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Abstract
Visual cryptographic (VC) schemes have been widely used in secure multimedia systems
for data transmission and data storage. It divides a secret image into n random-seemingly
share images printed on the transparencies. Superimposing the designed shares will display
the recovered secret image which can be recognized by human visual system. It is very
convenient to decode the secret since it requires no cryptographic knowledge and computa-
tion. However, there is a high chance for dishonest shareholders to present faked shares in
the secret reconstruction phase, which would result in a huge damage to the honest share-
holders. In this article, a secure approach to verify the cheating shares has been proposed to
achieve fair reconstruction of the image secret. It is designed to share a verification image
among the original shares of the XOR based VC scheme. It only increases pixel expansion
by one to achieve the verification function. Cheating detection ability is attained by pair-
wise superimposing the shares so that any cheating behavior can be detected by the honest
participant. The secret image is recovered and its recovered contrast becomes m

m+1 times of
the original contrast where m denotes the pixel expansion of the original scheme. The veri-
fication image is probabilistically recovered and its recovered contrast is 1

2(m+1) . Compared
with traditional verifiable (k, n)-VC schemes against cheating, it overcomes the drawbacks
such as requiring additional shares, additional large pixel expansion, or lower contrast. The
experimental results show that the visual quality of the recovered secret image is as good
as expected. The security analysis and comparative results based on various aspects of VC
schemes demonstrate the better efficiency of the proposed approach over existing schemes.
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1 Introduction

The widespread use of the network has brought explosive growth of multimedia contents.
Cloud-based media hosting facilitates and accelerates the development of multimedia con-
tents. However, multimedia faces various potential attacks and is vulnerable when it takes
advantages of high end computational resources, storage capacity, accessibility from the
network and cloud media hosting. Encrypting the multimedia content before being trans-
mitted over the network or hosting on the cloud is obviously a good solution. VC provides
a good encoding strategy for the multimedia content. VC is initially designed to manage
important keys in order to ensure a group cooperation. Hereafter, it shows powerful ability
in image encryption without computational overhead in decryption because it decodes the
encrypted image only by human visual system. In this paper, an efficient XOR-based verifi-
able visual cryptographic scheme is proposed to solve the security problem for multimedia
content to be transmitted over the network and to be stored in public cloud.

The human visual system was firstly suggested to be used for security purposes by Arazi
et al. [2]. The basic principle and detailed construction were first studied by Noar et al.
[19], named as Visual Cryptography (VC). A (k, n) VC scheme divides a secret image into
n random-seemingly share images printed on the transparencies among a set of n share-
holders. At least k shares will be superimposed to reveal the secret image, and fewer than k

shares cannot know any information about the secret. It is shown that this system is equiva-
lent to a One Time Pad encryption scheme based on the boolean OR function and therefore
unconditionally secure [18, 19]. The stacking-to-see property requires neither knowledge
of cryptography nor complex computation, which makes visual cryptography attractive in
steganography [32] and steganalysis [15, 17, 33], visual authentication and identification in
an electric payments [14, 16, 18] and secure two-party computation [7] for distributed net-
work communication. VC scheme is not only an encryption method for image in insecure
network communication [18, 19], but also an key management in distributed cryptography
used in social network [11].

VC is designed to establish a fair cooperation relation in a group of nmutually suspicious
participants with conflicting interests. However, some malicious participants may deliber-
ately cheat other honest participants by providing faked shares. Then the cheaters will obtain
the authentic secret image but the honest participants will only obtain the forged image. It
will result in unpredictable damage to the honest participants. The authentication and iden-
tification in VC schemes were firstly introduced in [18] to resist cheating behavior. Horng
et al. first analyzed the case of collusive cheating among the participants and proposed two
methods to resist cheating in visual cryptography [8]. The first one is realized by using an
additional verification share for each participant; and the second one makes use of the basis
matrices of (2, n + l)−VCS (l ≥ 1) for (2, n)−VCS to resist n − 1 participants’ collu-
sion. The two constructions require additional shares or increase the share size. De prisco
and De Santis considered the malicious collusion case in which n − 1 participants become
cheaters [20]. They proposed a method which adds 2n + 1 columns to the basis matrices of
(2, n)−VC scheme to prevent the cheaters from the accurate speculation for the only hon-
est participant’s share by using their n−1 shares. It significantly increases the share size by
exponential times. Tsai et al. proposed to encrypt homogeneous secret images for the aid of
cheating prevention, which is equivalent to repeating n(n−1)

2 times of (2, 2)−VC schemes
in distinct regions on the shares [26]. Its large pixel expansion reduces the efficiency of
this scheme. Afterwards, Hu and Tzeng [9] first proposed two attack models and then pro-
posed a (�,m + 2)−CPVC scheme, which needs an additional verification share with pixel
expansion m + 2. The additional shares make the scheme more complex.
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An almost perfect recovery of secret image was shown in [3], but it is only suitable to
(2, 2) scheme and requires complex decoding computation for the recovery of the secret
image. Liu et al. [13] and Chen et al. [4] pointed that the (�,m + 2)−CPVC scheme in
[9] is not cheating immune. Liu et al. proposed a new authentication method by using t

additional share matrices for some randomly chosen black (resp. white) secret pixels [13].
However, it is not practical to recognize a single pixel in a VC scheme since a pixel takes
very small space in the recovered image. Lin et al. proposed to use an authentication pat-
tern stamping process to encode the n base-shares to get n verifiable shares [12] but it will
seriously degrade the visual quality of recovered secret images by 1

2k times. Ren et al. pro-
posed to use Latin square to choose authentication regions [21] but an additional share for
each participant is needed to check other shares by counting the number of solid black
regions on the stacked results. The verification process is troublesome for human visual
system to see confused square and each participant needs to take an additional verification
share.

