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Abstract
We discuss how the projecting relationship of the relative position between two spheres in space can
be used to calibrate paracatadioptric cameras. The projections of two spheres under a
paracatadioptric camera are classified into three cases: Intersection, tangency, and separation.
Methods for obtaining the principal point are proposed for each case. When the principal point is
known, an analysis of the geometric relationship of the two spheres on the unit viewing sphere
model shows that their tangent lines at the antipodal points are parallel. Based on this geometric
relationship, the vanishing line of the plane containing the projection circle can be determined to
yield the imaged circular points and obtain the remaining intrinsic camera parameters. When the
principal point is unknown, the intersection points of two groups of parallel projection circles of the
two spheres on the unit viewing sphere model combine with their corresponding antipodal points to
form a rectangle; hence, the vanishing point in the orthogonal directions can be determined. Finally,
the intrinsic camera parameters can be obtained by applying the constraints of the vanishing points in
orthogonal directions to the absolute conic. Simulation results and real image data demonstrate the
effectiveness of our methods.

Keywords Machine vision . Calibration . Paracatadioptric camera . Imaged circular points .

Vanishing point

1 Introduction

Any computer vision application, such as robot navigation, surveillance, three-dimensional
measurement, 3D reconstruction, or virtual reality, requires large field-of-view (FOV) images
[12, 18, 33]. Modifying a traditional camera with a specially shaped mirror effectively
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enhances the FOV, and such a camera is called a catadioptric camera. Catadioptric cameras
employ many types of surface shapes such as planar, spherical, conical, and rotational quadric
surfaces [12, 18, 19]. Baker and Nayar [2] classified catadioptric cameras into central and non-
central types, depending on whether there is a fixed single viewpoint.

A central catadioptric camera has a fixed single viewpoint and a large FOV, and an
image captured by such a camera can be easily converted into a perspective image.
Therefore, central catadioptric cameras are widely used in computer vision applications.
A central catadioptric camera uses one of four types of mirror surface shapes: paraboloi-
dal, hyperboloidal, ellipsoidal, or planar. Geyer and Daniilidis [9] proposed a generalized
projection model for a central catadioptric camera, the imaging process of which is
equivalent to a two-step mapping via a unit viewing sphere. The unit sphere model of a
central catadioptric camera provides a mathematical basis for the theoretical study of its
calibration. Camera calibration plays a significant role in computer vision and makes it
possible to extract metric information in the real world from projections on the image
plane [8, 36]. The calibration of a central catadioptric camera is categorized into five
primary types according to the entity used in the calibration:

(a) Calibration based on 2D patterns [7]: These methods use 2D calibration patterns with
control points (e.g., corners, dots, or arbitrary features), and the image points of these
control points are easily extracted.

(b) Calibration based on 3D points [21, 23]: These methods determine the 3D world
coordinates, and the image points of these 3D points are easily extracted.

(c) Self-calibration [13]: These methods directly use the image of a scene and employ
constraints among corresponding points in multiple views to calibrate the camera.

(d) Calibration based on lines [3, 10, 28, 29, 32]: These methods use only an image of lines
in a scene without any metric information.

(e) Calibration based on spheres [5, 29, 30, 32, 35]: These methods use only an image of
spheres in a scene without any metric information.

In this paper, we mainly discuss the calibration of a paracatadioptric camera based on the
projecting relationship of the relative position between two spheres.

Using an image of a sphere to calibrate a catadioptric camera has definitive research value
and practical significance. A sphere is a common geometric object, the most important
advantage of which is a lack of self-occlusion; moreover, from any direction, the closed
contour of a sphere is observed as a circle [31]. Because a sphere has abundant visual
geometric properties, camera calibration methods that employ images of spheres are attracting
considerable attention.

