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Abstract
In order to solve the problem of low accuracy and efficiency for surface defects in common
woven fabrics, a novel fabric defect classification method is proposed based on unsuper-
vised segmentation and ELM. The classification method is divided into four steps including
defect segmentation, feature extraction, ELM classifier training, and Bayesian probability
fusion. Firstly, an unsupervised segmentation is presented for the Grayscale fabric defect
image after preprocessing. Secondly, geometric and texture features were extracted by using
the segmented image and the undivided Grayscale image. Then, features and labels in fabric
defect images are considered as training sets to train the ELM classifier. Finally, the input
fabric defect image is classified by the trained ELM classifier and the Bayesian probability
fusion method. Experimental results show that the proposed method can classify the fabric
defect image with high accuracy and efficiency that can better meet the requirements for
practical applications.

Keywords Fabric defect detection · Image classification · Unsupervised segmentation ·
ELM classifier · Bayesian probability fusion

1 Introduction

Clothing is currently the fastest growing shopping category on the web. Compared with the
traditional mode, online garment marketing has greater market value and economic bene-
fits. With the developments in customer demand on fabric variety in fashion market, fabric
defect detection is central to automated visual inspection and quality control in textile man-
ufacturing. It has been widely appreciated that improving the effectiveness of fabric defect
detection is a common demand in the apparel industry. However, the high return rate and
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the price of loss due to the defects in fabric prevent the benefits of companies and fur-
ther developments [33]. Currently, there exist more than 70 established categories for fabric
defects defined by the textile industry [46]. Due to the immaturity of production techniques
or yarn quality, many defects are generated in the fabric production process, such as broken
warp, broking weft, wrong weft and warp, etc. And the sewing machine during the process
of garment manufacturing results in the defects which involves crease, scratches, shearing,
crease, and dirt. Most of these defects are caused by machine malfunctions, yarn problem,
and stain of oil caused by the knitting device. Therefore, it is necessary to develop auto-
matic inspection which can enhance the accuracy and efficiency of fabric defect detection
for better productivity and improving quality of fabric as well.

Fabric defect classification plays an important role in the quality control of textiles and
has historically been achieved via visual inspections by skilled workers. A great deal of work
has focused on improving the accuracy and efficiency of fabric defect classification. Tradi-
tionally, fabric inspection is relied on human manipulation and experience [37], which suf-
fers from high labor cost and low efficiency. Although the machine detection and efficient
system [8] can be used to classify fabric defect. With the fast development of textile industry,
fabric texture becomes more and more diverse and complex. As a result, texture has attracted
wide attention from various research including 3D surface reconstruction [24] and 2D tex-
ture [31]. Jian et al.[26, 29] have proposed efficient methods for illumination-insensitive
texture discrimination, which broadly improves the performance for texture classification.
However, due to the improvement of weaving techniques, defects are small on such fab-
ric surface than before, which makes the fabric inspection task difficult. Basically, fabric
defects can be categorized into 3 groups including defects in the warp direction, defects
in the weft direction, and defects with no directional characteristics. Therefore, it is diffi-
cult to develop new automated fabric inspection models with higher detection accuracy and
efficiency.

Numerous fabric defect detection methods by computer vision and pattern recognition
techniques have been proposed in the last three decades [33, 46]. Gray relational analysis
[36] was able to recognize fabric defects. Wavelet transform coefficients [18], Fourier trans-
formation [19], Gabor filters [23], and redundant contourlet transform [50] addressed fabric
inspection in the spectral domain. Since these methods recognize defects through feature
extraction from normal or abnormal fabric texture, the sensitivity of detection can be influ-
enced when the defects are very small and of low contrast. Recently, Ng et al. [45] have
used energy minimization to yield good results for defect localization and be applied practi-
cally to all fabric types. However, it is not efficient for detecting defects with small contrast
in the image (e.g., oil stains).

To our knowledge, the major challenging issues for fabric defect detection include the
complexity of fabric textures, the large diversity of defect types, and the accuracy of defect
classification. To tackle these issues, we introduce a method for fabric defect image clas-
sification through unsupervised segmentation and Extreme Learning Machine (ELM) to
balance the efficiency and accuracy. The pipeline of our method is sketched in Fig. 1. The
proposed approach includes four main parts: defect segmentation, feature extraction, ELM
classifier training, and Bayesian probability fusion. Inspired by the fabric defect detection
method based on the dictionary learning framework [58], we present defect segmentation
to learn a dictionary from a test image itself. First, an unsupervised segmentation is used to
realize the defect segmentation of the fabric. Contrarily to using adaptive template, we focus
on unsupervised segmentation which is useful to facilitate the geometric feature extraction.
Then we apply ELM as the fabric defect classification. ELM is a new algorithm based on
a Single Hidden Layer Feedforward Networks (SLFNs) [21] which has fewer optimization
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Fig. 1 The pipeline of our four-stages approach, including defect segmentation, feature extraction, ELM
classifier training, and Bayesian probability fusion. The key idea of this work is to present an unsupervised
segmentation and ELM method for fabric defect classification. We will demonstrate its effectiveness in the
following sections

constraints due to its special separability property for classification, and tends to achieve bet-
ter generalization performance at very high learning speed as compared to traditional SVM.
Finally, combined with Bayesian probability fusion method, the fabric defect classification
is achieved by training the one-against all (OAA) ELM classifier. The main contributions of
this work are as follows.

• Address an unsupervised segmentation method of fabric defect image to avoid human
intervention and requiring a large number of non-defective fabric images.

• Propose an ELM classification based on geometric and texture features combined with
Bayesian probability fusion method to classify fabric defect images.

• Use multi-resolution wavelet packet decomposition and Hu invariant moments instead
of a single feature to improve the classification accuracy.

• Design a sort of objective and subjective measurements for the quality evaluation of our
framework, and demonstrate that it outperforms the state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2 presents a brief literature
review on fabric defect detection methods. In Section 3, the framework of the proposed
fabric defect segmentation is introduced. Section 4 presents our method for Fabric defect
classification. Then in Section 5, experimental results and related analysis are provided.
Finally, conclusion is given in Section 6.

