Multimedia Tools and Applications (2019) 78: 12607-12638
https://doi.org/10.1007/511042-018-6788-5

@ CrossMark

Inference-based creation of synthetic 3D content
with ontologies

Krzysztof Walczak' - Jakub Flotynski’

Received: 28 February 2018 / Revised: 26 September 2018 / Accepted: 17 October 2018 /
Published online: 31 October 2018
© The Author(s) 2018

Abstract

Creation of synthetic 3D content is typically a complex task, covering different geometrical,
structural, spatial and presentational elements. The available approaches enable 3D content
creation by programming or visual modeling of its elements. This demands expertise in
computer science from content authors, limits the possibilities of using domain knowledge,
and requires to determine all content details within the content creation process. In this
paper, we propose a new method of 3D content creation, which is based on ontologies.
Ontologies are the foundation of the semantic web, enabling the use of knowledge in various
domains. In the proposed method, the use of ontologies facilitates 3D content creation by
domain experts without skills in programming and computer graphics. In addition, due to
the use of ontologies, the method enables automated reasoning, liberating the authors from
determining many elements of the created content, which can be inferred by the content
generation algorithm on the basis of explicitly specified content elements. The method has
been implemented and evaluated. It simplifies 3D content creation in comparison to the
available approaches by reducing the number of activities that must be completed by the
content authors. Hence, the proposed method can increase the use of 3D content in different
application domains.

Keywords 3D web - Virtual and augmented reality - Semantic 3D - Ontologies -

Semantic web

1 Introduction

Synthetic 3D content is the key part of virtual reality (VR) and augmented reality (AR)

applications, which become increasingly popular in various domains, such as prototyping,
medicine, education, training, tourism, scientific visualization, entertainment and cultural

P4 Krzysztof Walczak
walczak @kti.ue.poznan.pl

Jakub Flotyniski
flotynski@kti.ue.poznan.pl

Poznan University of Economics and Business, Niepodlegtosci 10, 61-875 Poznan, Poland

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-018-6788-5&domain=pdf
http://orcid.org/0000-0001-5104-2022
mailto: walczak@kti.ue.poznan.pl
mailto: flotynski@kti.ue.poznan.pl

12608 Multimedia Tools and Applications (2019) 78:12607-12638

heritage. Creation of synthetic 3D content is a complex task, which typically includes design
of geometrical, structural, spatial and presentational elements. Despite numerous works in
this domain, difficulty associated with creation of synthetic 3D content is still one of the
main obstacles for efficient development of VR/AR applications in many domains.

Creation of 3D content is possible with a number of well-established technologies, which
may be divided into three main groups. The first group encompasses libraries (e.g., Direct3D
[39], Java3D [40] and Away3D [10]), which enable programming of 3D content with imper-
ative languages, such as C++, Java and ActionScript. In imperative programming, stress
is put on specification of the steps to be made to achieve desirable results. The second
group includes declarative 3D content formats, such as VRML [50], X3D [51] and XML3D
[18]. In declarative programming, stress is put on the desirable results instead of the steps
necessary to achieve the results. The third group comprises 3D modeling tools, which com-
bine visual 3D modeling with programming of content. Examples of such tools are Blender
[28], Maya [9] and 3ds Max [8]. Such tools usually make the process easier and more
efficient.

The potential of VR/AR applications can be fully exploited only if synthetic 3D content
is created with efficient and flexible methods, which conform to the recent trends in the
development of information systems. The main motivations for our approach (depicted in
Fig. 1) are as follows.

1. 3D content creation should be available to domain experts, who are usually not IT-
specialists. This requires 3D content creation methods that are understandable to
non-programmers by focusing on specification of high-level domain-specific goals to
be achieved instead of specific low-level technical steps to be completed to achieve the
goals. Low-level details related to 3D graphics could be created by graphic designers
in a reusable form and further linked to domain-specific concepts by developers. How-
ever, the available approaches either require the use of low-level concepts related to 3D
graphics or restrict designers to use domain-specific tools that cannot be easily adapted
to other domains.

2. 3D content is typically composed of various geometrical, structural, spatial and presen-
tational elements. To liberate 3D content authors from determining all such elements,

@ 3D shapes

Graphic designers

@ Mappings

Developers

(ﬁ) arco\ [g

woJy patiajul

Tools (indexing,
searching,
analyzing)

3D scenes

Fig. 1 Motivations for inference-based creation of 3D content with ontologies

) re
Domain experts Lars

@ Springer

Multimedia Tools and Applications (2019) 78:12607-12638 12609

the content creation process should enable inference, which is the process of specifying
tacit (not explicitly specified) content elements on the basis of explicitly specified ele-
ments. Inference is done automatically—by software referred to as a reasoning engine.
Possible use of inference in 3D modeling covers a variety of cases. For instance, every
3D object that has a material assigned can be inferred to belong to the objects-with-
material class, even if not explicitly specified as such, and further visualized in a 3D
scene, in which only the objects of this class are presented. In a 3D zoo, the specifica-
tion of subclasses of some species by a user may be sufficient to infer which animals
belong to these subclasses, using the recursive subclass of relation between classes. In
a 3D building, different 3D models for external and internal doors could be selected by
a reasoning engine on the basis of inferring in what a type of wall (external or inter-
nal) the doors are. However, the available approaches to 3D modeling do not benefit
from inference in such a way and require specification of all 3D content elements to be
presented or specification of algorithms that create the elements.

3. 3D content accessible on the web should be suitable for exploration with queries
(e.g., by search engines and analytical tools) for indexing, searching and analyzing of
content. This is not enabled by the available 3D content formats and programming
languages, which are inappropriate for query-based exploration or enable only struc-
tural queries (e.g., with XQuery) without the possibility of exploring domain-specific
semantic properties of the content.

Potential applications of the aforementioned concepts are very broad and encompass a
variety of domains. For instance, in medicine, 3D models of a human body could be com-
posed by physicians. 3D models of damaged organs would be automatically selected by a
reasoning engine using inference on the rules and facts describing diseases affecting the
organs. The resulting body models could be searched and explored with semantic queries
by students for educational purposes. In cultural heritage, 3D exhibitions could be com-
posed by museum curators using inference on rules and facts describing artifacts, with
regards to desirable intersections of artifacts’ types (armors, clothes, coins, dishes, etc.),
ages, provenance and ethnic groups. Generated 3D exhibitions would be suitable for index-
ing and searching on the web in response to visitors’ queries. In e-commerce, 3D shops
could be designed by marketing specialists using inference to select desirable classes of
products (e.g., food, sport accessories and electronics) to be placed on desirable place-
holders. Customers could effectively navigate in such shops using queries about desirable
products, while marketing specialists would have feedback from processing semantic logs
of customers’ choices.

However, the aforementioned requirements are not satisfied by the available approaches
to 3D content creation. Further progress in 3D modeling is possible thanks to the use of
semantics [48, 57], broadly understood as concepts describing different content properties
at different levels of abstraction. Currently, the main approach to describe the semantics of
content is the semantic web, which has been derived from knowledge and metadata rep-
resentation. The semantic web aims at the evolutionary development of the current web
towards a distributed database linking structured content described by ontologies [11].
Semantic ontology-based representation of content makes it intelligible to humans and
interpretable to computers, achieving a new functionality of web applications, which can
interpret the meaning of particular content elements as well as their relations using con-
cepts (classes, objects and properties) specific to any domain. This can lead to much better
methods of creating, indexing, searching, querying and analyzing of content. The use of the
semantic web for describing 3D content recently gains increasing attention of the research

@ Springer

12610 Multimedia Tools and Applications (2019) 78:12607-12638

community in different applications such as 3D content retrieval [45], design of industrial
spaces [43], archaeology [19] and molecular visualization [46, 47].

The main contribution of this paper is the Method of Inference-based 3D Content
Creation (MICC). The method is based on ontologies, which provides several important
advantages in comparison to the previous approaches to 3D content creation. First, it enables
content representation at an arbitrary level of abstraction, in particular specific to an appli-
cation or domain, at the same time hiding technical details specific to 3D graphics. This
has been achieved by general domain-agnostic mapping between domain-specific concepts
and graphics-specific concepts. Hence, MICC outperforms previous solutions of semantic
3D modeling, which are strictly related to particular application domains. Moreover, 3D
content can be created with focus on the desirable elements instead of the steps that are
necessary to create the elements. The aforementioned features can foster creation of 3D
content by authors without knowledge of programming and graphics design, in particular
domain experts who are not IT-specialists. Second, the use of ontologies enables reasoning,
liberating content authors from specifying elements that could be inferred from the explic-
itly specified elements. This can reduce users’ effort and time spent on content preparation.
Third, declarative 3D content representation enabled by the method can be semantically
explored with queries (e.g., expressed in the SPARQL language [55]), which makes the
method compliant with the current trends in the web development.

Taking into account the features of the proposed method, it may be successfully used to
create several categories of 3D scenes:

1. Scenes that are comprised of multiple objects belonging to common classes in a partic-
ular domain. For example, in a VR museum exhibition, there are collections of objects
with common presentational properties—coins, armors, weapons, tools, etc.

2. Scenes that conform to some constraints that can be satisfied in various ways, e.g., gen-
erate exemplary virtual chambers with furniture, paintings and decorations belonging
to general classes without specifying exact classes of the objects.

3. Scenes that satisfy constraints, whose verification requires implementation of complex
(e.g., recursive) algorithms. For instance, in a scene with museum paintings highlight
only paintings related to the successors to a particular sovereign.

The remainder of this paper is structured as follows. Section 2 provides an overview
of the current state of the art in semantic representation of 3D content. In Section 3, our
new method is presented along with an example of inference-based 3D content creation. In
Section 4, the architecture and implementation of the scene design environment based on
the method is outlined. In Section 5, the evaluation of the method and the environment is
presented, followed by discussion in Section 6. Finally, Section 7 concludes the paper and
indicates possible directions of future research.

2 Related works

In [26], a comprehensive review of approaches that use ontologies to support 3D repre-
sentation and 3D modeling process has been presented. The main semantic web standards
used to create ontology-based 3D content representations are the Resource Description
Framework (RDF) [53], the RDF Schema (RDFS) [54] and the Web Ontology Language
(OWL) [52]. RDF is a data model based on triples (subject - property - object). RDFS and
OWL are languages providing classes and properties that enable comprehensive descrip-
tion of objects. These standards enable design of ontologies, which are specifications of

@ Springer

Multimedia Tools and Applications (2019) 78:12607-12638 12611

conceptualization [29] for a domain. Ontologies may describe arbitrary objects as well as
classes and properties of objects.