Several authors have introduced methods that employ an image of a sphere for traditional
camera calibration [1, 4, 20, 22, 24–26, 31, 34]. Lu and Payandeh [15] discussed the sensitivity
of traditional camera calibration using images of spheres. Ying and Hu [29] were the first to
propose central catadioptric camera calibration using sphere images. In the above-mentioned
studies, the authors demonstrated that the image of a sphere in space taken with a central
catadioptric camera is conic under a unit sphere projection model. Further, they proved that in
the non-degradation case, the projection of a sphere can provide only two invariants. Theo-
retically, the projections of at least three spheres are required to achieve catadioptric camera
calibration in the non-degenerate case. A calibration method [29] that uses fractional steps to
reduce the complexity of the solution requires the projections of at least four spheres; however,
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this method is nonlinear, its computation is relatively complex, and it obtains only some of the
intrinsic parameters of the paracatadioptric camera.

Ying and Zha [32] were the first to discover the modified image of the absolute conic
(MIAC) and its application to the central catadioptric camera. Furthermore, they discovered that
each sphere image has the geometric property of double contact with the MIAC, and they
proposed a linear calibration method for central catadioptric cameras. Ying and Zha [30] further
studied the geometric and algebraic relationships between the MIAC and sphere images. They
used the double-contact theorem [6] to explain the relationship between the MIAC and sphere
images, and their conclusion holds for the dual form of the sphere images. In addition, they
proposed a linear calibration method. However, in the case of the paracatadioptric camera,
previously proposed theories and calibration methods [30, 32] are degenerate. In order to
overcome this problem, the properties of an antipodal sphere image under a paracatadioptric
camera have been investigated, and an optimum estimation algorithm has been proposed for a
sphere image and its antipodal sphere image. Further, a linear method for calibrating the
paracatadioptric camera has been established using two parallel projection circles on the unit
viewing sphere [5]. A calibrationmethod based on two parallel circles was initially proposed for
a pinhole camera, but the selection of the imaged circular points is complicated [27].

Zhao and Wang [35] were the first to use two spheres overlapping each other within the
image plane for paracatadioptric camera calibration. They used real intersections of the images
and antipodal images of the two spheres to obtain the orthogonal vanishing points and calibrate
the intrinsic camera parameters. However, this calibration method requires at least five views
of the two spheres; moreover, it considers neither imaginary intersections of the images with
antipodal images of the two spheres, nor cases in which the two spheres contact with or
separate from each other within the image plane.

Based on the studies mentioned above [5, 29, 30, 32, 35], this paper mainly discusses how
to use the projecting relationship of the relative position between two spheres to calibrate a
paracatadioptric camera. Through analysis of the projections of the two spheres on the unit
viewing sphere for a paracatadioptric camera, three cases are found by adjusting the position
between them. For each condition, a method for calculating the principal point is proposed.
When the principal point is given, analysis of the geometric relationship between two groups
of parallel projection circles on the unit viewing sphere indicates that the tangent lines of the
circles at the antipodal points are parallel. The vanishing points of the plane containing the
projection circle can be obtained from the relationship that determines the vanishing line
containing the projection circle. Further, the imaged circular points can be obtained by solving
the equations of the vanishing line and sphere image. As a result, the other intrinsic parameters
of the camera can be obtained from their relationship with the imaged circular points. When
the principal point is unknown, the intersection points (including real or virtual points) of two
groups of parallel projection circles of the two spheres on the unit viewing sphere combine
with their corresponding antipodal points to form a rectangle. Thus, the orthogonal vanishing
points can be obtained by the orthogonal directions formed by the rectangle. As a result, the
intrinsic camera parameters can be obtained using the relationship between the orthogonal
vanishing points and the intrinsic camera parameters as constraint conditions.

The remainder of this paper is organized as follows. Section 2 reviews the unit viewing
sphere model for a central catadioptric camera as well as some related studies. Section 3
provides a detailed description of paracatadioptric camera calibration using images of the
relative position between two spheres. Section 4 presents the experimental results. Finally,
Section 5 concludes the paper.
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2 Preliminaries

In this section, we briefly describe the central catadioptric projection model, the antipodal
image points, and their properties. Subsequently, we discuss the projection process of a sphere
under a paracatadioptric camera.