The previous methods face several disadvantages: 1) unacceptable large pixel expansion
[8, 20, 26], 2) extra verification shares with the same size as the original shares [8, 9, 21],
3) complex encoding computation [21] or a special threshold with k = 2 [5, 8, 20], and 4)
lower visual quality for the secret image caused by boolean OR operation [8, 9, 20, 21, 26].
It is desirable to carefully design an VC scheme to overcome the above problem existing in
the traditional VC schemes against cheating.

VC scheme has poor visual quality for a reconstructed secret image. The operation built
beneath the stacking results is the boolean OR operation. Many conventional VC schemes
are based on OR operation, which are referred to as OR-based VC (OVC) scheme. OVC
schemes suffer from huge pixel expansion and lower contrast of the reconstructed secret
images. Integral linear programming [11, 24], probabilistic method [6, 30] and linear alge-
braic techniques [1] have been proposed to optimize the pixel expansion. To further enhance
the visual quality, XOR-based VC (XVC) schemes were proposed [23, 27, 28] to improve
contrast. The optimal constructions of XVC scheme with threshold access structure or gen-
eral access structure were shown in [22, 23]. XVC schemes were proved to have much
higher contrast than OVC schemes by 2k−1 times if the shares are encoded using the same
basis matrices of OVC scheme [31].

From the above analysis, we propose a new scheme that addresses the aforementioned
challenges existing in the state-of-the-art schemes by using XOR operation. In order to pre-
serve the visual quality of the secret image, we using a special probabilistic (2, n)-XVC
scheme to encode the verification image which uses only one pixel [28]. Each verifica-
tion pixel encoding is mixed among the corresponding pixel encoding of the secret image.
Cheating detection ability is attained by pairwise superimposing the shares so that any
participant can detect the cheaters. We theoretically prove that the proposed scheme is suit-
able to authenticate the shares’ genuineness. The requirement for the verification image
is illustrated by a formula. The proposed verifiable (k, n)-XVC ((k, n)-VXVC) scheme
can be used on any XVC scheme, including those with general access structure. The
secret image is primarily recovered and its recovered contrast becomes m

m+1 times of its
original contrast if the pixel expansion of the original scheme is assumed as m. The veri-
fication image is probabilistically recovered and its recovered contrast is 1

2(m+1) . Detailed
construction has been presented for the generation of basis matrices. Compared with tra-
ditional (k, n) VC schemes, it overcomes the drawbacks of previous verification methods
such as requiring additional shares, lower visual quality and special threshold constraint.
It ensures the secret image being securely transmitted and prevents the collusion attack
from the malicious participants. The visual quality of the recovered secret image is quite
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good as evaluated. The security analysis and comparative results based on various aspects
of VC schemes demonstrate the higher efficiency of the proposed approach over existing
schemes.

The rest of this paper is organized as follows. Section 2 provides the basic concepts and
detailed scheme of visual cryptography. Section 3 gives the scheme construction and related
properties analysis. Section 4 demonstrates the construction procedure with an detailed
example and presents the experiment results to show the correctness and the effectiveness
of the XVC scheme. Comparison with other VC schemes against cheating is also presented.
Conclusions are drawn in Section 5.

2 Preliminaries

This section briefly reviews the background of VC scheme. The definition of (k, n)-XVC
scheme is formally presented and a traditional (2, 3)-XVC scheme is presented to show its
construction process in Section 2.1. The probabilistic (2, n)−XVC scheme is presented in
Section 2.2 [28] and the recognition area in the recovered image is discussed in the same
section.

2.1 (k , n)−XVC scheme

Visual cryptography scheme is the visual version of secret sharing scheme. (k, n)−XVC
scheme is proved to have advanced properties, such as better contrast and lower pixel
expansion than (k, n)−OVC scheme [31]. Decryption of the secret from the shares in a
(k, n)−XVC scheme can be done by a small, cheap and light-weight computational devices
which can be flexibly connected to network or open cloud. Based on the above advan-
tages, (k, n)−XVC schemes are widely adopted to improve the (k, n)−OVC scheme. Many
sophisticated approaches were presented to decrease the construction complexity [22, 23,
25, 28, 29]. The notations and its formal definition are presented as follows.

Consider threshold access structure on a set P = {1, 2, . . . , n} of n participants. Let 2P

denote the set of all subsets of P . A (k, n)−VC scheme has qualified set family �Qual =
{U ⊆ P : |U | ≥ k} and forbidden set family �Forb = {U ⊆ P : |U | < k}. Members of
�Qual and �Forb are referred to as qualified sets and forbidden sets. The pair (�Qual, �Forb)
is called the access structure of a (k, n)−VC scheme. Apparently, �Qual ⊆ 2P , �Forb ⊆
2P , and �Qual ∩ �Forb = ∅.