Following [26], 3D content representation in this paper is defined as a document that
specifies different 3D content components and properties, in particular geometrical, struc-
tural, spatial and presentational. Semantic 3D content representations are instances of 3D
content ontologies, which are schemes specifying different possible classes and properties
of 3D content components.

As explained in the paper, the essential activity of ontology-based 3D content creation,
which is also the main advantage over other modeling approaches, is the inference of tacit
knowledge. Knowledge about 3D content, which may be expressed at the low or high
abstraction levels, can be used to infer implicit content properties from explicit properties.
Therefore, content authors are liberated from specifying all content properties.

A number of works have been devoted to ontology-based representation of 3D content
including a variety of geometrical, structural, spatial and presentational elements. How-
ever, the majority of the approaches are used like typical 3D content formats, in which
all 3D content elements have to be explicitly specified by the authors, without capabilities
of knowledge inference. The available methods are summarized in Table 1. Four meth-
ods address the low (graphics-specific) abstraction level, while six methods address a high
(general or domain-specific) abstraction level. Three of those methods may be used with
different domain ontologies.

The method proposed in [12, 16, 17, 34, 42] enables content creation at both the low and
a high abstraction levels. At the particular levels, different 3D content ontologies connected
by mapping are used. Low-level ontologies may be created by graphic designers, while
high-level ontologies may be created by domain experts. Mapping of low- to high-level
ontologies adds interpretation to graphical components and properties. For instance, a map-
ping links particular meshes in 3D scenes to particular pieces of furniture in a virtual shop to
enable intuitive search and presentation to customers [16]. The approach also enables com-
bination of primitive actions (e.g., move, turn, rotate, etc.) to composite behavior intelligible
to end users without the knowledge of computer graphics. The method requires authors to
specify all components and properties of 3D content.

Table 1 Comparison of methods of ontology-based 3D content creation

Approach Level of abstraction Inference

Low (3D graphics) High (application domain)

Troyer et al. [12, 16, 17, 34, 42] v general —
Gutiérrez et al. [30, 31] v humanoids —
v

Kalogerakis et al. [32] - v
Spagnuolo et al. [6, 7, 44] - humanoids v
Floriani et al. [15, 41] v - —
Kapahnke et al. [33] general -
Albrecht et al. [5] - interior design v
Latoschik et al. [20, 35, 56] — general —
Drap et al. [19] — archaeology v
Trellet et al. [46, 47] - molecules v
Perez-Gallardo et al. [43] v — v

@ Springer

12612 Multimedia Tools and Applications (2019) 78:12607-12638

The method proposed in [30, 31] also enables 3D content creation at both low and high
abstraction levels. Ontologies used in the method include graphical 3D content components
(e.g., shapes and textures) and properties (e.g., coordinates and indicies) as well as high-
level domain-specific components (e.g., body parts) and properties (e.g., joint attributes,
descriptors of articulation levels, 3D animations of face and body, and behavior controllers).
The method does not use knowledge inference.

The method proposed in [32] enables 3D content creation at the low abstraction level.
The used ontology provides components and properties that are equivalents of X3D nodes
and attributes, e.g., textures, dimensions, coordinates and LODs. The method enables infer-
ence on semantic rules. For instance, if an individual is of the atom class (body), generate a
sphere to represent it in an ontology for chemical compounds (head). Thus, final 3D content
is based on both the explicit and implicit (inferred) knowledge. However, the method does
not enable mapping between high- and low-level concepts, so it is unsuitable for modeling
3D content by domain experts.

Another method of creating 3D humanoids has been proposed in [6, 7, 44]. After auto-
matic segmentation of 3D models, the distinguished body parts are semantically annotated.
Two modes of annotation have been developed. Automatic annotation is completed by soft-
ware considering topological relations between content elements (e.g., orientation, size,
adjacency and overlapping). Manual annotation is completed by a user equipped with a
graphical tool. Although the method benefits from inference in annotating of 3D models, it
is limited to virtual humans.

The method proposed in [15, 41] enables creation of non-manifold 3D shapes using
low-level properties. Once 3D shapes are segmented, graphical properties are mapped to a
shape ontology and form an ontology-based low-level shape representation. The ontology
specifies diverse geometrical properties of shapes: non-manifold singularities (e.g., isolated
points and curves), one-dimensional parts, connected elements, maximal connected ele-
ments, the number of vertices, the number of non-manifold vertices, the number of edges,
the number of non-manifold edges and the number of connected elements. It permits rep-
resentation of such objects as a spider-web, an umbrella with wires and a cone touching a
plane at a single point.

The tool described in [33] leverages semantic concepts, services and hybrid automata
to describe behavior of objects in 3D simulations. The tool has a client-server architec-
ture. The client is based on a 3D browser, e.g., for XML3D, while the server is built of
several services enabling 3D content creation. A graphical module maintains and renders
3D scene graphs. A scene module manages global scene ontologies, which represent the
created simulations. A verification module checks spatial and temporal requirements
against properties of content elements. An agent module manages intelligent avatars, e.g.,
their perception of the scene. The user interface enables communication with web-based and
immersive virtual reality platforms. Ontology-based content representations are encoded
in XML using the RDFa and OWL standards, and linked to 3D content encoded in
XML3D.

In [5], a method of 3D content creation based on point clouds has been proposed. At
the first stage of the method, an input point cloud is analyzed to discover planar patches,
their properties (e.g., locations) and relations. Then an OWL reasoner processes a domain
ontology including conceptual elements that potentially match the analyzed patches. Next,
matching elements are selected and configured to build a high-level representation in the
interior design domain. Created representations are ontology-based equivalents to the input
point clouds. The method uses knowledge inference to analyze 3D scenes, e.g., context of
use of 3D objects and connections between objects.

@ Springer

Multimedia Tools and Applications (2019) 78:12607-12638 12613

In [20, 35, 56], a general-purpose tool and method of 3D content creation has been
described. The method is based on actors and entities, which represent 3D content at a high
level, are described by shared state variables and are subject to events. In particular, the
approach can be used in game design.

In [19], a method and software for representing underwater archaeological objects in
3D have been presented. In the approach, a Java-based application generates an ontology
representing objects. Further, queries encoded in the SWRL language [49] can be used to
select objects to build a 3D visualization.

In [46, 47], an approach to semantic representation of 3D molecular models has been
proposed. The approach combines different input (e.g., interaction using different haptic and
motion tracking devices) and output (e.g., presentation in 2D and 3D) modalities to enable
presentation and interaction suitable for particular types of content and tasks to be done. The
approach uses inference on ontologies describing the content and SPARQL queries sent by
users to visualize selected objects.

In [43], a system for 3D recognition of industrial spaces has been presented. The method
used in the system recognizes objects in point clouds presenting interiors of factories. The
recognized objects, they properties and relations, which are specific to 3D graphics, are fur-
ther semantically represented using ontologies. On this basis, topological relations between
object are inferred.

The use of knowledge inference in the available approaches is limited only to selected
classes of semantic objects and properties at a particular level of abstraction. General
methods of 3D modeling that enable the use of knowledge inference in different application
domains at different abstraction levels are still lacking.

3 Method of inference-based 3D content creation

The main contribution of this paper is the Method of Inference-based 3D Content Creation
(MICC). The method is a part of the approach to Semantic Modeling of Interactive 3D Con-
tent (SEMIC) outlined in [21, 22]. In those works, we focused on an approach to separation
of concerns between different 3D modeling users, who may be graphics designers, devel-
opers and domain experts. The distinction of different modeling steps to be completed by
people with diverse skills better organizes the 3D modeling process and reduces the role
of IT-specialists. This paper extends our previous articles by detailed presentation of rules
and an algorithm that enable link between arbitrary domain and 3D graphics. MICC offers
important advantages over the previous approaches to 3D modeling, including ontology-
based solutions. It enables semantic representation of 3D content in different application
domains—using concepts intelligible to domain experts. Such concepts, which provide
high-level content representation, are mapped to concepts specific to 3D graphics, which
provide low-level content representation. In the 3D content creation process, authors focus
on desirable properties of 3D content. Due to applying knowledge inference, all content
properties that have not been explicitly specified, but are logical consequences of explicit
properties, are inferred by a standard reasoning engine. This reduces users’ effort in 3D
modeling as proven in Section 5.

The general assumption of MICC is the reuse of a library of 3D content components
for creating different semantic 3D scenes using inference on domain ontologies (Fig. 2).
The main activities of the method are: library development, which is completed once for a
particular domain or application, and 3D scene creation, which can be completed multiple
times with a given library. Within the activities, different steps are distinguished. The steps

@ Springer

12614

Multimedia Tools and Applications (2019) 78:12607-12638

Content Scheme Ontologies VTV ST
9 Ontology (RDF, Activity [Activity
completed | | completed
RDFS, OWL) |
by user) | by software

Mapping
Ontology
|

Graphics
Ontology
]

Step 2:

Step 1: ; Step 1: Step 2: \ (\

Designing 3D VT &l Designing 3D Generating ﬁ! ¢ Scen.e |
Components] Presentation

Components . Scene Template \ 3D Scene | |

and Properties —_—— K= ~—————

Domain
Ontology

Semantic 3D Mabpin
Components pping

Library

Semantic 3D Semantic 3D
Scene Template Scene

Library Development 3D Scene Creation

Fig.2 Creation of 3D content with the MICC method

are completed in the declarative fashion—with the specification of desirable 3D content
properties instead of a sequence of actions that must be executed to set the properties (like in
imperative programming). The steps use different ontologies to produce 3D content. Library
development and 3D scene creation may be completed using the Scene Design Environment
(SDE, cf. Section 4) or individual tools for 3D modeling (e.g., Blender [28] or 3ds Max
[8]) and semantic modeling (e.g., Protégé [3]). Within the steps, responsibilities are divided
between different users and software.

The following sections describe the main MICC activities and steps, along with an exam-
ple, in which different parts of a 3D scene in a virtual museum of agriculture are created by
different users and software.

3.1 Development of a library of 3D content components

A library consists of independent 3D content components, which may be further reused
to compose multiple 3D scenes. The components are encoded using the semantic web
standards—RDF, RDFS and OWL. Using the standards permits inference and semantic
exploration of 3D components when building 3D scenes, e.g., select a texture present-
ing brick to cover a wall, select an animation of jumping to be attached to a character. A
library is created once for a particular domain ontology. For instance, individual libraries
are required to enable modeling of machines, architecture, interiors or museums. A domain
ontology may be provided by experts in a particular field of knowledge or, if it does not exist
yet, it may be designed by IT-professionals in collaboration with such experts specifically
for the use in MICC.

