CSAR.

NSAR ¼ SAR
CSAR

ð17Þ

Another parameter multi-frame geometric mean ratio (MGMR) is introduced to smooth the
curve of the NSAR over time. If both NSAR and MGMR are bigger than a threshold Tmax or
smaller than a threshold Tmin, the human body will be judged as fall.

The method proposed in this paper can successfully detect human fall toward four major
directions according to NSAR, as shown in Fig. 10. As we can see, the NSAR remained close
to 1 when the human walks normally. From the falling time, NSAR starts to change
substantially and is quite different from 1. The NSARs of falling upward and falling downward
become much larger than 1 while the NSARs of falling forward and falling backward become
much smaller than 1.

However, even if a human moves normally rather than falling, the moving parts of the
human body such as hands and legs also change the shape rectangle. The changing process
in the rectangle is different between walking and falling. When a human walks normally
with the hands and legs swinging back and forth regularly, the rectangle displays cyclic
changes over time. Here, we divide the fall process into three stages: i) before falling; ii)
falling; and iii) after falling. When a human is in the process of falling, the SAR changes
gradually and eventually reaches a stable value. In our captured video, the sampling rate is
24 fps and the process from standing to falling lasts less than 24 frames, which takes about
1 s. Aside from the NSAR, we use MGMR in Eq. (18) to determine whether there is
falling, which is the geometric mean of the ratio of the multiplication of the NSARs of
multi-frames before falling to the multiplication of the NSARs of multi-frames after
falling. In this paper, we choose 24 frames to compute the geometric mean. Let {BF(i)|
i = 1, 2, 3⋯, 24} be the NSAR of the first 24 frames, {F(i)| i = 1, 2, 3⋯, 24} be the NSAR

Fig. 10 Four solid lines of different colors show the changes of the human NSAR when a s/he walks from left to
right and falls to different directions; four dash-dot lines of different colors correspond to the falling time of the
solid line with the same color
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of the middle 24 frames and {AF(i)| i = 1, 2, 3⋯, 24} be the NSAR of the third 24 frames.
MGMR is defined by

MGMR ¼ ∏
24

i¼1
AF ið Þ=BF ið Þð Þ

� �1=24

ð18Þ

Let T be the threshold of determining whether the human is falling based on the NSAR. From
Fig. 10, the NSAR remained close to 1 when the human is walking normally, and we can see
that {BF(i)| i = 1, 2, 3⋯, 24} is close to 1 and {AF(i)| i = 1, 2, 3⋯, 24} is approximately equal
to T. AF(i)/BF(i)with i = 1, 2⋯, 24 can be approximately computed by

AF ið Þ=BF ið Þ≈T with i ¼ 1; 2⋯; 24 ð19Þ
Applying Eq. (20) to Eq. (19), MGMR is given by Eq. (20).

MGMR ¼ ∏
24

i¼1
AF ið Þ=BF ið Þð Þ

� �1=24

≈ ∏
24

i¼1
T

� �1=24

¼ T ð20Þ

It is proved in theory that the MGMR curve is similar to the NSAR curve. We set the threshold
of MGMR as the same as in the NSAR. When a human is walking with hands swaying, the
NSAR appears to be periodically varied. After the human falling down, the NSAR substan-
tially varies which may last for a few seconds. By using the MGMR, the algorithm can reject
the cyclic changes and a sudden change of the NSAR as fall, which reduces the false judgment.
Because T is a limited value, the MGMR can be converged.

Figure 11 is an example of the curves of the NSAR and MGMR when a human walks
from left to right and then falls downward. As we can see, the MGMR curve is smoother
than the NSAR curve, where the falling time is at Frame 176 when the NSAR is 1.493
and the MGMR is 1.402. In fall detection, positive true rate should be as high as
possible, so we set the smaller threshold as Tmax to be 1.4 and the bigger threshold as

Fig. 11 The curves of the NSAR and MGMR
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Tmin to be 0.5. The NSAR of Frame 57 is 1.758, if we do not use the MGMR, the
human would be judged as fall by mistakes. The MGMR can effectively reduce the false
positive rate. The experiment discussed below shows that the algorithm can successfully
eliminate the effects of swinging hands and legs.

6 Experimental results and discussion

In this section, we test the performance of our proposed fall detection algorithm in an indoor
and two outdoor environments.

6.1 The experimental results of indoor environments

In the indoor scene, a Hikvision camera was placed at about 3 m high and 45 degrees
angle with the vertical line. Figure 12(a) is a snapshot of the scene. Before fall detection,
the algorithm needs to measure the calibrated shape aspect ratio for each position of the
scene. Figure 12(b) is the corresponding NSAR of the scene, where the red region
represents relative high value of the NSAR, and the blue region represent relative low
value of the NSAR. As we can see, most of the red region is located on the up-right
corner, and most of the blue region is located on the down-left corner.