Let H(v) denote the Hamming weights (the number of 1s in the vector v) of vector v.
Let ⊗ denote the Boolean XOR operation. ⊗(Bi |U) denotes the Boolean XOR-ing of the
row j , j ∈ U of Bi , i = 0, 1. Let |U | denote the cardinality of participant set U . The formal
definition of the (k, n)−XVC scheme was presented by Yang et al. in a simplified form as
follows [31].

Definition 2.1 [31] With a set of two n×m Boolean basis matrices B0 and B1, the result of
a column permutation of Bi defines the color of the m subpixels in each one of the n shares
when sharing a pixel i ∈ {0, 1}. Such basis matrices constitute a (k, n)−XVC scheme if the
following conditions are met:

1) Contrast Condition: H(⊗(B1|U)) ≥ h and H(⊗(B0|U)) ≤ l for |U | = k, where
0 ≤ l < h ≤ m.

2) Security Condition: H(⊗(B1|U)) = H(⊗(B0|U)) for |U | ≤ k − 1.
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The condition 1) assures that secret image can be visually revealed due to their dif-
ferent Hamming weights of black and white colors. The contrast, α = (H(⊗(B1|U)) −
H(⊗(B0|U)))/m, denotes the relative difference of the grey levels of the two pixel types. It
provides a measurement for the quality of the reconstructed secret image. The condition 2)
shows the perfect secrecy of the (k, n)−XVC scheme. The parameter m is called the pixel
expansion, i.e., the number of pixels, on the share image used to encode one pixel of the
secret image. We give an example to illustrate the above definition.

Example 1 Basis matrices of a (2, 3)−XVC scheme

B0 =
⎡
⎣
0 0 1
0 0 1
0 0 1

⎤
⎦ and B1 =

⎡
⎣
0 0 1
0 1 0
1 0 0

⎤
⎦ .

The participant set is P = {1, 2, 3}. The pixel expansion m is 3. B0 and B1 satisfy security
conditions

H(⊗(B1|U)) = H(⊗(B0|U)) for |U | = 1,

and contrast conditions

H(⊗(B0|U)) = 0 = l, H(⊗(B1|U)) = 2 = h, for |U | = 2.

The contrast is

α = H(⊗(B1|U)) − H(⊗(B1|U))

m
= h − l

3
= 2

3
, for |U | = 2.

To share a secret pixel i ∈ {0, 1}, the basis matrix Bi is chosen and randomly permutated
in columns. The resulting matrix is used to encode the secret pixel i and its n rows are
distributed to the n shares. Therefore, the basis matrices are fundamental to constructing a
(k, n)−XVC scheme. The established efficient constructions for a (k, n)−XVC scheme are
based on integer linear programming [23] or linear algebra [22]. Instead of discussing its
construction technique, we focus on its function of cheating prevention.

2.2 Probabilistic (2, n)−XVC scheme

To solve the pixel expansion problem of VC schemes, Ito et al. [10], Yang [30] and Cimato
[6] proposed probabilistic VCmodels. The frequency of black pixels in a white (resp., black)
area is used to display the contrast of the recovered image. They define p0 (resp., p1) as the
appearance probability of black pixel in a white (resp., black) area of the recovered image.
For a fixed threshold probability 0 < pT H ≤ 1 and relative contrast α > 0, if p1 ≥ pT H

and p0 ≤ pT H − α, the frequency of black pixels in a black area of the recovered image
should be higher than that in a white area.

Wang et al. [28] proposed a (2, n)−XVC scheme with no pixel expansion. Its contrast
α is 1

2 when two shares are used to recover the image. This scheme is much more efficient
than popular schemes in [23, 27] but it is just considered as a normal (2, n)−XVC scheme.
Its extensive property and more applications are not further explored. Here we first show its
construction in the pseudo-code style in terms of its input, output, the construction proce-
dure and the revealing procedure from [28]. Then we analyze its characteristics and show its
possibility used as verification for (k, n)−XVC scheme. The detailed construction is shown
as the following Construction 1.
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Construction 1 A probabilistic (2, n)−XVC scheme
Input: an integer n with n ≥ 2, and the secret pixel p being 0 or 1.
Output: Basis matrices V0 and V1.
Construction: 1. Generate n + 1 random pixels b1, . . ., bn+1.

2. Compute n intermediate pixels c1, . . ., cn, with ci = bi&p for i = 1, . . ., n.
3. Compute n share pixels v1, . . ., vn, with vi = bn+1 ⊗ ci for i = 1, . . ., n.
4. We have Vp = [v1, . . . , vn]′, ′ denotes the transposition of matrix.

In the above probabilistic (2, n)−XVC ((2, n)−PXVC) scheme, boolean operations
XOR (⊗) and AND (&) are used to construct the shares. It can be verified that p0 = 0,
p1 = 1

2 , α = 1
2 and m = 1 when two share images are XOR-ed to recover the secret image.

We find that α = 1
2 when even shares are XOR-ed to recover the secret, while α = 0 when

odd shares are XOR-ed to recover the secret. We show it in Theorem 2.1.