3.1.1 Step 1:designing 3D components

This step provides 3D components, which will enable use of domain classes and properties
(specified in a domain ontology) for 3D modeling in further steps of MICC. 3D compo-
nents are OWL classes of: 3D shapes (e.g., meshes), structural objects (e.g., hierarchies of
meshes), appearance descriptors (e.g., textures, materials) and animation descriptors (e.g.,
interpolators, sensors) with specific values of OWL datatype and object properties. 3D com-
ponents are designed with regards to the intended manner in which domain classes and
properties should be presented. Modeling of 3D components typically requires the use of
specific hardware or software tools, e.g., creating 3D meshes requires a 3D scanner or a

@ Springer

Multimedia Tools and Applications (2019) 78:12607-12638 12615

3D modeling tool, while drawing textures requires a 2D graphical editor. 3D components
are classes of the basic low-level elements of semantic 3D scenes, which are described
by semantic datatype and object properties. Instances of 3D components represent neither
particular coherent 3D scenes nor particular compositions of 3D objects, but they can be
flexibly reused to compose various complex 3D objects and scenes. 3D components are
subclasses of application-independent graphical classes and properties (referred to as 3D
properties) specified in the Graphics Ontology, which are counterparts to widely-used con-
cepts of 3D graphics, present in numerous 3D formats. 3D components need to be designed
with regards to the domain classes and properties that will be used in 3D scene creation. For
instance, different 3D meshes represent specific car models, while textures determine their
appearance, etc. This step is typically completed by a graphic designer.

In the example of museum exhibition, in Step 1 of the library development, a graphic
designer creates several virtual objects that represent real museum artifacts. First, the
graphic designer uses specific modeling tools to create 3D components—a 3D scanner to
capture the geometry of: a granary, a woman statuette, a sower, a smoker, a ring, a seal
and a badge, and a 2D graphical tool—to prepare textures for the 3D models (Fig. 3). The
components are encoded as an OWL ontology that conforms to the Graphics Ontology.
The components may be created using SDE (cf. Section 4), semantic modeling tools (e.g.,
Protégé) or specifically designed plugins for graphical editors (e.g., Blender [28] or 3ds
Max [8]). For every 3D model and every texture in the example, 3D components described
by properties have been generated (Listing 1). The ontology is encoded in RDF, RDFS and
OWL using the syntax of the RDF Turtle format [4]. Some components and properties that
are not crucial for the example have been skipped. In the example, the woman statuette is
to be used by domain experts in three different forms: as clay and glassy virtual artifacts
(Lines 3-25) as well as a painted virtual artifact with the inherent texture mapping (27-34).
The other 3D models are to be used in single forms (36-44).

3.1.2 Step 2: mapping 3D components and properties to domain concepts
Mapping 3D components and properties to domain classes and properties enables pre-
sentation of 3D scenes described in a particular application domain, e.g., linking a tail

animation to a 3D animal model, inclusion of multiple meshes representing engine parts

crr:PaintedWomanMesh crr:SowerMesh

crr:SealMesh H

crr:WomanMesh crr:RingMesh crr:SmokerMesh

crr:GranaryMesh

it 12° } Ve N
7N TS A

crr:GlassMaterial

crr:BadgeMesh crr:ClayMaterial
.

Fig. 3 Visualization of example 3D components

@ Springer

12616 Multimedia Tools and Applications (2019) 78:12607-12638

1 Prefixes: Graphical Ontology (go), Semantic 3D Components (sc)
2

3 sc:WomanMesh rdf:type owl:Class ;

4 rdfs:subClass0f go:Mesh3D ,

5 [rdf:type owl:Restriction ;

6 owl:onProperty go:meshData ;

7 owl:hasValue "woman.obj"].

8

9 sc:ClayMaterial rdf:type owl:Class ;
10 rdfs:subClass0f go:TextureMaterial ,
11 [rdf:type owl:Restriction ;

12 owl:onProperty go:texture ;

13 owl:hasValue "clay.png"]

14 [rdf:type owl:Restriction ;

15 owl:onProperty go:transparency ;
16 owl:hasValue 0 J].

17

18 sc:GlassMaterial rdf:type owl:Class ;
19 rdfs:subClass0f go:ColorMaterial ,
20 [rdf:type owl:Restriction ;

21 owl:onProperty go:color ;

22 owl:hasValue "green"] ,

23 [rdf:type owl:Restriction ;

24 owl:onProperty go:transparency ;
25 owl:hasValue 0.7 1.

26

27 sc:PaintedWomanMash rdf:type owl:Class ;
28 rdfs:subClass0f sc:WomanMesh ,

29 [rdf:type owl:Restriction ;

30 owl:onProperty go:texture ;

31 owl:hasValue "statueTexture.png"] ,
32 [rdf:type owl:Restriction ;

33 owl:onProperty go:textureCoordinates ;
34 owl:hasValue "..."].

35

36 {sc:GranaryMesh,..., sc:BadgeMesh}

37 rdf :type owl:Class ;

38 rdfs:subClass0f go:Mesh3D ,

39 [rdf:type owl:Restriction ;
40 owl:onProperty go:meshData ;
41 owl:hasValue "..." 1 ,
42 [rdf:type owl:Restriction ;
43 owl:onProperty go:texture ;
44 owl:hasValue "..."].

Listing 1 The ontology including example 3D components

within a complex structural 3D engine model. Mapping is performed once for a particular
set of 3D components and graphical properties and a domain ontology. Mapping enables
reuse of components and properties for presenting various 3D scenes, which conform to the
domain ontology. Mapping may cover only some parts of a domain ontology in practical
applications.

This step is typically completed by a developer with skills in semantic modeling, using
SDE or a semantic editor (e.g., Protégé [3]). Mapping is performed according to mapping
patterns, which are sequences of activities frequently repeated by modeling users to provide
a link of 3D components and properties to domain classes and properties. To create a map-
ping, developers use complex mapping patterns, which are sequences of simple mapping
patterns.

Simple mapping patterns Simple Mapping Patterns (Fig. 4) are basic activities completed
by users while mapping 3D components and properties to domain classes and properties.

@ Springer

Multimedia Tools and Applications (2019) 78:12607-12638 12617

Classification Property

e e | O
B — e Class

Multivalued Descriptor ¢
Datatype Property

Multivalued
Descriptor
Structural Descriptor
Class
Structural exact-/
Descriptor minimum-/)
maximum-cardinality Object property

Complex Descriptor
- ™~

Complex Descriptor = > Intersection ‘
P P "1 | Descriptor | ...[Descriptor ||
NG =)

Equivalent/Inverse Property

Equivalent Property/ -
Property Inverse Property KL

Property Chain

‘ " Object \ Object
. Property -~ Property

Class Class — Class

all-values-from all-values-from

Semantic Rule

Intersection
Class Property o
Restriction of Classes

Fig.4 Simple mapping patterns

Generic classes and properties for accomplishing simple mapping patterns are contained in
the Mapping Ontology.

The classification property pattern enables reflection of an OWL property P whose val-
ues are literals by a set of OWL classes. For every distinct classification value of P, an
individual class is created and it is specified as an equivalent to a has-value OWL restriction
on P with the required P value. Consequently, every OWL individual that has a particu-
lar classification value of P assigned, belongs to one of the created classes. For instance,
objects made of metal, wood and plastic may belong to MetalObject, WoodenObject
and PlasticObject classes (isMadeOf=<metal,wood,plastics>). Every cre-
ated class may be further described by different properties, using other simple mapping
patterns.

@ Springer

12618 Multimedia Tools and Applications (2019) 78:12607-12638

The multivalued descriptor pattern enables specification of the desirable OWL datatype
properties for OWL individuals of a common OWL class. To make a class a multival-
ued descriptor, it needs to be specified as a subclass of the intersection of OWL has-value
restrictions. Every OWL has-value restriction indicates a required value for one of the desir-
able datatype properties. For instance, every gold object is yellow and reflects light—one
restriction specifies color, while the other specifies shininess.

The structural descriptor pattern enables creation of a complex structure of OWL classes
that are linked by OWL object properties. To make a class a structural descriptor, the
class needs to be specified as a subclass of the intersection of minimum-cardinality, exact-
cardinality or maximum-cardinality restrictions. For instance, every physical object is made
of a material, every animated object has an animation assigned. The linked class may also be
a structural descriptor, thus creating a complex structure of linked classes. In addition, struc-
tural descriptors can be extended with OWL datatype properties by applying the multivalued
descriptor mapping pattern.

The complex descriptor pattern enables specification of the desirable OWL datatype
properties and OWL object properties of OWL individuals based on multiple OWL classes
that are assigned to the individuals. In contrast to the previous patterns, which enable map-
ping one domain class-to-many 3D properties, complex descriptors enable mapping many
domain classes-to-many 3D properties, making desirable property values conditional on
classes assigned to the individual and classes not assigned to the individual. For instance,
the color of a wooden object is brown, while the color of a waxen object is, e.g., pink, but
it also depends on the object temperature. For every distinguishable combination of classes,
a separate class (a complex descriptor) is created and it is specified as an equivalent to the
intersection of the classes that are required and the complements of the classes that are not
required. Due to the use of the complements of classes, the close world assumption has to
be made to enable the use of this pattern. Every complex descriptor can be further extended
with datatype properties and object properties by applying the multivalued descriptor and
the structural descriptor mapping patterns.

The equivalent property pattern enables specification of an OWL property as an equiv-
alent to another OWL property. Equivalent properties are processed in the same manner.
A number of properties may be specified as equivalent. For instance, the includes,
contains and incorporates properties may be equivalents even if defined in dif-
ferent ontologies. The inverse property simple mapping pattern enables the specification
of an inverse property [2]. For instance, includes and is included in are inverse
properties.

The property chain pattern enables connection between OWL individuals of two dif-
ferent OWL classes by linking the classes via mediating classes that are subclasses of
all-values-from restrictions. Every mediator class is specified as a subclass of an all-values-
from restriction that indicates the next class in the chain using an OWL object property. The
linked class is also a subclass of an all-values-from restriction. For instance, in a traditional
interior, a room may include only objects made of wood. Indicating an object as included in
the room determines the object to be wooden.

The semantic rule pattern (RL) is the most general pattern. It overtakes the previous
patterns in terms of expressiveness. This pattern is used to create logical implications that
determine selected OWL properties of OWL individuals (in the head of the rule) on the
basis of other properties of individuals (in the body of the rule). For instance, every object
standing on a table has the y coordinate calculated on the basis of the y coordinate of
the table and the heights of both the objects.

@ Springer

Multimedia Tools and Applications (2019) 78:12607-12638 12619

Complex mapping patterns The use of particular simple mapping patterns for linking
particular domain concepts to 3D components and properties is determined by complex
mapping patterns as depicted in Fig. 5.