In the indoor experiment, two videos were captured with the camera resolution 960*720 at
a 24-fps to validate the effectiveness of the proposed algorithm. Video I lasts 7 min and 14 s, in
which a human walks normally and then falls for thirty-two times. Video II lasts 3 min, in
which a chair was placed in the scene center, and the human’s behavior includes walking,
running, falling and taking another chair with him.

Figure 13 shows three snapshots from videoI. In Fig. 13(a) and (b), a human who
walks normally then falls forward and backward respectively is correctly detected as fall
by our algorithm. In Fig. 13(c), when a human who walks normally and then falls toward
the camera, the NSAR does not change so much that the falling human is not judged as
fall by mistake.

Fig. 12 The scene in the indoor environment and the corresponding NSAR
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Figure 14 shows six snapshots from VideoII. In Fig. 14(a), a falling human occluded by the
chair is still correctly detected. Figure 14(b) shows that a human taking a chair is detected by
mistake as falling because the chair extends the width of the bounding box of the human, and
thus the NSAR becomes smaller. Figure 14(c) shows that a human is running. Figure 14(d),
(e), (f) show that a falling human is successfully detected as falling at different scene locations.

We use precision P and recall R defined in Eq. (21) and Eq. (22) to evaluate the experiments.

P ¼ TP
TP þ FP

ð21Þ

R ¼ TP
TP þ FN

ð22Þ

Here, TP, FP and FN are the number of true positives, false positives and false negatives
respectively.

(a) (b) (c)

(d) (e) (f)
Fig. 14 The fall detection results using the NSAR in Video II under the indoor environment

Fig. 13 The fall detection results using the NSAR in VideoIunder the indoor environment
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As seen in Table 1, the comparative experiment shows the performance of NSAR outper-
forms the SAR, for example, in VideoI, the precision of NSAR is 6.90% higher than that of
SAR and the recall of NSAR is 9.12% higher than that based on SAR.

In Fig. 15, the experimental results of more walking directions and different falling
directions are presented. In Fig. 15(a), (b), (c) and (d), a human walks upward from down
side and falls toward four directions: forward, backward, left, right. Fig. 15(e), (f), (g) and (h)
show that a human walks from left to right and falls toward the following four directions: Up-
Left, Up-Right, Down-Left and Down-Right.

Figure 16 shows the changes of the SAR and the NSAR when a human walks upward
from down side and falls in Fig. 15(a), (b), (c) and (d), respectively. Both the SAR and the
NSAR can successfully detect human fall in four major falling directions, and they starts to
change substantially from the falling time. In Fig. 16(a), the threshold for determining the
human fall is related to every position in the walking process, which means the threshold
may deviate with the true threshold when the SAR is not normalized. Therefore, the
algorithm using the SAR could not detect fall because it has already increased substantially
before the fall happens.

Figure 17 shows the changes of the SAR and the NSAR when a human walks from left to
right and falls to another four directions, which are Up-Left, Up-Right, Down-Left and Down-
Right in Fig. 15(e), (f), (g), (h), respectively. In Fig. 17(b), the threshold is independent of each
position by using the NSAR which is close to 1 when the human walks normally. From the
falling time, the NSAR starts to change substantially and is much less than 1. The method
proposed in this paper can successfully detect the human falls toward these four directions
according to the changes of the NSAR.

Fig. 15 A human falls toward eight different directions

Table 1 Shows the comparison of
our NSAR-based fall detection
method with SAR-based fall detec-
tion method in terms of precision
and recall for VideoIand VideoII

TP FP FN P R

NSAR VideoI 29 0 3 100.00% 93.50%
VideoII 5 1 0 83.33% 100.00%

SAR VideoI 27 2 5 93.10% 84.38%
VideoII 4 1 1 80.00% 80.00%
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6.2 The experimental results of outdoor environments

To test the algorithm’s robustness, we captured a video in an outdoor scene using a Hikvision
camera placed ten-meter high from the ground on a road junction in the campus of Nanchang
University in China, which is a more realistic scenario with shaking branches, shadows, cars,
or humans walking by. The video lasts 4 min and 28 s, consisting of 6432 frames with
resolution 768*567 at a 24-fps sampling rate. Five snapshots are given in the first column in
Fig. 18. The second column represents the corresponding foreground detection results that
only the target with its size within a threshold is recognized as a human subject and
encapsulated in a rectangle. The third column represents the corresponding tracking results.
In this situation, Fig. 18(a) shows the scene background with wavering tree branches. In
Fig. 18(b), there are two persons walking cross each other. In Fig. 18(c), a person riding on a
bicycle and a person riding on an electric bicycle appear in the scene at the same time. In
Fig. 18(d), a car is moving from down-left to up-right and the person is walking in the
sunshine. In Fig. 18(e), there are up to five persons in the scene simultaneously.