Theorem 2.1 The (2, n)−PXVC scheme shown in Construction 1 satisfies that

1. α = 1
2 when even shares are XOR-ed to recover the secret;

2. α = 0 when odd shares are XOR-ed to recover the secret.

Proof With the above construction procedure, for a “0” pixel in the secret image, we have
ci = bi&0 = 0 and vi = bn+1 ⊗ ci = bn+1. Thus,

v′ = vi1 ⊗ vi2 ⊗ · · · ⊗ vi|U | =
|U |︷ ︸︸ ︷

bn+1 ⊗ bn+1 ⊗ · · · ⊗ bn+1

=
{
0, |U | equals to an even number;
bn+1, |U | equals to an odd number.

It is obtained that

p0 =
{
0, |U | equals to an even number;
1
2 , |U | equals to an odd number.

For a “1” pixel in the secret image, we have ci = bi&1 = bi and vi = bn+1 ⊗ ci =
bn+1 ⊗ bi . Thus

v′ = vi1 ⊗ vi2 ⊗ · · · ⊗ vi|U | = bn+1 ⊗ bi1 ⊗ bn+1 ⊗ bi2 ⊗ · · · ⊗ bn+1 ⊗ bi|U |

=
{

bi1 ⊗ bi2 ⊗ · · · ⊗ bi|U | , |U | equals to an even number;
bn+1 ⊗ bi1 ⊗ bi2 ⊗ · · · ⊗ bi|U | , |U | equals to an odd number.

Since bn+1, bi1 , bi2 , · · · , bi|U | are random pixels being 0 or 1, bi1 ⊗ bi2 ⊗ · · · ⊗ bi|U | is

random being 0 or 1 with same probability 1
2 . The same conclusion is obtained for bn+1 ⊗

bi1 ⊗ bi2 ⊗ · · · ⊗ bi|U | . Therefore, p1 = 1
2 no matter |U | takes odd number or even number.

Since α = p1 − p0, the conclusions are obvious. The theorem is proved.

Therefore, we will use the (2, n)−PXVC scheme to detect and authenticate the cheaters
by pairwise XOR-ed the shares. Because the verification image will appear when even
number of share images are XOR-ed and disappear when odd number of share images are
XOR-ed. It is suitable to combine a (k, n)−XVC scheme with odd k to attain the verifica-
tion function. Later we will prove that it is also suitable to a (k, n)−XVC scheme with even
k (k 
= 2). The special case for k = 2 is processed independently.
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As pointed out in [30], in a probabilistic VC scheme, small areas, not single pixels, will
be reconstructed. It is important to know howmany pixels are needed to recognize black and
white area correctly in the verification image. Let N be the total number of pixels in an area.
By using Empirical Rule, an area can be correctly recognized with about 99% probability if
N satisfies the following condition:

N > 9

(√
p0(1 − p0) + √

p1(1 − p1)

p1 − p0 − d

)2

, (2.1)

where d is a “separation factor” and 0 ≤ d < p1 − p0. In the (2, n)−PXVC scheme, it is
detailed as

N > 9

(√
0.5 · 0.5
0.5 − d

)2

= 9

(
0.5

0.5 − d

)2

.

When the (2, n)−PXVC scheme is used to identify the verification images in a verifi-
able scheme, the p0 and p1 are given new values. The recognized area N is needed to be
recomputed. We will demonstrate it in Section 3.2.

3 Construction of the verifiable (k,n) XOR-based visual cryptographic
scheme

The section proposes a new verifiable (k, n)−XVC ((k, n)−VXVC) scheme by combing
any established (k, n)−XVC scheme and the (2, n)−PXVC scheme. The (k, n)−VXVC
scheme encrypts the secret image and the verification image in one noise-like share. In the
reconstruction phase, the verification image will be recognized by XOR-ing any two shares
with contrast 1

2(m+1) . The secret image will be recovered by XOR-ing any k shares with
contrast m

m+1α. m and α are pixel expansion and contrast of the established (k, n)−XVC
scheme. Before the participants prepare to recover the secret image, any cheating behavior
can be detected and authenticated by pairwise XOR-ing their shares. Section 3.1 gives the
formal definition of the (k, n)−VXVC scheme and describes the share construction pro-
cess. The performance analysis including contrast analysis, share analysis, and theoretical
proof as well as the requirement for the verification images is shown in the remaindering
subsection.

3.1 Construction of the shares

Suppose the secret image S and a verifiable image V have the same size w × h. The
(k, n)−VXVC scheme is actually a two secret sharing scheme. We now give a formal
definition of the (k, n)−VXVC scheme with P as follows.