Presentable objects (POs) are OWL individuals that represent 3D models in the scene.
This mapping pattern has the following steps. For each domain class C whose individuals
need to have independent representations in the scene, create a separate Presentable Object
Class (POC) and specity it as a superclass of C. Next, specify OWL datatype and object
3D properties that are inherent to the individuals of POC. Use the structural descriptor
pattern to link POC with its descriptors using object properties (Fig. 5-I), e.g., incorporating
subobjects in a hierarchy, indicating materials and animations. Further, use the multivalued
descriptor pattern to assign the required datatype properties, e.g., colors, coordinates and
dimensions. In such a way, every domain individual of C in the scene will be described
by all the properties assigned to POC. If C occurs in a hierarchy of domain classes, its
ascendant domain classes should be described first. Additional presentational effects that
are not inherent to the ascendant classes, should be described directly for C.

Descriptive Classes (DCs) are OWL classes assigned to POs in order to determine their
3D properties. This mapping pattern has the following steps. Each domain class C that may
be assigned to POs to specify their presentational properties, but does not identify indepen-
dent entities to be presented, specify as a DC and apply one of the following rules (Fig. 5II).

1. If C exclusively determines different 3D properties that are not collectively deter-
mined by other domain classes (mapping one domain class-to-many 3D properties), use
the structural and multivalued descriptor patterns to determine desirable datatype and
object properties of C individuals.

Mapping Datatype
Presentable Object v pping Datatyp
Classes g Properties
AN Many-to-many AN
Multivalued descriptor, One-to-many

Structural descriptor

Classification

Classification property,

Multivalued descriptor,
Structural descriptor

ﬁmain = DB\

Property chain /

hain /

Classification
Classification property,
Multivalued descriptor
Structural descriptor,
Complex descriptor

) Many-to-many |
Multivalued descriptor, | |
Structural descriptor, \ |
Complex descriptor (.

| Descriptive Classes |

quivalent
Equivalent

One-to-many
Multivalued descriptor,
Structural descriptor

Mapping Object Properties Relations

Inverse property

Semantic rules

Fig.5 Complex mapping patterns

@ Springer

12620 Multimedia Tools and Applications (2019) 78:12607-12638

2. If Ccollectively determines different 3D properties with other domain classes (mapping
many domain classes-to-many 3D properties), first, use the complex descriptor pattern
to create a separate DC for every considered combination of the classes that are assigned
and the classes that are not assigned to the individual. Second, use the structural and
multivalued descriptor patterns for each of these DCs to specify their desirable datatype
and object properties.

Like in the case of mapping hierarchies of POCs, mapping hierarchies of DCs should be
completed first for the ascendant DCs and second for the descendant DCs.

Descriptive Individuals (DIs) are OWL individuals assigned to POs using Mapping
Object Properties (MOPs) in order to determine their presentational effects. This mapping
pattern has the following steps. For each domain object property that links DIs to POs or to
other DIs, use the inverse property pattern to create its inverse object property, if it does not
exist (Fig. 5III). Maintaining bidirectional links (object properties and their inverse object
properties) between individuals is necessary to enable application of the property chain
mapping pattern (which uses object properties to link DIs to DIs and to POs).

Mapping Datatype Properties (MDPs) are OWL datatype properties assigned to POs in
order to determine their presentational effects. This mapping pattern has the following steps.
To each domain OWL datatype property (DP) that needs to have presentational effects on
the described POs, apply one of the following rules (Fig. 5IV).

1. If DP exclusively determines particular 3D properties, regardless of other datatype
properties, DCs and DIs assigned to the described PO (mapping one domain property-
to-many 3D properties), apply one of the following rules.

(a) If the domain of DP is a POC, apply one of the following rules.

i. If DP is equivalent to a 3D datatype property, indicate this fact using
the equivalent property pattern (mapping one domain property-to-one 3D
property).

ii. If DP is a classification property (its domain is a finite OWL class of lit-
erals), use the following combination of mapping patterns. First, use the
classification property pattern to create a separate DC for each distinct
value of DP. Second, extend the DCs by applying structural descriptors
and multivalued descriptors to assign required 3D object and datatype
properties.

(b) If the domain of DP is a class of DIs and its range is a set of classification data,
apply the following combination of mapping patterns. First, use the classification
property pattern to create a separate DC for each distinct DP value. Second, use the
property chain pattern to specify the path between the DI class and the described
POC. Third, extend the DCs using the structural and multivalued descriptor
patterns to specify the desirable 3D object and datatype properties of their POs.

2. If the range of DP is a set of numerical data, for which a formula can be specified to
determine the values of the linked 3D properties on the basis of DP, use the semantic
rule pattern.

3. If DP collectively determines different 3D properties in combination with other DPs,
DCs and DIs assigned to the POs (mapping many domain properties-to-many 3D prop-
erties), perform the following steps. First, use the classification property pattern to
specify a separate DC for every distinct value of every considered DP. Second, use the
structural and multivalued descriptor patterns to specify object and datatype properties

@ Springer

Multimedia Tools and Applications (2019) 78:12607-12638 12621

of the DCs. Third, use the complex descriptor pattern to create a new DC that is the
intersection of the appropriate DCs.

Like in the case of hierarchies of POCs and DCs, mapping domain datatype properties
should start with ascendant properties and only these domain subproperties that intro-
duce additional presentational effects (in comparison to their superproperties) should be
additionally described.

Each domain object property whose domain and range are POCs, specify as an RL and
complete the semantic rule pattern (Fig. 5V), determining the values of desirable 3D pro-
perties of the participants of the RL on the basis of domain properties of other participants.

Each domain class C that has no independent representation in the created content, and
for which there are at least two domain object properties that link C with some POCs,
specify as an RL and create a rule describing dependencies between particular properties of
the POCs.

Example of mapping In Step 2 of the library development in the example, a developer
or a technician creates a mapping (Fig. 6 and Listing 2—the RDF Turtle and Prolog-
like syntax) including semantic statements that link domain classes and properties to 3D
components (created in Step 1) and properties. The do : Woman (3-4) artifact is a PO class
and a subclass of the sc: WomanMesh, so it inherits the geometrical properties specified
in Step 1. Every instance of do:Woman can be made of clay or glass (as indicated by

crr:WomanMesh ~ ¢fT:Painted crr:SowerMesh
= WomanMesh crr:SealMesh crr:RingMesh crr:SmokerMesh

[y

L L

dso:Woman dso: PamtedWoman dso:Sower dso Seal

crr: BadgeMesh crr:GlassMaterial crr:ClayMaterial

dso:Badge dso:madeOf dso:madeOf dso:Granary
—glass” ~"clay”
rm:Cylinder

dso:Stool

—
-

Fig.6 An example of mapping 3D components and properties to domain concepts

@ Springer

12622

Multimedia Tools and Applications (2019) 78:12607-12638

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T

Prefixes: Graphical Ontology (go), Semantic 3D Components (sc), Mapping Ontology (mo),
Mapping (mp), Domain Ontology (do)

do:Woman rdfs:subClassOf
mo:PresentableObject , sc:WomanMesh.

{mp:ClayObject ,mp:GlassyObject}
rdf:type owl:Class ;
rdfs:subClass0f mo:DescriptiveClass ;
owl:equivalentClass

[rdf:type owl:Restriction ;
owl:onProperty do:madeOf ;
owl:hasValue "{clay,glass}"] ,

[rdf:type owl:Restriction ;
owl:onProperty go:material ;
owl:onClass {sc:ClayMaterial,sc:GlassMaterial} ;
owl:qualifiedCardinality 1].

do:PaintedWoman rdfs:subClassOf
mo:PresentableObject , sc:PaintedWomanMesh.

{do:Granary,...,do:Badge} rdfs:subClass0f mo:PresentableObject ,
{sc:GranaryMesh, ..., sc:BadgeMesh}.

{mp:Box,mp:Cylinder} rdfs:subClass0f {go:Box,go:Cylinder} ,

[rdf:type owl:Restriction ;
owl:onProperty go:size ;
owl:onClass {mp:BoxSize,mp:CylinderSize} ;
owl:qualifiedCardinality 1] ,

[rdf:type owl:Restriction ;
owl:onProperty go:position ;
owl:onClass {mp:BoxPos,mp:CylinderPos} ;
owl:qualifiedCardinality 1 J.

do:Stand rdfs:subClass0Of mo:PresentableObject , go:StructuralComponent,
[rdf:type owl:Restriction ;
owl:onProperty go:includes ;
owl:onClass go:Cylinder ;
owl:qualifiedCardinality 1] ,
[rdf:type owl:Restriction ;
owl:onProperty go:includes ;
owl:onClass go:Box ;
owl:qualifiedCardinality 1 J.

{mp:BoxSize ,mp:CylinderSize} rdf:type owl:Class ;
rdfs:subClass0f go:Vector ,
[rdf:type owl:Restriction ;

owl:onProperty x ;
owl:hasValue "..."] ,

[rdf:type owl:Restriction ;
owl:onProperty y ;
owl:hasValue "..." 1 ,

[rdf:type owl:Restriction ;
owl:onProperty z ;
owl:hasValue "..."].

{mp:BoxPos ,mp:CylinderPos} rdf:type owl:Class ;

do:incorporates rdfs:subProperty0f mo:BinaryRelation ;
owl:equivalentProperty go:includes.

do:standsOn rdfs:subProperty0f mo:BinaryRelation.
{go:x(APos, AX),go:z(APos, AZ)} :-
do:standsOn(A, B) ,
go:position(A, APos) ,
go:position(B, BPos) ,
{go:x(BPos, BX),go:z(BPos, BZ)} ,
{AX=BX,AZ=BZ}.
go:y(APos, AY) :-
do:standsOn (A, B) ,
go:position(A, APos) ,
go:position(B, BPos) ,
go:y(BPos, BY) ,
go:size (B, BSize) ,
go:sy(BSize, BSY) ,
go:size (A, ASize) ,
go:sy(ASize, ASY) ,
AY = BY + (ASY + BSY)/2.

Listing2 The ontology mapping 3D components and properties to domain concepts

@ Springer

Multimedia Tools and Applications (2019) 78:12607-12638 12623

do:madeOf), thus having an appropriate material assigned using proper DCs (6-16). In
contrast to clay and glassy artifacts, every do : PaintedWoman PO has a texture assigned,
as indicated by its superclass (18). Mapping other classes of the domain ontology to PO
classes is performed in a similar fashion (21-22). Moreover, two basic shapes (mp : Box
and mp : Cylinder) are created (24-32) and assembled into the do : Stand PO class (34-
42). Every mp:Box and mp:Cylinder included in a do:Stand has dimensions and
position (44-56). The do:incorporates RL is an equivalent to the co:includes
(58-59), while the do : standsOn RL determines the x, y and z coordinates of an individ-
ual by semantic rules (61-77). Once mapping is completed, the library is ready to be used
by domain experts for modeling various 3D scenes in a particular field of application.