Fig. 17 Four solid lines of different colors show the changes of the human SAR and NSAR when s/he walks and
falls in the following four directions: Up-Left, Up-Right, Down-Left and Down-Right. Four dash-dot lines of
different colors correspond to the falling time of the solid line with the same color

Fig. 16 Four solid lines of different colors show the changes of the human SAR and NSAR when s/he walks
upward from down side and falls forward, backward, left and right. Our dash-dot lines of different colors
correspond to the falling time of the solid line with the same color
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Fig. 18(f) is the foreground detection result of Fig. 18(a). In Fig. 18(g), when two
persons are walking cross each other, the area of the cross section is larger than that
when a single person is normally walking by. In this case, these two persons would not

Fig. 18 The results of foreground detection and tracking in our experiment
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be detected by our foreground detection method. After the cross, the algorithm can
successfully detect these two persons again. The moving car in Fig. 18(h) and the person
riding on a bicycle in Fig. 18(i) are also rejected because of the same reason as in
Fig. 18(b). Figure 18(i) shows that the human shadow is removed by shadow detection.
Figure 18(j) shows that our algorithm can detect five human subjects successfully in the
complex scene.

Figure 18(k) is the tracking result of Fig. 18(a). In Fig. 18(l), when two persons are
walking cross each other, they would be lost by our tracking method because they could
not be detected by foreground detection. After the cross, the algorithm restarts and can
successfully track them. When they fall, the NSAR presents the characteristics of
temporarily substantial changes, so the algorithm does not have to track the whole
trajectories of humans and this process will not affect the final fall detection results. In
Fig. 18(m) and (n), the algorithm can successfully track the motion trajectories of the
moving person and the moving electric bicycle, respectively. Fig. 18(o) shows that five
persons are tracked successfully.

In this experiment, volunteers fall five times and all falls are detected by our
algorithm. Figure 19 shows the detection results. In Fig. 19(a), the fall of the left person
is detected successfully and the upright person who is close to the right scene edge is not
detected. In Fig. 19(b), the fall of two persons located on the meadow are all detected
successfully. Furthermore, the fall of the right person who was partially out of the scene
after his falling is detected by our proposed algorithm. In Fig. 19(c), another example
demonstrates that two persons falling simultaneously can be detected successfully by the
proposed algorithm.

Table 2 shows the fall detection results for this outdoor experiment by our proposed
method. In this complex scene, the algorithm reports 100% true positive rate, in which only
2 frames are falsely detected among the 6432 frames.

Our algorithm is real-time. The speed of our method can reach 20 fps on Lenovo E42
(Inter(R) Core(TM) i7-6500 U CPU @2.5G). The experimental results demonstrate that our
proposed method performs very well in the aspect of the positive rate, the false positive rate,
and the running speed.

Fig. 19 Human fall detection: (a), (b), (c) show five falls with different poses detected by our algorithm in real-
world scenarios. In (a), the left person falls toward Up-Left; in (b), the left person falls toward Up-Left and the
right person falls rightwards; in (c), the left person and the right person fall downwards at the same time

Table 2 The fall detection results
for this outdoor experiment TP FP FN P R

Outdoor 5 2 0 71.43% 100%
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7 Conclusions and future work

In this paper, a human fall detection method based on real-time human motion tracking and
the normalized shape aspect ratio is proposed. While most of the existing methods detect
falls at home, this method is suitable for both indoor and outdoor environments and also
capable of detecting falls toward eight different directions. The methods using the shape
aspect ratio which may fail to detect human fall when the relative position and the distance
between the human and the camera changes. The proposed method rectifies the changes to
detect human fall based on normalized shape aspect ratio, which is defined as the actual
SAR divided by the CSAR. Furthermore, we propose the multi-frame geometric mean ratio
to smooth the curve of the normalized shape aspect ratio to eliminate the influence of hands
and legs swinging back and forth. Last but not the least, our algorithm is real-time on an
ordinary laptop without GPU. However, the algorithm has a limitation, i.e., an offline
calibration process is needed to gather the sampled calibrated shape aspect ratio. In the
future, we will explore the photographic geometry theory for calibrating the camera
automatically. What is more, we will combine deep learning technologies to carry out the
research on human activity recognition to distinguish human fall from normal daily behav-
iors such as bending, crouching, sitting down, etc.
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