2 Previous work

Automatic defect detection has gained increasing attention in engineering research. In this
section, we firstly review related works in fabric defect detection and recognition. Then, we
will review recent progress in defect feature extraction and classification in detail.
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2.1 Fabric defect detection and recognition

Referring to the related surveys [33, 46], the most common methods for fabric defect detec-
tion can be classified into four groups including statistical, structural, model-based and
spectral approaches. Statistical methods tend to distinguish defects through feature analysis
of standard textile texture using regularity and local orientation [7]. However, it is very dif-
ficult to discriminate small and blurry defects which do not change the average grey-level
value of an image. Structural methods claim that texture can be decomposed into a set of
textural primitives [39]. Model-based approaches stress that the relationship between pix-
els in a textural image can be modeled by a predictive mode [18]. Gaussian Mixture Model
was applied to acquire the dependencies between wavelet coefficients within each sub-band
of wavelet decomposition [32]. In spectral methods [6], fabric defects were extracted by
detecting abnormal value in the three dimensional frequency spectrum. The method [1]
used wavelet transform combined with threshold segmentation to detect and classify fab-
ric defects involving rough and wrinkled region, which has a few limitations. Hu et al.
[18] proposed a Hidden Markov Random Field Model in wavelet domain to detect tex-
ture defects combined with threshold segmentation. Recently, Jing et al. [30] proposed a
supervised fabric defect detection method with Gabor filters. However, the selection of
appropriate parameters of both wavelet transform coefficients and Gabor filters becomes
the most challenging task in defect detection issue.

Regarding Wavelet decomposition, fabric defect detection can also be modeled as
saliency detection. Many state-of-the-art methods for face recognition were introduced in
[49]. And in [25], an efficient hierarchical scheme with a face detector and a wavelet-
based saliency map was used for accurate facial-feature detection and localization. Later,
a visual-attention-aware model [27] was proposed for salient-object detection based on a
bottom-up mechanism. However, these methods cannot be used directly to solve fabric
defect recognition. Cao et al. [5] introduced an unsupervised segmentation method that
uses least-squares regression based on prior knowledge to detect defects in various fab-
ric textures. The low-rank representation (LRR) technique [38] was used for robust fabric
defect detection. Instead of transforming an image into the spectral domain, sparse dictio-
nary reconstruction for textile defect detection was introduced in [56]. However, the sparse
representation was based on the basic regression model, which is not suitable for eliminat-
ing scattered noise (e.g. spot defects). Consequently, an over-complete dictionary [57] was
trained from the testing image itself, but the algorithm was implemented on the original
image and its rotated images with high computation cost.

Then, Zhou et al. [58] focused on a fabric defect detection via dictionary learning frame-
work, which is quite similar to template matching but using an adaptive template, such a
dictionary is able to approximate training samples well through a linear summation of its
elements. But it requires huge amount of training data to ensure the accuracy of the classi-
fier. Moreover, subtle fabric defects are usually too small to be discriminated just by the first
and second order statistical features of the image. To overcome the computation problem, a
new method [60] based on local patch approximation was presented to address automated
defect segmentation on textile fabrics. In contrast, the proposed method adopts unsuper-
vised scheme without the need of reference images or prior information during the whole
detection process, which image patch is approximated by dictionary learned from a testing
sample in the least squares sense. Different from the method proposed by Zhou et al. [58],
we use a local patch approximation method to realize unsupervised fabric defect segmenta-
tion, which is devised to identify defects in a fully unsupervised manner without any prior
information.
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2.2 Feature extraction

A great deal of studies rely on feature extractions of normal fabric texture or fabric defects.
The most challenging work in these methods is to find the appropriate features that can
be adapted to different types of fabric texture and defects, which possibly influences the
accuracy of the detection model [45]. Fabric defect detection schemes can be loosely catego-
rized into feature extraction and non-feature extraction approach. Typical feature extraction
methods include grey-level co-occurrence matrix [36], Fourier analysis [6], spectral domain
methods [48], and wavelet transform coefficients [61]. Recently, Jian et al. [28] proposed a
novel hierarchical-local-feature extraction scheme for content-based image retrieval which
avoids the complex image segmentation. But this feature extraction method is not suitable
for fabric image with local defect. Although feature extraction is of great importance in
fabric detection and these feature extraction approaches mainly rely on feature selection, it
can’t guarantee the optimality of features used in case of the absence of defects in training
process.

On the other hand, Gabor filter is effective for detecting and classifying fabric defects
as the non-feature extraction detection scheme [52]. Bissi et al. [4] proposed the Gabor
filter and PCA method that depends on complex and symmetric Gabor filter group, real-
izing the automatic detection of uniform and structured fabric defect. However, it can not
meet the demand in multi-scale and multi-directional filtering. The approach [2] proposed
by Anitha et al. can achieve feature extraction respectively, which combined with indepen-
dent component analysis and vector quantization principal component analysis by using
Gabor wavelet network to analyze input fabric defect images. However, this method is only
effective for defects with patterned fabric. To improve these schemes, a wavelet packet
decomposition based on multi-resolution method [35] was proposed. The key idea of the
method is to decompose the low-frequency and high-frequency information, which is ben-
eficial to the extraction of texture features of the fabric defects. However, the detection
performance heavily relies on matching of filter parameters and the adjustment to the prop-
erty of a specific defect, e.g. the scale and orientation of a defect. Besides, a prior knowledge
(e.g. templates or defects) is still required for optimizing filters. Different from the existing
defect segmentation methods [58] with reference samples needed, our motivation is inspired
by the method [60] with a fully unsupervised manner, the dictionary learned in the least
squares sense can admit a decent approximation to the local fabric texture in patch-level. In
addition, the proposed method can avoid the problem of feature selection compared to the
classic feature extraction-based methods, identifying defects in sense of least squared error.