3.2 3D scene creation

3D scene creation is completed at a high level of abstraction that is determined by the
domain ontology used. This activity can be performed multiple times, when a new 3D scene
is required for a VR/AR application, using a particular library of 3D components, which are
mapped to the domain ontology.

3.2.1 Step 1: designing a 3D scene template

In this step, a domain expert uses domain classes and properties to build a 3D scene tem-
plate, which will be further automatically expanded into a 3D scene. The domain expert
does not need to directly use 3D components and properties as they are hidden behind the
mapping. The resulting 3D scene template is an instance of the domain ontology. The tem-
plate consists of facts (statements) and rules (implications), which declaratively represent
3D content at the high (domain-specific) level of abstraction. Both facts and rules are on
domain individuals (instances of domain classes) and domain properties. In general, this
step is independent of the previous steps, and a 3D scene template could be created before
3D components and the mapping were created, e.g., when a domain expert designs an accu-
rate digital equivalent to a known real space, using well-defined domain concepts. However,
when designing non-existing virtual 3D objects or scenes (e.g., a planned virtual museum
exhibition or 3D city model), 3D components and a mapping are useful to enable preview
of the results while modeling.

In Step 1 of the 3D scene creation in the example, a domain expert creates a 3D scene
template (Listing 3) including individuals of domain classes, which are described by domain
properties. Both the classes and the properties are already mapped to 3D components and
properties. The domain expert creates several artifacts (3) and three woman statuettes (5-
9). The first two statuettes are made of different materials (clay and glass), while the third
statuette is inherently covered by a texture (as specified in the mapping). Furthermore, eight
stands are created (11). Their x, y and z coordinates are declaratively specified by rules
(13-21). In Line 20, the cut-off and the negation-as-failure operators are used to determine a
stand, for which no x coordinate has been specified. Every artifact is placed on a stand (23-
27). Every artifact that is not on any stand, is placed on a stand on which there is no artifact
yet. It is only important to deploy all the artifacts on some stands, but it is not important,
on which stand a particular artifact is placed. An artifact is placed on a stand by calculating
the X, Y and Z coordinates of the artifact with respect to the coordinates of the stand,
according to the rule in the mapping. Finally, all the artifacts and stands are incorporated in
the granary (29-32).

@ Springer

12624 Multimedia Tools and Applications (2019) 78:12607-12638

1 Prefixes: Domain Ontology (do), Semantic 3D Scene Template (st)

2

3 {st:granary,...,st:badge} rdf:type {do:Granary,...,do:Badgel}.

4

5 {st:clayWoman,st:glassyWoman}

6 rdf :type do:Woman ;

7 do:made0f "{clay,glass}".

8

9 st:paintedWoman rdf:type do:PaintedWoman.

10

11 {st:standl,...,st:stand8} rdf:type do:Stand.

12

13 st:standPositions(Index, N) :-

14 Index<N, do:Stand(S), st:noPosition(S),

15 X is Index div 4, assert(do:x(S, X)),

16 Z is Index mod 4, assert(do:z(S, Z)),

17 assert (do:y(S, 0)),

18 NewIndex is Index+1,

19 st:standPositions (NewIndex, N).

20 st:noPosition(S) :- do:x(S, X), !, false.

21 st:noPosition(S).

22

23 st:standsOn(A, B) :- do:Artifact(A), do:Stand(B), st:notOnOthers(A), st:
nothingOnIt (B).

24 st:not0OnOthers(A) :- st:standsOn(A, B), !, fail().

25 st:notOnOthers(A).

26 st:nothingOnIt(B) :- st:standsOn(A, B), !, fail().

27 st:nothingOnIt (B).

28

29 do:incorporates (X, Y) :-

30 do:Granary (X),

31 (do:Artifact(Y) ; do:Stand(Y)),

32 Xi=Y.

Listing 3 A semantic 3D scene template

3.2.2 Step 2: generating the 3D scene

Step 1 of the library development and Step 1 of the 3D scene creation have encompassed all
the activities that must be resolved by a human: the specification of how domain concepts
should be represented by 3D components and the specification of what domain individuals
should form the modeled 3D scene. So far, 3D components and properties have been linked
to domain classes and properties. However, since the 3D scene template consists of domain
individuals (instances of domain classes), instances of 3D components must be generated
and directly linked to the domain individuals in the template.

To enable presentation of domain individuals, the 3D scene template is expanded accord-
ing to the mapping in the 3D scene generation step. It is a process of automatic creation of
individuals of 3D components, linking them to domain individuals by object properties, and
describing them by datatype properties. Scene generation is based on the inference of tacit
knowledge. Scene generation is performed in the following three stages. At Stage I, hidden
facts are inferred from RLs. The facts may be related to classes, properties and individu-
als at different (low and high) levels of abstraction. At Stage II, DCs are collected for the
particular POs to determine object and datatype properties of the POs. Finally, at Stage III,
individuals are generated and linked to POs by object properties. Also, datatype proper-
ties are assigned to POs and to new individuals generated to determine their presentational
effects.

In these three stages, the semantic 3D scene template is expanded to a semantic 3D scene.
In contrast to the template, the scene specifies all individuals of 3D components that are
necessary to present the domain individuals in 3D.

@ Springer

Multimedia Tools and Applications (2019) 78:12607-12638 12625

Scene generation algorithm. The input data of the scene generation algorithm are the
ontology of 3D components, the domain ontology, and the mapping between these two (see
Fig. 2). The algorithm consists of the following stages.

I. Reasoning on RLs: perform reasoning on RLs (created with the semantic rule mapping
pattern).
Reasoning on RLs leads to the inference of DCs, DIs, MOPs and MDPs assigned to
POs. The inferred facts will be used at the next stages.
II. Collecting DCs:

A. For all the domain properties used, determine their equivalent properties (created
with the equivalent property mapping pattern).

B. For all the domain object properties used, determine their inverse properties
(created with the inverse property mapping pattern).

C. For every statement on a domain object property P; [PO{,P{,PO,], create the
statement [PO,,P,,PO], where P; is the inverse property of P;.

D. To every PO, assign DCs (created with the multivalued descriptor and structural
descriptor mapping patterns) on the basis of the DIs directly or indirectly linked
to the PO (by all-values-from restrictions created with the property chain mapping
pattern).

E. Toevery PO, assign DCs (created with the classification property mapping pattern)
on the basis of the MPs of the PO.

F. To every PO, assign DCs (created with the complex descriptor mapping pattern)
on the basis the DCs already assigned in Steps II-D and II-E.

In the result of Stage 11, appropriate DCs are assigned to particular POs. The DCs
describe 3D object and datatype properties of the POs. Therefore, the DCs may be used
to generate individuals of 3D components, link them to the POs by 3D object properties
and set 3D datatype properties of the POs—to provide 3D representations of the POs.

II. Assigning properties: for every PO, set variable I to the PO and:

A. For every OWL cardinality restriction class with a constraint [Property,Class,N]
that I belongs to:

1) if there is no other cardinality restriction on Property and Class that has
already been processed for I, create N individuals of Class and link them
to I by Property;

2) for every created individual I, of Class, set I to I, and go to Step III-A.

B. For every has-value restriction [Property,Value] that I belongs to, add Property with
Value to 1.

At this stage, inconsistencies between different restrictions should be reported, e.g.,
multiple orientations specified for a PO. The resulting meta-scene represents individuals
described by 3D datatype properties and related one to another by 3D object properties.

Example of 3D scene generation In Step 2 of the 3D scene creation in the example, the 3D
scene template is expanded according to the mapping into a semantic 3D scene. The scene
includes eight artifacts (Fig. 7). During the scene generation, individuals of 3D components
are created and linked to the domain individuals of the 3D scene by 3D object properties.
Next, 3D datatype properties of the generated individuals are properly set (Listing 4). All
the artifacts are specified as individuals of go:Mesh3D (3). For the clay and the glassy
woman statuettes (5-7), appropriate individuals representing materials are generated (9-12).

@ Springer

12626 Multimedia Tools and Applications (2019) 78:12607-12638

Forbap,prss .

Fig.7 Visualization of the generated 3D scene

st :paintedWoman is created in a similar way (14). Next, every do: Stand is expanded
to a go:StructuralComponent that includes a go:Cylinder and a go:Box with
appropriate dimensions and relative positions (16-31). For every do:Stand and every
do:Artifact, a position is determined (33-35). Finally, all the individuals (stands and
artifacts) are included in the granary (37).

1 Prefixes: Graphical Ontology (go), Semantic 3D Scene (ss), Semantic 3D Scene Template (st)
2

3 {st:granary,...,st:badge} rdf:type go:Mesh3D.

4

5 {st:clayWoman,st:glassyWoman}

6 rdf:type go:Mesh3D ;

7 go:material {ss:clayMaterial,ss:glassMateriall.

8

9 {ss:clayMaterial,ss:glassMateriall}

10 rdf:type {sc:ClayMaterial,sc:GlassMateriall} ;

11 {go:texture,go:color} {"clay.png","green"}

12 go:transparency {0,0.7}.

13

14 st:paintedWoman rdf:type sc:PaintedWomanMash.

15

16 {st:standl,...,st:stand8}

17 rdf:type go:StructuralComponent ;

18 go:includes {ss:cylinderl,...,ss:cylinder8} , {ss:boxl,...,ss:box8}.
19

20 {ss:cylinderl,...,ss:cylinder8,ss:boxl,...,ss:box8}

21 rdf:type {go:Cylinder,go:Box} ;

22 go:size {ss:sizel,...,ss:sizel6} ;

23 go:position {ss:posil,...,ss:pos16}.

24

25 {ss:sizel,...,ss:sizel6}

26 rdf :type go:Vector ;

27 go:x "..." ;

28 go:y "..." 3

29 go:z "...".

30

31 A{ss:posl,...,ss:pos32} rdf:type go:Vector ;

32

33 {st:standl,...,st:stand8} go:position {ss:posi7,...,ss:pos24}.
34

35 A{st:clayWoman,...,st:badge} go:position {ss:pos25,...,ss:pos32}.
36

37 st:granary go:includes {st:standl,...,st:stand8} , {st:clayWoman,...,st:

badgel}.

Listing4 The textual representation of the generated 3D scene

@ Springer

Multimedia Tools and Applications (2019) 78:12607-12638 12627

In the next steps of MICC, the 3D scene is transformed to a presentable format by the
environment and visualized. The transformation may be format-independent [23] or format-
dependent [24].