Definition 3.1 With a set of 4 n × m basis matrices B0,0, B0,1, B1,0 and B1,1, the result of
a column permutation of Bp,q defines the color of the m sub-pixels in each of the n shares
when sharing two pixels p ∈ S and q ∈ V , p, q ∈ {0, 1}. Such basis matrices constitute the
(k, n)−VXVC (k ≥ 3) scheme if the following conditions are met:

1) Contrast condition H(⊗(B1,q |U)) ≥ hs and H(⊗(B0,q ′ |U)) ≤ ls for |U | = k,
q ′ ∈ {0, 1}, where hs > ls ;H(⊗(Bp,1|U)) ≥ hv andH(⊗(Bp′,0|U)) ≤ lv for |U | = 2,
where hv > lv , p′ ∈ {0, 1},;
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2) Security condition H(⊗(B1,q |U)) = H(⊗(B0,q ′ |U)) for |U | ≤ k − 1;
H(⊗(Bp,1|U)) = H(⊗(Bp′,0|U)) for |U | = 1;

Then we present our new construction. Our scheme is described in a pseudo-code style
below in terms of its input, output, the construction procedure (how to compute the share
images) and the revealing procedure (how to reconstruct the secret images from the shad-
ows). Let B0 and B1 be the basis matrices for a (k, n)−XVC scheme with pixel expansion
m and contrast α. Next we will give the construction of (k, n)−VXVC scheme.

Construction 2 A new (k, n)−VXVC scheme with odd k (k ≥ 3)
Input: a secret image S and a verifiable image V . The basis matrices B0 and B1 for a

(k, n)−XVC scheme.
Output: The share images S1, . . ., Sn.
Construction: 1. Take one pixel S(x, y) and V (x, y) from the secret image S and the

verifiable image V , respectively, 1 ≤ x ≤ w, 1 ≤ y ≤ h.
2. Generate a column vector VV (x,y) for V (x, y) by calling Construction 1.
3. Generate the basis matrices BS(x,y),V (x,y) = [BS(x,y)||VV (x,y)], here || denotes the

matrix concatenation.
4. Randomly permutate BS(x,y),V (x,y) among its columns and distribute its ith row to

Si , i ∈ {1, 2, . . . , n}.
Revealing: 1. The verifiable image V can be revealed when two shares are XOR-ed.

2. The secret image S can be revealed when k shares are XOR-ed.

3.2 Contrast analysis

The (k, n)−VXVC scheme is a multi-secret sharing scheme. It encrypts the secret image
and the verification image from two different schemes. Its basic properties in terms of con-
trast, pixel expansion, and basis matrices have been changed and are different from its two
component schemes. In the following we give the related analysis.

Apparently, the pixel expansion of the proposed (k, n)−VXVC scheme is m + 1. It
is a combination of a probabilistic XVC scheme and a deterministic XVC scheme. Their
contrasts are defined in a different manner, that is, α = (h−l)/m for a deterministic scheme
[31] and α = p1 − p0 for a probabilistic XVC scheme [28, 30]. In order to express the
contrast in the proposed (k, n)−VXVC scheme in a unified form, we define the contrast as
the following form

α = h̄ − l̄

m
, (3.1)

where h̄ and l̄ are the average appearance times of black pixel for the recovered black and
white secret pixel, respectively.

It can be deduced that α = h̄−l̄
m

= p1 − p0 for the probabilistic XVC scheme since

p1 = h̄
m

and p0 = l̄
m

according to their definition in [30]. The new definition of contrast
in (3.1) is coincident with contrast definition of probabilistic XVC scheme. It is obviously
consistent with contrast definition of deterministic XVC scheme because h̄ = h and l̄ = l.

Due to the definition of h̄ and l̄, we need to modify the contrast condition and security
condition in Definition 3.1 to suit our Construction 2 as follows:

1′) Contrast conditionH(⊗(B1,q |U)) ≥ h̄s andH(⊗(B0,q ′ |U)) ≤ l̄s for |U | = k, where
h̄s > l̄s , q ′ ∈ {0, 1}; H(⊗(Bp,1|U)) ≥ h̄v and H(⊗(Bp′,0|U)) ≤ l̄v for |U | = 2,
where h̄v > l̄v , p′ ∈ {0, 1};
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2′) Security condition H(⊗(B1,q |U)) = H(⊗(B0,q ′ |U)) for |U | ≤ k − 1;
H(⊗(Bp,1|U)) = H(⊗(Bp′,0|U)) for |U | = 1;

Assume a (k, n)−XVC scheme used in Construction 2 has h and l as the black pixel
numbers of the recovered black and white pixel. Let its pixel expansion be m and contrast
be α. Then we have h̄s = h and l̄s = l. We will prove it in the following contrast proof and
security proof.

According to the contrast formula (3.1), now we give the contrast representations of the
recovered images in the proposed (k, n)−VXVC scheme as follows

αs = h̄s − l̄s

m′ (3.2)

αv = h̄v − l̄v

m′ (3.3)

where m′ = m + 1, denoting the total pixel expansion of the proposed (k, n)−VXVC

scheme. The contrast of the recovered secret image αs is m
m+1α, since αs = h̄s−l̄s

m′ = h−l
m+1 =

h−l
m

m
m+1 = m

m+1α. The contrast of the recovered verification image αv is 1
2(m+1) . Gener-

ally speaking, the (k, n)−XVC scheme is deterministic scheme and has contrast α no less
than 1

m
. Therefore, we always have αs ≥ 2αv . The secret image is primarily recovered,

which keeps almost the same contrast with its original (k, n)−XVC scheme. The verifica-
tion image is recovered with no more than half of the contrast of the secret image. This
conforms to the aim of secret sharing to protect the secret primarily.