2.3 Defect classification

Most existing methods of image classification use traditional Support Vector Machines
(SVM) as the image classifier [12]. Typical classifier methods for fabric detection are
mainly based on neural network and SVM classifier [17]. Nasira et al. [44] used gray-level
co-occurrence matrix to extract fabric defect texture features, and then combined with the
artificial neural network to classify four kinds of fabric defect types: missing end, broken
weft, hole and oil stain, which solved the problem of low classification accuracy, but the fea-
ture extraction was expensive. Based on the optimal wavelet packet decomposition tree [35]
and neural network classifier, knitted fabrics were classified into holes, oil stain, scratches,
coarse end, tight warp, missing needles, which can effectively improve the efficiency of tex-
ture feature extraction, but ignore the fabric defect geometric features. The propose methods
[10, 13, 39] based on SVM classifier has used to classify fabric defect. Although the fabric
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defect classification based on SVM classifier enhances practical performance, the accuracy
of defect classification still needs to be improved further. Since the features extracted by
these methods are single and the classifiers are computationally expensive. Meanwhile, the
SVM classifier usually suffers from the high computational cost and the large number of
parameters to be optimized, which lead to the low accuracy and efficiency of classification.

To solve these issues, Zhang et al. [53] proposed fabric defect classification using
radial basis function network. Mottalib et al. [43] applied statistical methods to extract
the shape features and used simple Bayesian classifier to classify fabric defect images,
which can provide better classification accuracy. To our knowledge, a new learning algo-
rithm called extreme learning machine (ELM) for single-hidden layer feedforward neural
networks (SLFNs) in [21] randomly chooses hidden nodes and analytically determines
the output weights of SLFNs. Numerous attempts applied ELM classifiers to improve the
accuracy of image classification. Lu et al. [41] proposed a multi-category classification
method based on extreme learning machine (ELM) for generic images. It not only effec-
tively solved the multi-categories classification problem but also reduced the optimization
of the classifier parameters. Zhao et al. [55] used the probability extreme learning machine
approach of one-to-one strategy to solve the multi-category classification problem, which
can improve the classification efficiency and accuracy. And a signature based on ELM for
texture classification was introduced in [31], which outperforms high discriminative perfor-
mance. When using ELM classifiers, the multi-class problem is decomposed into two-class
problem using the One-Against-All (OAA) and One-Against-One (OAO) schemes [47]
respectively. Specifically, we also explore the One-Against-All (OAA) method which can
decompose a multi-class problem into a set of two-class problem. Then, a Bayesian prob-
ability based fusion method is proposed to combine the prediction results of each ELM
classifier.

In summary, in view of the accuracy and efficiency, we present a framework of
unsupervised segmentation and ELM for fabric defect image classification. Instead of
over-complete dictionaries, an unsupervised algorithm using local patch approximation for
fabric defect segmentation is more effective in providing relevant structure information for
reducing the overall computation cost and enhancing the performance. By means of ELM
classifiers combined with Bayesian probability fusion, it can achieve performance at high
speed, thereby improving the accuracy of the classification fabric defects.

3 Fabric defect segmentation

Fabric defect classification benefits from automatic segmentation. The supervised approach
[34] utilized data-driven techniques to segment a given image with a substantial number of
defect-free fabric images. But when the scale of training images decrease, the performance
of segmentation results drops dramatically. Without enough defect-free fabric images,
the unsupervised segmentation approaches [19] based on fourier analysis and wavelet
shrinkage were proposed. To evaluate the effectiveness of these presented approaches,
semi-supervised learning method addresses the case where the labeled data is sparse. Mak
et al. [42] proposed a semi-supervised filter selection method based on the analysis of
spectral feature of textures for fabric defect segmentation, which can automatically find a
well matching real Gabor functions in every level of the pyramidal decomposition. Semi-
supervised method overcomes the difficulties of requiring a large amount of labeled meshes
and the inability to use unlabeled meshes. Essentially, there is another way to alleviate the
difficulties of requiring a large amount of labeled data, which is the weakly supervised
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learning method [16, 54]. Instead of using traditional supervised or semi-supervised learn-
ing methodology, these approaches can substantially reduce the human labor of annotating
training data while achieving the outstanding performance.

Based on our observation, the locations and sizes of the contained defects vary randomly
when a piece of fabric leaves the production line in the textile industry. Different from the
existing defect segmentation methods with reference samples needed, we focus on unsuper-
vised segmentation method for segmenting local defects on textile fabrics based on local
patch approximation. An example of fabric defect segmentation is illustrated in Fig. 2. The
process of fabric defect segmentation involves three steps including patch extraction, dictio-
nary learning, and defect segmentation. Our method firstly attempts to use patch extraction
to represent fabric defect images in patch-level. Then dictionary learning is presented to
eliminate abnormal patches. Finally, an abnormal map is constructed based on the approx-
imate difference between the defect patch and the normal patch, which can segment the
defect area from input fabric image.

3.1 Patch extraction

The unsupervised segmentation method is as follows. Firstly, the preprocessed grey-scale
image I of a given image is represented as an image patch W × H in the sense of least
squares. Each image patch is represented as a column vector connecting patch columns, and
an overlap partition is used to extract the patch. As shown in Fig. 2, let the patch be a size
of p × p and patches are extracted from the overlapping division. To eliminate the anoma-
lous elements in the learned dictionary, it is necessary to reduce the number of anomalous
patches. Given the image patches {xi} which collected from the test samples, data matrix
can be represent X = [x1, x2, · · · , xi , · · · , xn], xi ∈ R

p , where p represents the dimension
of patch xi for image I , n is the total number of the patch xi for image I (that is, containing

Fig. 2 An example of fabric defect segmentation with three steps including patch extraction, dictionary
learning, and defect segmentation
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n column vector of dimension is p). The Euclidean distance E(i) of image patch xi to data
center x in data matrix X can be expressed as follows:

E(i) = ||xi − x||2, (1)

where x is the value of average {xi}. If the distance E(i) is larger than the threshold Th, the
image patch xi in data matrix X is eliminated. Taking the smaller proportion of defective
area into consideration, we eliminate the total number of patch 0.25 [40], as far as possible
to eliminate abnormal patches.