4 Scene design environment

MICC is independent of any software and hardware architectures and can be implemented
as standalone or network applications. In this paper, the Scene Design Environment (SDE),
which is an implementation of MICC based on the service-oriented architecture (SOA) is
presented. The use of SOA complies with the semantic web approach, in which ontolo-
gies are distributed and shared across the network. Furthermore, it enables development
of flexible multi-user environments, which separate client-side graphical operations from
computationally expensive server-side semantic processing. Also, access to 3D content in
distributed mobile environments is possible through the services.

SDE consists of three modules: the 3D Component Design Module, the Mapping Mod-
ule and the Template Design Module. The modules are used, respectively, in the subsequent
steps of MICC: designing 3D components, mapping 3D components and properties to domain
concepts as well as designing a 3D template and generating the 3D scene. The implemen-
tation of the modules consists of different layers, which are sets of software components
(Fig. 8). The environment comprises a Client and a Server in a RESTful SOA architecture.

4.1 Client

The Client is a Python application, which enables visual manipulation of 3D content in the
Blender modeling tool. The Client transforms Blender-specific 3D components and proper-
ties, which are processable and presentable by the tool, to equivalent semantic 3D compo-
nents and properties, which are processable by the reasoning engine in the Server, and vice
versa. The multi-layered architecture of the Client conforms to the Model-View-Controller

User

Presentation Layer

Data

S tic Logic L
emantic Logic Layer v

SEIEIFEMT]]
uoyiAd + Jopua|g

Network Layer
A

i Semantic 3D Content (JSON)

Network Layer
Data

Layer

Server

Semantic Logic Layer

aulyoen
|[enuIA eaef

Fig.8 The architecture of the Scene Design Environment for inference-based 3D content creation

@ Springer

12628 Multimedia Tools and Applications (2019) 78:12607-12638

(MVC) design pattern. It consists of four layers: the Semantic Logic Layer (controller), the
Presentation Layer (view) as well as the Network and Data Layers (model).

The Client has been implemented using the Blender API [13]. Blender has been used
because it is an advanced open-source environment with extensive documentation, tutorials
and several versions available for different operating systems. However, the Client could be
also implemented using other 3D modeling environments.

The Presentation Layer is responsible for handling requests from a user and present-
ing 3D content in Blender. It employs the Blender graphics engine, which allows a user to
present and manipulate 3D content in the visual environment, as well as new GUI elements
(panels), which extend the standard Blender GUI. The graphics engine enables access to a
number of Blender tools, such as transformations, editors and scene graphs. It is accessi-
ble through specific classes and properties of the Blender API. The panels make the SDE
modules available to users. The panels consist of buttons, menus and properties. Particular
panels allow users to perform the subsequent modeling activities according to SEMIC. The
GUI of the Client is depicted in Fig. 9.

The Semantic Logic Layer is responsible for processing user requests, and creating and
managing 3D content in the Blender format that should be presented to a user or converted

Fig. 9 The graphical user interface of SDE: the SDE Client panels (1-zoomed below) along with the User
Perspective (2) and standard Blender tools (3)

@ Springer

Multimedia Tools and Applications (2019) 78:12607-12638 12629

to semantic 3D content and sent to the Server. Semantic 3D content is transferred between
the Client and the Server using the Network Layers, which implement RESTful web
services.

Semantic 3D content retrieved from the Server is converted to Blender-specific 3D con-
tent using a Blender mapping that is specified in the Data Layer. This mapping enables
bi-directional transformation of both types of 3D content. The transformation of Blender-
specific content to semantic content is performed every time the content is semantically
manipulated (using an SDE panel), e.g., when a 3D object is extended or composed in
Blender and it must be verified whether this modification influences other objects in the
scene by explicit or implicit semantic links between the objects. The transformation of
semantic 3D content to Blender-specific content is performed every time content is retrieved
from the Server and presented in Blender.

4.2 Server

The Server is a Java application, which processes semantic 3D content according to users’
actions. The Server processes, stores and provides semantic 3D content to clients. Since
semantic 3D content is encoded using the semantic web standards (RDF, RDFS and OWL),
the Server is independent of particular 3D formats, languages, browsers and modeling
environments. Hence, it could be used with different software clients installed on various
devices. The multi-layered architecture of the Server consists of three layers: the Network
Layer, the Semantic Logic Layer and the Data Layer (Fig. 8). The Network Layer is respon-
sible for communication with clients—retrieving and sending semantic 3D content. The
Semantic Logic Layer is responsible for processing the semantic 3D content, in particular,
inferring tacit knowledge (content components and properties), e.g., colors, textures, mate-
rials and animations. The Data Layer is responsible for storing semantic 3D content as well
as the ontologies to which the content conforms.

5 Evaluation

The evaluation of MICC has been done using the implemented SDE. The evaluation covers
use cases in modeling different 3D scenes by a user with calculation of metrics, a theoretical
analysis of the computational complexity of the scene generation algorithm, which builds
3D scenes using knowledge inference, as well as an evidence of the theoretical analysis
based on performance tests.

5.1 3D content creation by users

MICC has been evaluated in terms of user’s effort in 3D content creation in SDE using
three metrics: the number of keystrokes and mouse clicks, mouse distance and time required
to accomplish modeling activities. While, in the evaluation, the number of keystrokes and
mouse clicks is representative mainly for measuring the complexity of the MICC method
and SDE UI (e.g., the design of and links between windows and controls), mouse distance is
representative mainly for measuring the complexity of manual operations performed on the
modeled 3D content (e.g., zooming a view, dragging and dropping content elements, etc.).
Time covers the entire modeling process—both activities performed by the user and the

@ Springer

12630 Multimedia Tools and Applications (2019) 78:12607-12638

Fig. 10 3D scenes used for the method evaluation: Scene 1 — crossroads with cars using low and high beams;
Scene 2 — crossroads with priority vehicles; Scene 3 — crossroads with traffic lights; Scene 4 — a housing with
trees

processing of content performed by SDE. The metrics have been measured for the creation
of the four 3D scenes (Fig. 10).!

Every scene has been individually modeled 10 times by a user using Blender and SDE,
and the average results have been calculated for every metric and every environment. Fur-
ther, average gain has been calculated for every metric as the average ratio of the result
obtained in Blender to the result obtained in SDE. The modeling environments offer dif-
ferent capabilities and are characterized by different degrees of complexity of 3D content
creation. Blender is a complex modeling environment with a number of advanced functions
directly related to 3D computer graphics, requiring relatively high skills in 3D modeling.
SDE is an environment enabling creation of 3D content based on domain concepts linked
to 3D components and properties, which makes 3D modeling more intelligible to non-IT-
specialists. The tests were performed using a computer equipped with the Intel Core 2 Duo
CPU 2.53GHz, 4 GB RAM, NVIDIA GeForce 9500M and Windows 7 Professional. On the
computer, both modeling environments—Blender 2.71 as well as SDE (including the Client
and the Server)—have been installed.

The average values of the metrics have been calculated for the creation of the 3D scenes
(Table 2). The metrics depend on the number of objects in the scene, their structural com-
plexity as well as the number of object properties set while creating the scene. In addition,
time required for modeling depends on the geometrical complexity of the objects, since the
rendering of more complex shapes requires more computations. The number of objects is
the lowest in Scene 2 and the highest in Scene 3, while the structural and geometrical com-
plexity of objects is the lowest in Scene 2 (relatively simple models of traffic signs and
traffic lights) and the highest in Scene 4 (relatively complex models of trees and houses).
Content creation with Blender requires almost four times more keystrokes and mouse clicks
then content creation with SDE. The high value of average gain is caused by the possibility

UIn the scenes, the following models have been used: http://www.blendswap.com/blends/view/[68326,68817,
69406,56683,71006,2949,58595,61605,63269,64383,67283,66103,69906].

@ Springer

http://www.blendswap.com/blends/view/[68326,68817,69406,56683,71006,2949,58595,61605,63269,64383,67283,66103,69906]
http://www.blendswap.com/blends/view/[68326,68817,69406,56683,71006,2949,58595,61605,63269,64383,67283,66103,69906]

Multimedia Tools and Applications (2019) 78:12607-12638 12631

Table 2 Metrics calculated for the creation of 3D scenes (B—Blender, S—the scene design environment)

Metric Scene 1 Scene 2 Scene 3 Scene 4 Average gain (B/S)

B S B S B S B S

Keystrokes and mouse clicks 864 224 674 170 1311 316 1326 333 3,99
Mouse distance (inch) 2543 939 2235 951 4181 1653 4171 1340 2,68
Time (s) 1390 854 1204 744 1721 1118 2504 1145 1,74

of determining a number of object features by setting individual domain properties in SDE.
For instance, the color of leafs of a tree and their relative position to the branches are deter-
mined by setting the 1eafs property to green or yellow. Such facility is not available in
Blender, in which particular properties must be individually specified. Conceptual modeling
with domain properties also implies gain in mouse distance (2.68), as the user is liberated
from performing manually complex operations, such as selecting different components of a
car, and navigating across different controls of the modeling environment to set individual
coordinates of road signs. The average gain in the time required for modeling the scenes
(1.74) is also caused by the difference in the number of properties that have to be changed
in both the environments.

5.2 Computational complexity of the scene generation algorithm

The analysis of the computational complexity of the algorithm is related to the descrip-
tion of its stages presented in Section 3.2.2. In general, reasoning on RLs that are based on
semantic rules, is undecidable, which implies that the algorithm is undecidable. The compu-
tational complexity of the algorithm may be determined if no RLs are used in the processed
ontologies, and thereby, no undecidable reasoning is performed. For each step of the algo-
rithm, computational complexity has been determined in Table 4. The notation used in the
formulas is explained in Table 3.

For the aforementioned formulas, the upper bound of computational complexity may be
specified. The number of distinct classes or individuals is less or equal to 2*ng, since classes
and individuals may occur in statements as either the subject or the object. The number of
distinct properties is less or equal to ng, since in every statement, only one property occurs.
Thus, the overall computational complexity of Stage II is polynomial with the upper bound
O(ng?). The overall computational complexity of Stage III is polynomial with the upper
bound O(ng?). To conclude, the scene generation algorithm is undecidable when using RLs,
and it has the polynomial computational complexity equal to O(ng>), when using no RLs
(Table 4).

5.3 Performance of the scene generation algorithm

The performance of the scene generation algorithm implemented in SDE has been evalu-
ated. The tests have been done for scenes whose number of 3D objects changed over the
range 5 to 50 with the step equal to 5. Every object in the scene is described by a position,
orientation, scale and material. For every number of objects, 20 scenes have been generated
and average results have been calculated.