3.3 Share analysis

In Construction 2, the basis matrices V0 and V1 for the verification image are V0 =
[0, 0, 0, 0, 0]′ or V0 = [1, 1, 1, 1, 1]′, as well as V1 = [b1, b2, b3, b4, b5]′ or V1 =
[1 − b1, 1 − b2, 1 − b3, 1 − b4, 1 − b5]′. Thus, each execution of Construction 2 yields
completely different and unpredictable basis matrices Bp,q , p, q ∈ {0, 1}. In fact, there are
2n(m + 1)! possible Bp,1 and 2(m + 1)! possible Bp,0 when all possible column permu-
tations and combinations of Bp and Vq are considered. This property ensures completely
different, unpredictable and non-repetitive shares, which results in high security. Especially,
when n−1 cheaters are colluded to cheat the only honest participant, it is still hard to predict
the black verification pixels. This scheme partially solves the malicious collusion problem
addressed in [8, 20].

3.4 Theoretical analysis of the (k , n)−VXVC schemewith odd k (k ≥ 3)

Now we present the contrast and security proofs for the (k, n)−VXVC scheme.

Theorem 3.1 The proposed (k, n)−VXVC scheme in Construction 2 with odd k, 3 ≤ k ≤ n,
is a secure (k, n)−VXVC scheme.

Proof We verify its contrast condition and security condition.
To show contrast, Let U = {r1, r2, . . . , rt } ⊂ P . According to Construction 2, when a

secret pixel p and a verification pixel q with the same position are chosen, the basis matrix
Bp,q is determined without considering the random column permutation, which equals to
[Bp||Vq ]. Let Bp|U be the t × m matrix with Bp’s rows in U . Bp and Vq are the basis



8216 Multimedia Tools and Applications (2019) 78:8207–8223

matrices of (k, n)−XVC scheme and (2, n)−PXVC scheme defined in Section 2. When
|U | = k, Bp satisfies the following relation,

H(⊗(B0|U)) ≤ l, H(⊗(B1|U)) ≥ h

with l < h. When |U | = t , Bp satisfies the following relation,

H(⊗(V0|U)) = l′, H(⊗(V1|U)) = h′.

Since l′ and h′ are both 1 with 1
2 probability for an odd t shown in Theorem 2.1, l′ and h′

can be expressed using average Hamming weight l̄′ and h̄′ for a unified form. They both
have value 1

2 .
Therefore we have that, when |U | = k,

H(⊗(B0,q |U)) = H(⊗(B0|U)) + H(⊗(Vq |U)) ≤ l + 1

2
= l̄s ,

and

H(⊗(B1,q ′ |U)) = H(⊗(B1|U)) + H(⊗(Vq ′ |U)) ≥ h + 1

2
= h̄s .

Since l < h, we have l̄s < h̄s . The contrast condition for the secret image is attained.
When |U | = 2, we have

H(⊗(Bp,0|U)) = H(⊗(Bp|U)) + H(⊗(V0|U)) ≤ H(⊗(Bp|U)) + l′ = l̄v,

and

H(⊗(Bp′,1|U)) = H(⊗(Bp′ |U)) + H(⊗(V0|U)) ≥ H(⊗(Bp′ |U)) + h′ = h̄v .

We have H(⊗(Bp|U)) = H(⊗(B ′
p|U)) for |U | = 2 < k from Definition 2.1. We have

l′ = 0 and h′ = h̄′ = 1
2 for |U | = 2 from Theorem 2.1. l̄v < h̄v is obtained. The contrast

condition for verification image is obtained.
To show security: We will prove the fact that H(⊗(B1,q |U)) = H(⊗(B0,q ′ |U)) for odd

t with 2 < t ≤ k − 1. It is obvious from

H(⊗(B0,q |U)) = H(⊗(B0|U)) + H(⊗(Vq |U)),

H(⊗(B1,q ′ |U)) = H(⊗(B1|U)) + H(⊗(Vq ′ |U)),

H(⊗(B0|U)) = H(⊗(B1|U)) for |U | ≤ k − 1 according to Definition 2.1, and
H(⊗(Vq |U)) = H(⊗(Vq ′ |U)) for odd |U | according to Theorem 2.1.

For an even |U | with 2 < |U | ≤ k − 1, H(⊗(B0|U)) = H(⊗(B1|U)) still holds, but
H(⊗(V0|U)) = 0 and H(⊗(V1|U)) = 1

2 . Since verification image is independent of the
secret image, the pixels q and q ′ are independent of the secret pixel. Thus, we have

H(⊗(Vq |U)) = H(⊗(Vq ′ |U)) = 1

2
H(⊗(V0|U)) + 1

2
H(⊗(V1|U)) = 1/4,

H(⊗(B1,q |U)) = H(⊗(B0,q ′ |U)) is obtained for even |U |. The security of secret
image is obtained. H(⊗(Bp,0|U)) = H(⊗(Bp′,1|U)) is obvious since H(⊗(V0|U)) =
H(⊗(V1|U)) for |U | = 1 is derived from 2.1. The security of verification image is
achieved.