3.2 Dictionary learning

After eliminating the outliers of data matrix X of an image patch, learning a linear combi-
nation from image patches is key in sense of least squared error. Given a data matrix X, we
need to seek such a linear basis D which can be defined as

(D, a) = argmin
n∑

i=1

||xi − Dai||22. (2)

Where ai is the vector of coefficients for each xi of the dimensions k. The above
equation produces a dictionary, each point in X of which is represented by the smallest
error. Learned from Xc, it contains a dictionary of elements k that expressed as Dt =
[d1, d2, · · · , di , · · · , dk], di ∈ R

p(i ≤ k < n). Since the outliers have been eliminated,
the learned dictionary Dt captures only the texture features of the area of the non-defective
fabric. Aiming at the repetitive spatial structure of fabric texture [38], the linear basis was
learned from the image patches after eliminating the discrete values. And the dictionary
elements was obtained, which can constitute the dictionary Dt representing the patch level
normal fabric texture in the lower dimension subspace to improve the efficiency. Thus, Xt
is the outlier removed data matrix and Dt is the dictionary learned from Xt with k dictionary
elements.

3.3 Defect segmentation

Because the learned dictionary Dt only can capture the normal texture structures of the
fabric defect sample, it will lead to the approximate residual error of the patch level. To
our knowledge, the approximation error derived from the approximation with Dt for normal
and abnormal patches is able to use for defect discrimination in [38]. Then constructing an
abnormal map through the original image patch xi and the pixel difference S(i) based on

approximate patch
∧
xiψ is presented to solve substantial approximation error on defective

regions. Considering the neighborhood pixels, the defect segmentation operation will be
performed to segment the defective regions from the abnormal map, and the pixel difference
S(i) can be calculated as follows,

S(i) = 1 − exp(−γ ||�T(xi − ∧
xiψ )||2). (3)

Where γ by user-defined is used to control the sensitivity of segmentation parameters,
the weight �T is used to reduce the impact of the pixels from the center pixel. The patch
xi away from the center pixel ψ is calculated by two-dimensional Gauss function which

is defined as f (x, y) = exp(− (x2−y2)

2σ ′2 ), where standard deviation σ ′ determines the curve,

the weight �T is similar to a low-pass filter that has a maximum center weight. With the
increase of the radius, weight will reduce.
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Finally, the threshold operation is used to segment the defect region from the abnormal
map. Binary segmentation results BW are calculated as [57]

BW (i, j) =
{
0, μ1 − c · σ1 < S < μ1 + c · σ1
255, otherwise

, (4)

where μ1 and σ1 are respectively the pixel mean and standard deviation in the residual
image, and c is a preset constant. i and j are locations of pixels, and E is the residual image.
The abnormal map can differ defective regions from background than simple subtraction
map, and highlight the anomalies in normal regions, which will significantly facilitate defect
segmentation.

The pseudo code of fabric defect segmentation method is given in Algorithm 1.

4 Fabric defect classification

After segmentation, we extract the geometric features of the segmented fabric defect images
and the texture features of the grey-scale images respectively. Finally, combined with
Bayesian probability fusion, the fabric defects are classified by ELM-OAA classifier.

4.1 Feature extraction

Choosing the appropriate features is of importance for fabric defect classification. On the
one hand, we use the Hu invariant moment [59] to extract the geometric features of the fabric
defects G′′ after segmentation. On the other hand, the fabric defect image G′ is decomposed
by wavelet packet based on optimal wavelet packet technology. Then the texture features of
the fabric defect image can be obtained by calculating Shannon entropy.
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Given the segmented fabric defect image classification, the geometric moment mpq of
p + q order can be formulated as

mpq =
∑

x′

∑

y′
x

′py
′qF (x′, y′), p, q = 0, 1, 2, ..., n, (5)

where F(x′, y′) is the image gray value function, x′ and y′ represent the image coordinates.
Due to the invariance of the geometric moment mpq , the center moment can be obtained by
the following formula:

upq =
∑

x

∑

y

(x − x̄′)
p
(y − x̄′)qf (x, y), p, q = 0, 1, 2, · · · , n, (6)

where x̄′ = m10/m00 and ȳ′ = m10/m00 respectively. Then, the normalized central
moment ηpq is defined as

ηpq = upq

u00r
, p + q = 2, 3, · · ·. (7)

The central moment of r = (p+q)
2 can describe the geometric area instead of describing

the invariance of rotation. In practical applications, the fabric defect not only appears in
the fabric anywhere, but also has the invariance of rotation. Therefore, Hu’s seven moment
invariants φi(p + q ≤ 3) can satisfy the invariability of the translation and the rotation.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1 = η20 + η02

φ2 = (η20 − η02)
2 + 4η112

φ3 = (η30 − 3η12)2 + (3η21 − η03)
2

φ4 = (η30 + η12)
2 + (η21 + η03)

2

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]+
(3η21 − η03)(η21 − η03)[3(η30 + η12)

2 − (η21 + η03)
2]

φ6 = (η20 − η02)[(η30 + η12)
2 − 3(η21 + η03)

2]+
4η11(η30 + η12)(η21 + η03)

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]−
(η30 − 3η12)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2]

. (8)

Due to the large range of seven moment invariants φk(k = 1, 2, · · · , 7), we need com-
press the data. The actual moment invariant is calculated by using the following formula:

Ik = log10|φk|(k = 1, 2, · · · , 7). (9)

The texture features of gray-scale fabric defect images are extracted based on multi-scale
wavelet packet transform [11], in which the wavelet packet decomposition images are based
on the optimal wavelet packet basis tree. Each image is decomposed into four sub-images
N
2j × N

2j , (j = 1, 2, · · · , J ). At resolution level j , sub-image pixels are N
2j × N

2j . These
sub-images not only provide a variety of expressions of different frequency bands of gray-
scale images, but also save time for feature extraction. The original gray-level image and
sub-images can be regarded as the parent and child nodes of a tree. Shannon entropy of an
image N × N is calculated as:

ε = −
N∑

m=1

N∑

n=1

[ω(m, n)2] log[ω(m, n)2]. (10)

Where ω(m, n) represents the wavelet packet coefficients of the image. If the entropy of
a child node is less than a parent node, each child node continues to be decomposed;
otherwise, it will be stopped.
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4.2 ELM classifier training

Differs from the conventional neural network theories, a new method in [20] was proposed
to show that single-hidden-layer feedforward networks (SLFNs) with randomly generated
additive or radial basis function (RBF) hidden nodes can work as universal approximators.
ELM is a new algorithm based on Single Hidden Layer Feedforward Networks (SLFNs).
Although there are a lot of different versions of ELM in the literature such as ELM-
SLFN (Single Layer Feed-Forward Network), ELM-RBF (Radial Basis Function), and
Kernel-ELM, and etc. In this paper, we propose using ELM to improve the accuracy of
defect classification, specifically for multi-category classification, we also explore the One-
Against-All (OAA) method [47] named as ELM-OAA for brevity which can decompose a
multi-class problem into a set of two-class problem.