The performance of the algorithm has been evaluated in terms of time required to gen-
erate semantic 3D scenes (Fig. 11). Time required for scene generation linearly increases
with the increase of the number of 3D objects in the scene. The tests cover creation of

@ Springer

12632 Multimedia Tools and Applications (2019) 78:12607-12638

Table 3 Notation used in the computational complexity formulas

np The number of distinct domain properties used in the 3D scene template
nop The number of distinct domain object properties used in the 3D scene template
ng The number of distinct statements in the sum of the ontology of 3D components,

mapping and 3D scene template
ng/op The number of distinct statements with domain object properties in the

3D scene template

npp The number of distinct DIs in the 3D scene template

npo The number of distinct POs in the 3D scene template

Npo/CD The average number of distinct POs per CD in the 3D scene template

ncx The number of distinct complex descriptors in the 3D scene template

NCp/Cx The average number of distinct DCs per complex descriptor in the 3D

scene template

NMP/PO The average number of distinct MPs per PO in the 3D scene template
Nep/pPoO The average number of distinct DCs per PO in the 3D scene template

ne The number of distinct cardinality restrictions in the 3D scene template
Nhy The number of distinct has-value restrictions in the 3D scene template

N The average cardinality of cardinality restrictions in the 3D scene template

interconnected instances of 3D components for every domain individual, on the basis of DCs
(Section 5.2/Step II-E, Stage III). Since the average number of distinct MPs per PO as well
as the number of restrictions in the ontologies are constant, the computational complexity
of scene generation is linear and equal to O(npp), which is less or equal to O(ng), where

Table 4 The computational complexity of the scene generation algorithm steps

Stage Step Explanation Complexity

I A All the domain properties used O(np)

in the 3D scene template are analyzed

B All the domain object properties used O(nop)
in the 3D scene template are analyzed

C All the statements with object properties in O(ns/op)
the 3D scene template are analyzed

D All the DIs in the 3D scene template O(npy)
are analyzed

E For every PO, nvp/po MPs are analyzed, O(npo*nmppo)
on average
F For every complex descriptor CD, ncp/cx O(ncx *neprex *nposcp)

DCs are analyzed, on average. For every CD,
all of its POs are analyzed
111 A For every PO, n, cardinality restrictions O(npo *n¢c*N)
are analyzed and for each of them N individuals
are generated, on average
B For every PO, nyy has-value restrictions O(npo*npy)

are analyzed

@ Springer

Multimedia Tools and Applications (2019) 78:12607-12638 12633

30

25

20 ®

15

Time [s]

10

0 5 10 15 20 25 30 35 40 45 50 55
Number of objects

Fig. 11 Time of generating semantic 3D scenes

npo and ng are the numbers of POs and statements in the created 3D scene. For instance, if
every tree of a class includes two sub-objects of some classes (leafs and branches), which
have individual materials and relative positions (described by other classes), the creation
of a particular tree covers the creation of the individuals representing the sub-objects, their
materials and relative positions, and assigning appropriate datatype properties to these indi-
viduals. As shown in the graph, time required for processing more complex 3D scenes on
a moderate computer may be tens of seconds. For single objects, time is much shorter, and
the results seem to be instant.

6 Discussion
6.1 Testresults

The test results show that the proposed method has higher efficiency of 3D content creation
than the manual approach available in visual 3D modeling environments represented by
Blender. The results show that the user’s effort in 3D content creation with MICC is much
lower than the effort in 3D modeling with other environments. The advantage includes both
the modeling actions accomplished by users (mouse distance, the number of keystrokes
and mouse clicks) and time required for modeling. The predominance follows from mod-
eling 3D content at a conceptual level, with domain-specific classes and properties. This
permits the modeling environment to be more oriented on a particular application domain.
Thereby, content can be created by users without considerable expertise in 3D modeling,
in particular domain experts, who are liberated from direct specification of details related
to computer graphics. The modeling actions, which do not demand changing multiple
properties attainable on different panels, become less complex and less time-consuming.

6.2 Alternative 3D content representations

3D content representations that are alternative to ontology-based representations are:
imperative programming languages with libraries (e.g., OpenGL [1] and Direct3D [39]),

@ Springer

12634 Multimedia Tools and Applications (2019) 78:12607-12638

declarative 3D formats (e.g., X3D [51] and XML3D [18]) as well as declarative pro-
gramming languages (e.g., Prolog). Inference-based content creation is not available in
imperative languages, including languages used in 3D modeling environments. In imper-
ative languages, inference must be implemented in advance. This requires more effort
in implementation from content authors, who must consider possible consequences of
explicitly specified content properties in the context of a particular use case.

Declarative 3D content formats have not been intended for knowledge inference and they
address representation of components and properties specific to 3D content, without the
conceptual level specific to an application or domain. These features limit the possibilities
of 3D modeling with such formats in comparison to ontologies.

In contrast to the aforementioned approaches, declarative logic programming languages
enable knowledge inference at different levels of abstraction. Like in the case of ontolo-
gies, such languages are processed by reasoning engines, which liberate content authors
from specifying all content properties and from implementing reasoning algorithms on their
own. Moreover, on the one hand, due to the use of rules (implications), which may express
arbitrary links between properties of classes and objects, such languages have higher expres-
siveness than ontologies encoded in RDF, RDFS and OWL. On the other hand, reasoning
on rules is undecidable, which may prevent getting results in general.

7 Conclusions and future works

The use of semantics for building VR/AR applications gains increasing attention in the
research community. However, although a number of methods and tools have been devel-
oped on the basis of the semantic web approach, they do not benefit from the possibilities of
inferring tacit knowledge during the 3D content creation process. Inference of tacit knowl-
edge can liberate content authors from specifying all 3D content components and properties,
which can be determined as consequences of some explicitly specified components and
properties. Hence, the overall effort in 3D modeling can be reduced.

The proposed method MICC uses inference of tacit knowledge in linking 3D graphics
with an arbitrary application or domain for which 3D content is being created. Such a gen-
eral domain-independent approach goes beyond the current state of the art in 3D modeling.
The method has been implemented and evaluated. In comparison to widely used 3D mod-
eling tools, it reduces users’ effort in modeling in terms of the required time as well as the
number of executed actions. MICC enables 3D content creation using concepts specific to
different application domains. This opens new opportunities to develop tools for domain
experts who are not IT-specialists. Moreover, semantically encoded 3D content is more
suitable for indexing, searching and analyzing than 3D content encoded in non-semantic
formats and languages.

The possible directions of future research are mainly related to the extension of the cur-
rent semantic 3D content format with time to enable creation of dynamic 3D content. In
particular, the solution proposed in [25, 27] could be applied. Then, methods of explor-
ing non-deterministic paths in the execution of VR/AR applications (e.g., by giving some
assumptions about possible future application execution), and querying about 3D content
properties at different points in time could be devised. Third, methods and tools enabling
4-dimensional modification of 3D content (including time) with user queries can be devel-
oped, e.g., adding new objects’ activities. Next, the development of user-friendly graphical
modeling tools could benefit from the syntax of the representation, which is relatively sim-
ple in comparison to the syntax of imperative languages. Such tools could liberate users

@ Springer

Multimedia Tools and Applications (2019) 78:12607-12638 12635

from programming, which could further improve the overall dissemination of 3D content
created by domain experts. In addition, mapping of 3D components to domain-specific
concepts could be done automatically on the basis of machine learning methods using mul-
tiple sources of annotated 3D objects. Such an approach is increasingly used in different
domains, covering feature modeling [14] and career prediction [38]. Finally, the approach
could also be used to semantically represent real world state recognized on the basis of
data retrieved from sensors, in particular representing actions and more complex daily
activities [36, 37].

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

. Opengl (2018). https://www.opengl.org
Owl web ontology language reference (2018). http://www.w3.org/TR/owl-ref
. Protégé (2018). http://protege.stanford.edu/
. Rdf 1.1 turtle (2018). http://www.w3.org/TR/turtle
. Albrecht S, Wiemann T, Giinther M, Hertzberg J (2011) Matching cad object models in semantic map-
ping. In: Proceedings ICRA 2011 Workshop: Semantic Perception, Mapping and Exploration, SPME
. Attene M, Robbiano F, Spagnuolo M, Falcidieno B (2007) Semantic annotation of 3d surface meshes
based on feature characterization. In: Proceedings of the semantic and digital media technologies 2nd
international conference on semantic multimedia, SAMT’07. Springer, Berlin, pp 126-139
7. Attene M, Robbiano F, Spagnuolo M, Falcidieno B (2009) Characterization of 3d shape parts for
semantic annotation. Comput Aided Des 41(10):756-763. https://doi.org/10.1016/j.cad.2009.01.003
8. Autodesk (2018) 3ds max. http://www.autodesk.pl/products/autodesk-3ds-max
9. Autodesk (2018) Maya. https://www.autodesk.pl/products/maya
10. Away3D (2017) Away3d. http://away3d.com/
11. Berners-Lee T, Hendler J, Lassila O et al (2001) The semantic web. Sci Amer 284(5):28-37
12. Bille W, De Troyer O, Pellens B, Kleinermann F (2005) Conceptual modeling of articulated bodies in
virtual environments. In: Thwaites H (ed) Proceedings of the 11th international conference on virtual
systems and multimedia (VSMM). Archaeolingua, Ghent, pp 17-26
13. Blender (2017) Blender api documentation. http://www.blender.org/api/blender_python_api_2_73 _release
14. Chaudhuri S, Kalogerakis E, Giguere S, Funkhouser T (2013) Attribit: content creation with seman-
tic attributes. In: Proceedings of the 26th Annual ACM Symposium on User Interface Software and
Technology, UIST "13. ACM, New York, pp 193-202
15. De Floriani L, Hui A, Papaleo L, Huang M, Hendler J (2007) A semantic web environment for digital
shapes understanding. In: Semantic multimedia. Springer, pp 226-239
16. De Troyer O, Kleinermann F, Mansouri H, Pellens B, Bille W, Fomenko V (2007) Developing semantic
vr-shops for e-commerce. Virtual Reality 11(2-3):89-106
17. De Troyer O, Kleinermann F, Pellens B, Bille W (2007) Conceptual modeling for virtual reality. In:
Grundy J, Hartmann S, Laender AHF, Maciaszek L, Roddick J (eds) Tutorials, posters, panels and indus-
trial contributions at the 26th int. conference on conceptual modeling - ER 2007. CRPIT, vol 83. ACS,
Auckland, pp 3-18
18. DFKI (2017) Computergraphics Lab of the Saarland University, I.V.C.I.: Xml3d. http://xml3d.org/
19. Drap P, Papini O, Sourisseau JC, Gambin T (2017) Ontology-based photogrammetric survey in
underwater archaeology. In: European semantic web conference. Springer, pp 3—6
20. Fischbach M, Wiebusch D, Giebler-Schubert A, Latoschik ME, Rehfeld S, Tramberend H (2011) SiX-
ton’s curse - Simulator X demonstration. In: Hirose M, Lok B, Majumder A, Schmalstieg D (eds) Virtual
Reality Conference (VR), 2011 IEEE. pp 255-256. https://doi.org/10.1109/VR.2011.5759495

[=))

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://www.opengl.org
http://www.w3.org/TR/owl-ref
http://protege.stanford.edu/
http://www.w3.org/TR/turtle
https://doi.org/10.1016/j.cad.2009.01.003
http://www.autodesk.pl/products/autodesk-3ds-max
https://www.autodesk.pl/products/maya
http://away3d.com/
http://www.blender.org/api/blender_python_api_2_73_release
http://xml3d.org/
https://doi.org/10.1109/VR.2011.5759495

12636 Multimedia Tools and Applications (2019) 78:12607-12638

21.
22.
23.
24.