3.5 Verification and cheater authentication

Any honest participant can verify the possible cheaters by XOR-ing his share with other’s
shares. If the correct verification image appears, these shares can be seen correct. Other-
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wise the cheating share is authenticated. In fact, the proposed scheme has another property
as H(⊗(Bp,0|U)) < H(⊗(Bp′,1|U)) for even |U | < k. The verification image will show
when even participants XOR their shares. This can be used to detect the cheating behaviors
by using the participant set with biggest even cardinality less than k before recovering the
secret. It will have less verification overhead than pairwise XOR-ing verifications. If the cor-
rect verification image appears, these shares can be seen correct. The pairwise verifications
can be omitted. If the verification image is random looking, there must be cheating behav-
ior. The cheater identification can be done within such participant set by using pairwise
verification.

3.6 (k , n)−VXVC schemewith even k (k ≥ 2)

In the Construction 2, we present the (k, n)−VXVC scheme with an odd k. When the
Construction 2 is used for the (k, n)−XVC scheme with even k ≥ 4, the secret image
and verification image will appear simultaneously when k shares are XOR-ed. We have
inferred αs ≥ 2αv . The recovered secret image will be clearly shown with heavy grey-scale
and the verification image will be shown with light grey-scale. The secret image may be
affected by the verification image. We can use image processing software to erase the ver-
ification image from the recovered image. (k, n)−VXVC scheme with even k ≥ 4 can be
solved directly by using integer linear programming not via the established (k, n)−XVC
scheme [11].

For k = 2, the Construction 2 cannot be used. The idea of [12] can be used to add verifi-
cation ability to the (2, n)−XVC scheme by using the (2, 2)−XVC scheme. We divide the
secret image into n − 1 equal-sized, non-overlapping partitions, and numbered from parti-
tion 1 to partition n − 1 sequentially from top to bottom. The secret image can be normally
encoded by the (2, n)−XVC scheme with pixel expansion m. The resulting shares M1, M2,
. . ., Mn contain similar n − 1 divisions as the secret image. The partitions of n shares form
n matches such that share Mi matches its j −1th division to the ith division of Mj . The size
of the verification image is equal to a division of the secret image. The two matched divi-
sions are used to encode the corresponding verification image by the (2, 2)−XVC scheme.
It produces a (2, n)−VXVC scheme with the pixel expansion m+1. The verification image
is encrypted and recovered deterministically with contrast 1

m+1 . The secret image has con-
trast m

m+1α where α is the contrast of the (2, n)−XVC scheme. The n verification images
can be same or different.

3.7 Recognition of small areas in the verification image for the (k , n)−VXVC scheme

Now we present the requirement for the suitable verification image. Since the verification
image is encoded by the (2, n)−PXVC, the verification image is probabilistically recovered.
Now we present the least recognized area size.

Assume the established (k, n)−XVC scheme have pixel expansion m. In the proposed
(k, n)−VXVC scheme, the recovered verification image has p0(≥ 0) and p1(= p0 +

1
2(m+1) ) as the recovered black pixel ratios for their original white and black pixels. The

contrast αv equals to 1
2(m+1) for the verification image which decreases as m increases.

By using (2.1), we can derive the least recognizable area size N satisfying the following
condition,

N > 9

(√
p0(1 − p0) + √

p1(1 − p1)

1
2(m+1) − d

)2

. (3.4)
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Since p0 < p1 ≤ 1,
(√

p0(1 − p0) + √
p1(1 − p1)

)2 is upper bounded by 1. Thus, we can
present a tighter estimation for N as

N > 9/

(
1

2(m + 1)
− d

)2

, (3.5)

where d is a separation factor and satisfies 0 ≤ d < 1
2(m+1) . Because the verification image

has same size with the secret image, we can always choose the verification image with a
large N . Such an N can always be obtained for m that is not so big. Thus, if we select the
secret image more carefully and satisfy the lower bound ofN , we can get the clear recovered
verification image. The verification image with a large scale of solid pattern is considered in
[12]. This idea can be also used in our scheme. Then the verification images can be shown
conspicuously and can be easily detected by the human eye.

4 Experiment results and comparison

4.1 Experimental results

Here we present one experiment to illustrate the construction procedure of our proposed
(k, n)−VXVC scheme in Construction 2.

Example 2 Constructing a (3, 5)−VXVC scheme from a (3, 5)−XVC scheme shown in
Example 2 of [31].

This experiment is to show (3, 5)−VXVC scheme and its construction procedure. The
basis matrices for a (3, 5)−XVC scheme are taken from the Example 2 in [31] being

B0 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1
0 0 1 0 0 1 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎠

, B1 =

⎛
⎜⎜⎜⎜⎝

0 1 1 1 1 0 0 0
1 0 1 1 1 0 0 0
1 1 0 1 1 0 0 0
1 1 1 0 1 0 0 0
1 1 1 1 0 0 0 0

⎞
⎟⎟⎟⎟⎠
.