To solve the multi-class classification problem, the ELM classifier [22] uses networks
whose multiple output nodes are equal to the pattern categories, and the visual feature si
of each participating training is the feature fki(k = 1, 2) of the extracted fabric defect
image. The target output ti is a m dimensional vector (t1, t2, ..., tm)T . The training set Z is
composed of N visual features si involved in the training and the target output ti .

The training algorithm is as follows. Given a training set Z = {(si , ti )|si ∈ R
n, ti ∈

R
m, i = 1, ..., N}, activation function G(x), the number of hidden nodes L, ELM classifier

first randomly assigns hidden nodes (ai, bi), i = 1, · · · , L, and then calculates the hidden
node output matrix H , and finally computes the output weight β̂ = H + T .

In order to train the ELM-OAA classifier, we standardize the extracted features of fabric
defects for geometric eigenvector fki = (fki1, fki2, ..., fkin) with n dimensioned textures.
And the sample mean vector μ and standard deviation vector σ are calculated as follows

μ = 1

N

N∑

i=1

fki, σ =
√√√√ 1

N

N∑

i=1

(fki − μ)2, (11)

where N represents the number of eigenvectors and the normalized eigenvectors are
expressed as f ′

ki = (fki−μ)
σ

.
Given the training set which involves seven common types of fabric surface defect

including hole, oil stain, weft stripe, crumple, scratches, pressed mark, and crease, we use 7
binary ELM classifiers (see Fig. 3). Each binary ELM classifier has the same input data si
and different target data ti , which is trained independently according to the ELM classifier

Fig. 3 The illustration for our ELM-OAA classifier training
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training algorithm. For x-th binary ELM classifiers, there is an output node whose output
value is yx . The seven binary ELM classifiers generate seven predicted values. Using a sin-
gle hidden layer feedforward network to connect x-th binary ELM classifier which shares
L hidden nodes output neuron weights βx learned without affecting other weights, We can
define the output weight vector βx as [βx

1 , · · · βx
L]T, where, βx = (Hx)+tx and tx is defined

as tx = [tx1 , · · · , txNx ], and Nx is the number of training sets involved in x-th binary ELM
classifier. Hx can be obtained from

Hx =
⎡

⎢⎣
G(a1, s

x
1 , b1), . . . ,G(aL, sx

1 , bL)
... · · · ...

G(a1, s
x
Nx , b1), . . . ,G(aL, sx

Nx , bL)

⎤

⎥⎦. (12)

Since the multiple outputs from the SLFNs corresponding to the each binary ELM clas-
sifier represent collective outputs for the 7 classes, thus, we need to integrate them into the
final class label for the training image sample. We minimize the total loss by ensuring that
the training samples (si , ti ) is most consistent with the label category of output yi , which
means the total loss for sample yi is the minimum for all class labels. The total loss for

training samples (si , ti ) is calculated as D(M, y(s)) =
7∑

x=1
�(M(i, x)yx(s)). Where M is

the matrix, and diagonal elements are +1, and other elements are -1. The output value of
x-th binary ELM classifier is yx(s), and θ is the exponential loss function. The final output
form of the training samples (si , ti ) is as follows

ỹ(s) = arg min
i=1,··· ,7D(M, yi(s)). (13)

Finally, the output weights of 7 binary ELM classifier are trained.

4.3 Bayesian probability fusion

To improve the accuracy of classification, we propose using Bayesian probability to fuse
each prediction results of ELM-OAA classifier training features, which avoids the way that
a single feature attribute directly determines the fabric defect image category. For a fabric

defect image to be classified, a single feature {f k
G′ }K is first selected from the geometric and

texture features from the fabric defect image. Then we input them into each trained ELM-
OAA classifier, which provides a range of [0,1] prediction results as posterior probability
P(ti |{ỹG′ }K). In this paper, we assume that different feature conditions are independent,
and the posterior probability corresponding to K different eigenvalues is defined as follows:

P({ỹG′ }K |ti ) =
K∏

k=11

P({ỹG′ }k|ti ). (14)

According to Bayesian theory P(A/B ) = P(A)
P (B)

P (B/A ), the probability fusion of
multi-features in this paper can be calculated by the formula

P(ti |{ỹG′ }K) = P(ti)

P ({ỹG′ }K)
P ({ỹG′ }K |ti ). (15)
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Where P({ỹG′ }K) =
K∏

k=1
P(ỹG′)k , the prior probability P(ti) is assumed to be uniform

distribution, the final fusion results can be calculated by this form:

P(ti |{ỹG′ }K) = P(ti)

P ({ỹG′ }K)

K∏

k=1

P({ỹG′ }k|ti ). (16)

In the same way, for the two ELM classifiers, the final fusion result is calculated as

P(ti |{L̃}K) = P(ti)

P ({L̃}K)

K∏

k=1

P({L̃}k|ti ). (17)
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Table 1 Our dataset of the fabric defects images used in the experimental evaluation

Types Training images per type Training images Test images per type Test images

7 500 3500 200 1400

The final result is an interpretable posterior probability of the image relevance with
respect to the expected value of the ELM-OAA classifier output. The pseudo code of the
fabric defects image classification strategy is presented in Algorithm 2.

5 Experimental results and analysis

In order to assess the performance of the proposed method, we firstly give the dataset and
implementation details in the experiment, and compare our framework with state-of-the-art
approaches. Secondly, we evaluate the unsupervised segmentation and analyze the qualita-
tive and quantitative results. Thirdly, several experiments are performed to analyze feature
extraction results. Then, we compare the accuracy of our classification results with other
results. To further demonstrate the effectiveness, the runtime performance is presented to
aid the analysis.