25.

26.

27.

28.
29.

30.
. Gutiérrez M, Thalmann D, Vexo F (2005) Semantic virtual environments with adaptive multimodal

32.

33.

35.
36.

37.

38.

39.
40.
41.

42.

43.

44.

45.

46.

Flotynski J, Walczak K (2013) Semantic modelling of interactive 3D content. In: Proceedings of the 5th
joint virtual reality conference. Paris, France

Flotynski J, Walczak K (2014) Conceptual knowledge-based modeling of interactive 3D content. The
Visual Computer 31(10):1287-1306. https://link.springer.com/article/10.1007/s00371-014-1011-9
Flotyniski J, Walczak K (2014) Semantic representation of multi-platform 3D content. Comput Sci Inf
Syst 11(4):1555-1580

Flotyniski J, Walczak K (2016) Customization of 3D content with semantic meta-scenes. Graph Model
88:23-39

Flotyniski J, Walczak K (2017) Knowledge-based representation of 3D content behavior in a service-
oriented virtual environment. In: Proceedings of the 22nd International Conference on Web3D
Technology, Brisbane (Australia), p. Article No 14. ACM, New York

Flotynski J, Walczak K (2017) Ontology-based representation and modelling of synthetic 3d content: a
state-of-the-art review. Computer Graphics Forum 36(8):329-353

Flotyniski J, Krzyszkowski M, Walczak K (2017) Semantic composition of 3d content behavior for
explorable virtual reality applications. In: Barbic J, D’Cruz M, Latoschik ME, Slater M, Bourdot P (eds)
Virtual reality and augmented reality 14th euroVR international conference, EuroVR 2017. Laval,
France, December 12-14, 2017. Proceedings in lecture notes in computer science. Springer, pp 3-23
Foundation B (2017) Blender. http://www.blender.org

Gruber T Encyclopedia of database systems. On-line (accessed March 28, 2015). http://tomgruber.org/
writing/ontology-definition-2007.htm

Gutiérrez M (2005) Semantic virtual environments

interfaces. In: Chen YPP (ed) MMM. IEEE Computer Society, pp 277-283

Kalogerakis E, Christodoulakis S, Moumoutzis N (2006) Coupling ontologies with graphics content
for knowledge driven visualization. In: VR ’06 Proceedings of the IEEE conference on Virtual Reality,
Alexandria, pp 43-50

Kapahnke P, Liedtke P, Nesbigall S, Warwas S, Klusch M (2010) Isreal: an open platform for semantic-
based 3d simulations in the 3d internet. In: International semantic web conference (2). pp. 161-176

. Kleinermann F, De Troyer O, Mansouri H, Romero R, Pellens B, Bille W (2005) Designing seman-

tic virtual applications. applications. In: Proceedings of the 2nd INTUITION International Workshop,
Senlis, pp. 5-10

Latoschik ME, Tramberend H (2011) Simulator x: a scalable and concurrent software platform for
intelligent realtime interactive systems. In: Proceedings of the IEEE VR 2011

Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2016) Action2activity: Recognizing complex activities
from sensor data. arXiv:1611.01872

Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: Sensor-based activity recognition.
Neurocomputing 181:108-115. http://www.sciencedirect.com/science/article/pii/S0925231215016331,
big data driven intelligent transportation systems

Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: Predicting your career path. In:
Proceedings of the thirtieth AAAI conference on artificial intelligence, AAAI’16. AAAI Press, pp 201—
207. http://dl.acm.org/citation.cfm?id=3015812.3015842

Microsoft (2017) Direct3d 11.1 features. https://msdn.microsoft.com/en-us/library/windows/desktop/
Oracle (2017) Java3d. http://www.oracle.com

Papaleo L, De Floriani L, Hendler J, Hui A (2007) Towards a semantic web system for understanding
real world representations. In: Proceedings of the Tenth International Conference on Computer Graphics
and Artificial Intelligence

Pellens B, De Troyer O, Bille W, Kleinermann F, Romero R (2005) An ontology-driven approach for
modeling behavior in virtual environments. In: Meersman R, Tari Z, Herrero P (eds) Proceedings of on
the move to meaningful internet systems 2005: Ontology mining and engineering and its use for virtual
reality (WOMEUYVR 2005) workshop. Springer, Cyprus, pp 1215-1224

Perez-Gallardo Y, Cuadrado JLL, Crespo AG, de Jesis CG (2017) Geodim: a semantic model-based
system for 3d recognition of industrial scenes. In: Current trends on knowledge-based systems. Springer,
pp 137-159

Robbiano F, Attene M, Spagnuolo M, Falcidieno B (2007) Part-based annotation of virtual 3d shapes.
2013 Int Conf Cyberworlds 0:427-436

Sikos LF (2017) 3D model indexing in videos for content-based retrieval via x3d-based semantic
enrichment and automated reasoning. In: Proceedings of the 22nd international conference on 3D web
technology. ACM, p 19

Trellet M, Férey N, Flotynski J, Baaden M, Bourdot P (2018) Semantics for an integrative and immersive
pipeline combining visualization and analysis of molecular data. J Integr Bioinform 15(2):1-19

@ Springer

https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s00371-014-1011-9
http://www.blender.org
http://tomgruber.org/writing/ontology-definition-2007.htm
http://tomgruber.org/writing/ontology-definition-2007.htm
http://arxiv.org/abs/1611.01872
http://www.sciencedirect.com/science/article/pii/S0925231215016331
http://dl.acm.org/citation.cfm?id=3015812.3015842
https://msdn.microsoft.com/en-us/library/windows/desktop/
http://www.oracle.com

Multimedia Tools and Applications (2019) 78:12607-12638 12637

47. Trellet M, Ferey N, Baaden M, Bourdot P (2016) Interactive visual analytics of molecular data in
immersive environments via a semantic definition of the content and the context. In: 2016 workshop on
immersive analytics (IA). IEEE, pp 48-53

48. Van Gool L, Leibe B, Miiller P, Vergauwen M, Weise T (2007) 3d challenges and a non-in-depth
overview of recent progress. In: 3DIM, pp 118-132

49. W3C (2004) Swrl. On-line. http://www.w3.org/Submission/SWRL/

50. (2017) W3C: Vrml virtual reality modeling language. https://www.w3.org/MarkUp/VRML

51. W3C (2018) Getting started with x3d. http://www.web3d.org/getting-started-x3d

52. W3C (2018) Owl. http://www.w3.0rg/2001/sw/wiki/OWL

53. W3C (2018) Rdf. http://www.w3.0rg/TR/2004/REC-rdf-concepts-20040210

54. W3C (2018) Rdfs. http://www.w3.0rg/TR/2000/CR-rdf-schema-20000327

55. W3C (2018) Spargl query language for rdf. http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115

56. Wiebusch D, Latoschik ME (2012) Enhanced Decoupling of Components in Intelligent Realtime Inter-
active Systems using Ontologies. In: Software Engineering and Architectures for Realtime Interactive
Systems (SEARIS), proceedings of the IEEE Virtual Reality 2012 workshop. pp 43-51

57. Zahariadis T, Daras P, Laso-Ballesteros I (2008) Towards future 3d media internet. NEM Summit, pp
13-15

Dr. hab. eng. Krzysztof Walczak (male): Associate Professor in the Department of Information Technology
at PUEB, holds a habilitation degree (higher Ph.D. degree) in computer science (multimedia systems). His
research interests focus on multimedia systems, virtual and augmented reality, distance teaching and learning,
semantic web and databases. He is the author or co-author of two books, several book chapters and 120
research papers in journals and conference proceedings. He also holds several US and European patents in
these domains. He was acting as a technical coordinator in numerous research and industrial projects. He
is a founding member and an Executive Committee member of the EuroVR Association, a member of the
Board of Directors of the VSMM (International Society on Virtual Systems and Multimedia), a member of
the Web3D Consortium and a member of the ACM (Association for Computing Machinery).

@ Springer

http://www.w3.org/Submission/SWRL/
https://www.w3.org/MarkUp/VRML
http://www.web3d.org/getting-started-x3d
http://www.w3.org/2001/sw/wiki/OWL
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210
http://www.w3.org/TR/2000/CR-rdf-schema-20000327
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115

12638 Multimedia Tools and Applications (2019) 78:12607-12638

Dr. eng. Jakub Flotynski (male): Assistant Professor in the Department of Information Technology at PUEB,
holds a Ph.D. degree in computer science (multimedia systems). His research interests include virtual and
augmented reality, semantic web, service-oriented architectures and mobile applications. He has participated
in several research and industrial projects in these fields. He is the author or co-author of 34 research papers.
He is an ACM member, and he was a Program Co-Chair of the International ACM Conference on 3D Web
Technology in 2017 and 2018.

@ Springer

	Inference-based creation of synthetic 3D content with ontologies
	Abstract
	Introduction
	Related works
	Method of inference-based 3D content creation
	Development of a library of 3D content components
	Step 1: designing 3D components
	Step 2: mapping 3D components and properties to domain concepts
	Simple mapping patterns
	Complex mapping patterns
	Example of mapping

	3D scene creation
	Step 1: designing a 3D scene template
	Step 2: generating the 3D scene
	Scene generation algorithm.
	Example of 3D scene generation

	Scene design environment
	Client
	Server

	Evaluation
	3D content creation by users
	Computational complexity of the scene generation algorithm
	Performance of the scene generation algorithm

	Discussion
	Test results
	Alternative 3D content representations

	Conclusions and future works
	References