The basis matrices for the verification image are V0 = [0, 0, 0, 0, 0]′ or V0 = [1, 1, 1, 1, 1]′,
as well as V1 = [b1, b2, b3, b4, b5]′ or V1 = [1 − b1, 1 − b2, 1 − b3, 1 − b4, 1 − b5]′. The
resulting pixel expansion m′ is 9. We can get the four basis matrices Bp,q of (3, 5)−VXVC
scheme, p, q ∈ {0, 1}. The contrasts for the secret image are αs = 4

9 when 3 shares are
XOR-ed. The contrast for the verification image is αv = 1

18 when even number of shares
are XOR-ed. The verification image requires N > 9/( 1

18 − d)2 ≥ 542. The secret image
and verification image are given in Fig. 1a and b with size 180×180. The share images
and reconstructed images are shown in Fig. 1c–r. The secret image is revealed when three
shares are XOR-ed. The verification image is revealed when two shares are XOR-ed. The
security and contrast conditions are satisfied. We find that when 5 shares are XOR-ed, the
secret image also appears. This is determined by the properties of the (3, 5)−XVC scheme.
When 4 shares are XOR-ed, the verification image appears but the secret image does not.
A special characteristic of the (3, 5)−VXVC scheme is H(⊗(B1|U)) = H(⊗(B0|U))

for |U | = 4.
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Fig. 1 The share images and reconstructed images for (2,5)-VXVC scheme, a secret image, b verification
image, c share S1, d share S2, e share S3, f share S4, g share S5, h S1 ⊗ S3, i S2 ⊗ S4, k S1 ⊗ S2 ⊗ S3 ⊗ S4, l
S2 ⊗ S3 ⊗ S4 ⊗ S5, m S1 ⊗ S2 ⊗ S3, n S2 ⊗ S3 ⊗ S4, o S3 ⊗ S4 ⊗ S5, p S1 ⊗ S3 ⊗ S5, q S2 ⊗ S4 ⊗ S5, r
S1 ⊗ S2 ⊗ S3 ⊗ S4 ⊗ S5

In our scheme, we emphasize on the recovery of the secret image, not the verification
image. Thus, recovered secret image has high contrast but the recovered verification image
has lower contrast. In fact, we can adjust their visual quality. The (2, n)−PXVC scheme can
be replaced with a deterministic (2, n)−XVC scheme [6]. Then we can do a probabilistic
combination of (k, n)−XVC scheme and (2, n)−XVC scheme to adjust their visual quality.
This scheme can be seen in some previous work [12].

4.2 Comparison with the state-of-the-art approaches

The efficiency of the proposed scheme is compared with other verifiable VC schemes
in terms of pixel expansion, contrast for the secret image, contrast for the verification
image, applicable range of threshold k, operation and additional verification shares shown
in Table 1. Here we assume that the established (k, n)−VC scheme has pixel expansion m

and contrast α.
From Table 1, we can see that scheme I in [8] and schemes in [12, 21] have the same

share size as the original threshold scheme but schemes in [8, 21] require additional verifi-
cation shares. They doubly increase storage complexity of the participants. Scheme in [12]
decreases the contrast exponentially. Schemes in [20, 26] and Scheme II in [8] have large
extra pixel expansion in order to achieve the verification function. Scheme [9] has slight
larger share size than that of the original scheme, but it also requires the additional shares
to authenticate other participants. Our proposed scheme can be used to achieve verifica-
tion function based on either a (k, n)−VC scheme or a (k, n)−XVC scheme. It improves
the contrast almost 2k−1 times, compared with that of the original (k, n)−VC scheme. It
just increases one pixel expansion if it is constructed based on a established (k, n)−XVC
scheme but it can maintain similar contrast of the original scheme.
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Table 1 The performance comparison

Scheme Pixel Contrast Contrast k Operation Additional

expansion (secret image) (verification (share)

image)

Scheme I in [8] m α m k(≥ 2) OR Yes

Scheme II in [8] m · 2(n+l)2

n
m

m+l
α m 2 OR No

Scheme [20] m + n + 1 m
m+n+1α 1

m+n+1 2 OR No

Scheme [26] m · n(n−1)
2

1
2 2 OR No

Scheme [9] m + 2 α·m+1
m+2

1
m+2 k(≥ 2) OR Yes

Scheme [21] m α 1
2 k(≥ 2) OR Yes

Scheme [12] m 1
2α 1

4 k(≥ 2) OR No

our VXCS m + 1 2k−1ṁ
m+1 α 1

2(m+1) k(≥ 2) XOR No

5 Conclusions

In this paper, we present a novel (k, n)−VXVC scheme for an established (k, n)−XVC
scheme without resorting to any complex algorithms. Based on our construction, any VC
scheme or XVC scheme for sharing a single secret can be transformed into a verifiable
secret scheme easily by increasing one pixel expansion. Compared with previous verifiable
VC schemes, the proposed scheme can improve the contrast by m

m+12
k−1 times and almost

keeps the same pixel expansion. The proposed scheme is more optimal in both visual qual-
ity and pixel expansion than previous schemes. The proposed scheme is applicable for an
odd threshold and had lower visual effect for an even threshold. An interesting open prob-
lem is to further improve the construction for even threshold. The VC schemes have both
encryption and key management properties and can recover the secret visually. They are
proposed to be used in steganography and electric wallet. The proposed scheme provides a
secure methodology for multimedia covert communication forensics. It also presents a new
strategy for secure storage of multimedia content on cloud-based hosting and for secure
confidential information transmission over the network.
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