Dataset The performance of the proposed fabric defect classification is validated through
two dataset: the first one is the popular TILDA dataset [9]. As remarked in the dataset, an
image of 768 × 512 in TILDA only covers an area of 37.5 square centimeter around. The
second one is our dataset acquired from an apparel factory in Mainland China and scanned
from the fabric defect handbook. The dataset obtained from grey-scale processing in the
experiment include a training set and a test set, which contain the most common 7 types
of fabric defects, such as hole, oil stain, weft stripe, crumple, scratches, pressed mark, and
crease that always appear in the textile industry. Table 1 shows the number of input training
images, the types of fabric defects, the number of each type of training and test images, and
the total number of training and test images. To ensure the accuracy of the classification
results, all the images are obtained from the standard textile defects in the textile industry,
of which the types of defects are often found in the textile and garment manufacturing
industries. In our dataset, images of the real fabric samples were captured at 800 × 800 by
a digital camera. The image size is set to pixels, pre-processing for the 8-bit grey scale.

Table 2 analyzes the overall testing results by using our proposed approach on TILDA
and our dataset, respectively. The four measurements provide the evaluation from different
aspects. Precision indicates the percentage of correct alarm during detection. Sensitivity
shows the percentage of defective samples that are correctly detected. Specificity manifests
the percentage of non-defective samples that are correctly classified as normal. Accuracy is
the percentage of correct classification of all testing samples.

Table 2 Performance evaluation
of our proposed method on
TILDA and our dataset (Unit: %)

Dataset Precision Sensitivity Specificity Accuracy

TILDA 92.0 97.6 91.5 94.5

Our own 92.5 96.1 92.1 94.6
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Table 3 Comparison between our method and the other main relevant approaches

Performance Machine Cao’s [5] Jing’s [30] Zhang’s [53] Our method

Data source Production TILDA TILDA Textile factory Textile factory

Theory Real-design PG-LSR Gabor filter RBF network ELM

Complexity High Medium High High Low

Cost High Medium High High Low

Efficiency High Medium Low Medium High

Accuracy High Medium Medium Medium Medium

Implementation details All the tests are performed on a computer with an Intel Core
i5 3.3GHz CPU and 8GB DDR3 RAM. The major part of the code is implemented on
MATLAB software platform.

Comparison with relevant methods Although the accuracy of fabric defect image clas-
sification is inferior to the machine detection and classification, fabric defect image
classification can reduce the cost and shortening development process. Our method is
inspired by the goal of improving the quality of fabric production and guaranteeing the
completeness of clothing fabric. Distinct from several other relevant methods, we present
an approach based on unsupervised segmentation and ELM to solve the problem of low
accuracy and efficiency of surface defects in common woven fabrics. Table 3 compares the
performance of these methods qualitatively.

5.1 Segmentation evaluation

We evaluate our unsupervised segmentation method for the analysis of the qualitative and
quantitative results. Figure 4 shows the segmentation results of four types of fabric in
TILDA. One representative sample was selected as demonstration for each type of defects
including holes, oil stain, missing yarn and spot. Most of the fabric defects were well
detected, which reveals that the detection model is of high sensitivity and robustness. Given
that most of the fabric defects found in a real case might be much smaller than the sam-
ples in TILDA, more experiments were conducted on some real samples collected from an

(a) (b)

(c) (d)

Fig. 4 Segmentation results of fabric defects in TILDA dataset. a Hole. b Oil stain. cMissing yarn. d Spot
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apparel company and scanned from the fabric defects handbook to verify the effectiveness
of the proposed method for the apparel industry.

We also show the segmentation results of 7 types of woven defects of different textures
in our dataset. Figure 5 shows a statistical evaluation of the segmentation results for 7 kinds
of woven defect types, where the parameter k = 7, patch size is 28× 28. The input original
plain weave fabric defect images are given in Fig. 5a-g (left). The right columns in Fig. 5a-g
are the segmentation results by our method.

To determine the effect of the segmentation in our unsupervised method, we repeated the
experiment by using 21 fabric defect images. Table 4 shows the segmentation results of 7

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 5 Segmentation results of woven defects. a Pressed mark. b Crumple. c Scratches. d Weft stripe. e Oil
stain. f Crease. g Hole. The defect area of original fabric image is marked with red rectangle marks
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Table 4 Experimental segmentation results of 7 types of woven defects of different textures

Type Striped fabrics Dot fabrics Plaid fabrics

Pressed mark

Crumple

Scratches

Weft stripe

Oil stain

Hole

Crease

types of woven defects of different textures. The left column from top to bottom in Table 3
is the original input user fabric defect images marked red rectangle for defect area, and the
right column shows the unsupervised segmentation results of our method. Combined with
the analysis of the visual results in Fig. 4 and Table 4, our method has better segmentation
results on 7 fabric defects under different textures.

In this paper, the following three measurements including precisionA, recallR, and value
F are employed to judge the performance of defect segmentation result.A = Nri

Ngti
,R = Nri

Nni
,

F = 2 · Nri

Ngti∪Nni
, where Nri is the positive pixel of segmentation result in the image Mi ,

and Ngti is truly defective number of pixels in the image Mi , Nni is the total number of
pixels in the segmentation result of image Mi . The precision and recall of our method are
calculated at the pixel level. The precision refers to the proportion of the correct defective
pixel extracted by our algorithm to the true pixel of the defect. The recall represents the
proportion of the correct defective pixel extracted by our algorithm to the total defective
pixel extracted by our algorithm. F value is the proportion of pixels extracted from the true
defect area to the union which is extracted defective pixel and the pixel of the true defect.

Because two parameters including number of elements in learning dictionary k and patch
size p × p are used in our method, we verify the influence of these two parameters by
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calculating precision, recall and F value of different k and p. The true defect area of all
input fabric defect images will be manually marked as a basis for calculating F value and
precision.

The average AR curves of all fabric defect samples are shown in Fig. 6. The curve AR

shows that the overall performance of our segmentation method is poor and relatively stable

(a)

(b)

(c)

Fig. 6 Average AR curve of fabric defect sample. a Accuracy under the number of different elements K . b
Recall under the number of different elements K . c F value under the number of different elements K
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when k < 15 and p > 15 (see F value in Fig. 6c). The segmentation performance changes
a little when k < 15 and p > 15 (See Fig. 6) and it does not work well in precision when k

is too large when k = 15 (see precision in Fig. 6a). The reason for the above phenomenon
is as follows. On the one hand, k is too small, and the probability of fitting a potentially
defective area is increased when fitting the texture of the fabric, reducing the significance of
defects in the isomeric map. On the other hand, p is too small, and the fabric texture can’t
be sufficiently captured when the defect size is larger than the patch size, resulting in poor
discrimination. According to the analysis of performance parameters, the satisfactory results
can be always obtained by using our segmentation method, and it shows certain robustness.

To demonstrate the effectiveness of the proposed unsupervised segmentation perfor-
mance, we compare our method with visual mechanism of wavelet domain [15], supervised
segmentation method [30], dimensional empirical mode decomposition approach [38], and
dictionary learning framework [58], as shown in Table 5. The four parameters (precision A,
recallR, value F and runtime) are used to analysis the performance between our method and
others. For the relative methods and ours with the same unlabeled training sets for 7 types of
fabric defects, and the fabric defects of D1 to D7 are as follows: D1(Hole), D2(Scratches),
D3(Crease), D4(Pressed mark), D5(Crumple), D6(Weft stripe), D7(Oil stain). As shown
in Table 5, the average accuracy of our unsupervised method is 92.6%, which is approxi-
mately 12.45% better than the supervised approach. And we also tested on some training
datasets with label missing or error. Although the recall of ours is low than others, the

Table 5 Comparisons between our segmentation method and other several approaches with four performance
parameters including precision A, recall R, value F and runtime

Types Precision A(Unit:%) Recall R(Unit:%)

[30] [58] [15] [38] Ours [30] [58] [15] [38] Ours

D1 91.21 97.98 89.80 91.86 96.72 81.90 73.97 86.71 84.47 75.37

D2 83.45 91.72 85.29 87.39 94.38 79.53 72.19 80.80 81.29 72.66

D3 84.64 92.67 73.98 75.19 94.72 71.59 76.28 76.20 74.24 69.31

D4 68.20 88.56 62.75 65.31 89.67 69.63 65.39 74.76 60.19 58.31

D5 72.80 84.69 64.73 66.38 88.87 67.59 57.75 69.15 58.65 57.64

D6 73.57 86.43 67.61 73.29 87.41 68.20 54.20 67.37 62.23 63.67

D7 89.28 96.35 90.57 90.64 96.43 70.11 61.94 64.97 69.91 74.91

Average 80.45 91.20 76.39 78.58 92.60 72.65 65.96 74.28 70.14 67.41

Types Value A(Unit:%) Runtime R(Unit:s.)

[30] [58] [15] [38] Ours [30] [58] [15] [38] Ours

D1 86.30 84.30 88.23 88.01 84.72 1.313 0.382 2.962 2.747 0.713

D2 81.44 80.79 82.98 84.23 82.10 1.573 0.647 3.373 3.314 1.651

D3 77.57 83.68 75.07 74.71 80.05 2.324 0.769 3.146 3.057 1.514

D4 68.91 75.23 68.23 62.65 70.67 2.962 0.915 5.009 4.124 3.002

D5 70.10 68.67 66.87 62.28 69.92 3.436 1.397 6.975 4.699 3.441

D6 70.78 67.78 67.49 67.31 73.67 3.199 1.156 3.045 3.548 2.564

D7 78.54 75.40 78.37 79.65 85.01 1.668 0.412 2.345 2.863 0.849

Average 76.23 76.55 75.32 74.12 78.02 2.352 0.811 3.836 3.479 1.962
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experimental results demonstrate that our method shows relatively robustness compared
with other segmentation approaches.

5.2 Feature extraction analysis

Geometric and the texture features To evaluate the accuracy of classification, we have
analyzed the extraction for geometric and the texture features respectively. Figure 7 shows

Fig. 7 The classification results for different types of fabric defect images (left) using geometric features,
texture features, and our method
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a statistical evaluation of the classification results for different types of fabric defect images
using geometric features, texture features, and our method. For fabric defects classifica-
tion task, we repeat the procedure with the defect images including hole, oil stain, weft
stripe, crumple, scratches, pressed mark, and crease. Figure 7(left) presents the grey-scale
fabric images that to be classified and the classification results of fabric defect image
obtained by different feature extraction methods are shown in Fig. 7(right). The red trian-
gle marks illustrate the correct classification results, and the blue ones show the incorrect
results. As shown in Fig. 7(right), the classification error will be generated when using
single texture or geometric feature with the similar texture in grey-scale images or simi-
lar geometric texture after segmentation. However, the satisfactory results can always be
obtained by using our method, compared with the extraction for single geometric or texture
features.

Invariance analysis Geometric features can distinguish the shapes of fabric defects. How-
ever, for many defect shapes with the same contour, such as hole defects and oil stain
can only be recognized by texture feature parameters. We also evaluated the accuracy
of our method by using three measurements including Roughness(R), Contrast(C) and
Orientation(O). As illustrated in Table 6, the R, C and O related to the defect images with
different textures are given respectively.

Roughness(R ) Table 6 shows there are three sets of the same fabric defects with the same
geometric feature values. The values of warp stripe and warp scratch are 12.6012 and
16.1355, respectively. Hole defects and oil stain values are 10.8911 and 11.0143, respec-
tively. The values of missing weft and weft scratch are 15.9428 and 19.1592, respectively.
The two values of each group are different, which indicates that roughness measurement
can distinguish similar geometric feature values in the same fabric.

Contrast(C ) The contrast value is constantly changing due to the different textures with a
variety of colors and patterns on fabric defect images. As seen from Table 6, because the

Table 6 Invariance analysis including Roughness(R), Contrast(C) and Orientation(O) for six different fabric
defects

Fabric defects Warp stripe Warp scratch Hole

Sample

Roughness(R) 12.6012 16.1355 10.8911

Contrast(C) 0.6306 1.0401 0.7945

Orientation(O) 0.0482 0.3286 0.0443

Fabric defects Oil stain Missing weft Weft scratch

Sample

Roughness(R) 11.0143 15.9428 19.1592

Contrast(C) 0.9999 2.9153 0.7945

Orientation(O) 0.0902 0.08669 0.1187
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defect area contains both real defects and incomplete repeating pattern units, the pair ratios
of warp stripe and warp scratch (0.6306 and 1.0416) are significantly lower than those of
hole defects and oil stain (2.9153 and 2.8094). Thus, the contrast value is affected by the
patterns of different fabrics. However, the difference between the two contrast values is
small when there are two similar defects in the same fabric, such as the contrast values in
weft stripe and weft scratch (0.7945 and 0.9999). Therefore, contrast is also an effective
parameter to describe texture features of fabric defects.

Orientation(O) Table 6 also shows the defect images with different texture orientations
and their corresponding directional values. The experimental results indicate that there is no
clear distinction rule for the overall direction values of the six defect samples. The orien-
tation of missing weft is about 0, indicating that it is almost random. For defects similar to
those in the same fabric, orientation cannot be distinguished from defects, such as the ori-
entation in missing warp and warp stripe is 0.0482 and 0.3286, respectively. These features
are orientation-invariant for image patch.

Therefore, using our proposed method to extract the features of fabric defect images can
satisfy translation and rotation invariance.

5.3 Classification comparisons and results

To demonstrate the accuracy of our classification method, we compared our method with
the other classification approaches such as ANN [3], SVM [14], Fuzzy [34], KNN [51],
and RBF [53]. We performed the experiments in the same manner with the unsupervised
segmentation results. As shown in Fig. 8, the classification accuracy of our method is 91.8%,
which is better than the other methods. The accuracy of ANN [3] is 74%, the accuracy of
the method based on SVM [14] is 80.1%, the accuracy of Fuzzy [34] is 90.4%, the accuracy
of KNN [51] is 88.3%, and the accuracy of RBF [53] is 83.2%.

Figure 9 depicts the statistic and analysis of final classification results for 7 types of
fabric defect images with different textures. The fabric textures contain plain, twill, dot, grid
and stripe and the defects include hole, oil stain, weft stripe, crumple, scratches, pressed
mark, and crease. As shown in Fig. 9, the classification accuracy differs from the same
defect of the fabric with different textures and the different defects of the fabrics with the
same texture. Combined with fabric defect image content and segmentation results analysis,
the reason is twofold. Firstly, the accuracy of segmentation of certain defects in woven
fabrics is low with certain textures, which leads to the low accuracy of feature extraction.

Fig. 8 Analysis of accuracy between our classification method and other approaches
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Fig. 9 The classification accuracy of 7 types of fabric defects in this paper

Secondly, the accuracy of feature extraction is low with certain textures, leading to the errors
in the classification of these fabric defects.

In the next test, the experimental runtime is used to illustrate the efficiency of our clas-
sification method compared with other classifiers such as SVM-OAO, SVM-OAA, and
ELM-OAO. Table 7 lists the average training CPU time of the same test examples. The
training time of SVM-OAO classifier is 13.9604(s) and the SVM-OAA is 120.1606(s), the
time-consuming process greatly limits the application of these methods. And the training
time of ELM-OAO is 5.8601(s). The runtime by using our ELM classification and OAA
decomposition method is 3.7309(s) with high efficiency.

6 Discussions and conclusions

How to detect and classify the surface defects in common woven fabrics is a challenging
problem. The entire process of fabric defect classification is labor and computation inten-
sive. In this paper, we present a novel fabric defect classification method to balance the
efficiency and accuracy, which includes defect segmentation, feature extraction, ELM clas-
sifier training, and Bayesian probability fusion. The performance of the proposed defect
detection model was evaluated on the basis of TILDA database and some more real fabric
samples. First, an unsupervised algorithm using local patch approximation for fabric defect
segmentation is proposed to reduce the overall computation cost. Then, with a fully unsuper-
vised manner, we use a decent approximation to the local fabric texture in patch-level.Last,
we develop a classification method based on the trained ELM classifier and the Bayesian
probability fusion to classify the input fabric defect images to efficiently improve the accu-
racy of the classification fabric defects. A series of results demonstrates its effectiveness on
the detection of defects of various shapes, sizes and locations.

Extensive experiments were conducted to validate the robustness of the proposed method
compared with other segmentation approaches, such as supervised segmentation method

Table 7 Performance statistics of the average training CPU time for the test examples. (Unit of time: s)

SVM-OAO SVM-OAA ELM-OAO Ours

Training time 13.9604 120.1606 5.8601 3.7309
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[30], dictionary learning framework [58], visual mechanism of wavelet domain [15] and
dimensional empirical mode decomposition approach [38]) in Table 5. The average accu-
racy of our unsupervised method is 92.6%, which is approximately 12.45% better than
the supervised approach. A statistical evaluation of the classification results were tested
for different types of fabric defect images using geometric features, texture features, and
our method. We also evaluated the accuracy of our method by using three measurements
including Roughness(R), Contrast(C) and Orientation(O) to show that the features are
orientation-invariant for image patch.

Distinct from several other relevant methods [5], [30], and [53] for fabric defect image
classification, our method focuses on improving the quality of fabric production and guaran-
teeing the completeness of clothing fabric. Furthermore, the classification comparisons with
other approaches such as ANN [3], SVM [14], Fuzzy [34], KNN [51], and RBF [53], and
the average training CPU time of our ELM classification and OAA decomposition method
is 3.7309(s) with high efficiency. And the classification accuracy of our method is 91.8%,
which is better than the other methods.

Limitations Our system has a number of limitations, which point out the direction of future
study. Firstly, our method is only able to detect and classify the fundamental common woven
fabrics and is not suitable for all types of woven fabric defects. Secondly, we just consider
TILDA database and limited dataset of training fabric defect images for segmentation, fea-
ture extraction and classification. Additionally, the approach cannot be considered to detect
and classify for all types of fabric defects.

Future Works We hope that the proposed method for fabric defect image classification
based on unsupervised segmentation and ELM encourages further research in the future
work. We would like to extend our fabric defect classification to more fabrics and address
the limitations in the current method as described above. More investigations and measure-
ments are required, in particular for large set of training images to arrive all types of fabric
defects fully automatically. Trying to address the types and textures of fabric defects is our
key points. We will focus on classification using deep learning and adopting efficient clas-
sifiers. Furthermore, applying weakly supervised learning method for segmentation will be
our interesting direction in the future. We are also interested in extending our segmentation
and classification method to more applications.
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