2.1 Central catadioptric projection model

Baker and Nayar [2] showed that only four types of reflecting mirror surface shapes exist for a
central catadioptric camera: paraboloidal, hyperboloidal, ellipsoidal, and planar. Geyer and
Daniilidis [9] proposed a generalized projection model for a central catadioptric camera. The
generalized projection model of the imaging process of a central catadioptric camera is
equivalent to a two-step mapping via a unit sphere (see Fig. 1).

Step 1. Point M is projected in 3D space to two points MS+ and MS− on the unit viewing
sphere, whereMS+ andMS− are two intersection points of the unit sphere and the line
joining its center O and the 3D point M. {MS+, MS−} is called a pair of antipodal
points [28].

Step 2. Two points MS+, MS− on the unit viewing sphere are projected to two corresponding
points m+, m− in the catadioptric image planeΠI using 3D point Oc as the projection
center. {m+, m−} is called a pair of antipodal image points [28].

The intrinsic parameters of the virtual camera with optical centerOc are estimated, while the
intrinsic parameters of the central catadioptric camera are known. The intrinsic matrix of the
virtual camera is

Kc ¼
r f e s u0
0 f e v0
0 0 1

2
4

3
5; ð1Þ

where r is the aspect ratio, fe is the effective focal length, s is the skew factor, and [u0 v0 1]T are
the homogeneous coordinates of principal point p, which is the projection of center O of the
unit viewing sphere. As shown in Fig. 1, the homogeneous coordinates of a 3D point M be

Fig. 1 Projection process of a 3D point M under the unit sphere model
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[xw yw zw 1]T under the world coordinate system O − xwywzw. The homogeneous coordinates of
its projection points m± in catadioptric image plane ΠI can then be represented as:

λ�m� ¼ Kc �
~M

‖M‖
þ ξe

 !
; ð2Þ

where λ+, λ− are two unknown scale factors, ‖M‖ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2w þ y2w þ z2w

p
, ~M ¼ xw yw zw½ � T ,

e = [0 0 1]T, and parameter ξ(ξ=| OOc| ) is a mirror parameter. The value of ξ corresponds to
the different types of mirrors; the mirror is a paraboloid if ξ = 1, an ellipsoid or a hyperboloid if
0 < ξ < 1, and a plane if ξ = 0.

2.2 Projection process of a sphere under the paracatadioptric camera

For the unit sphere model, Duan and Wu [5] suggested that the projection process of a sphere
in space under the paracatadioptric camera can be divided into two steps. First, a sphere Q in
space can be projected to two parallel circles S+ and S− on the unit viewing sphere; circle S+ is
called the projection circle of sphere Q, circle S− is called the antipodal circle of projection
circle S+, and the two planes containing circles S+ and S−are called their respective base planes.
The two base planes are parallel, and their elements at infinity are the same [29]. Next, the two
parallel circles S+ and S− are respectively projected to two conics C+ and C−in the
paracatadioptric image plane ΠI through the optical center Oc of a virtual camera. Conic C+

(i.e., the sphere image) is visible, and conicC− (i.e., the antipodal sphere image) is not visible.
This projection process is shown in Fig. 2. The following conclusions can be drawn from this
projection process:

Proposition 1 In Fig. 2, if B1+is any point on projection circle S+ of Q, the antipodal point B1−
of B1+is on the antipodal circle S− of S+.

Fig. 2 Sphere projection via the unit viewing sphere under a paracatadioptric camera

Multimedia Tools and Applications (2019) 78:12223–12249 12227



This can easily be proved according to the projection principle of the unit sphere model and
three-dimensional geometry of space-related knowledge. From Proposition 1, the following
corollary can be deduced.

Corollary 1 In Fig. 2, if n different points Bk+ and Bk−(k = 1, 2,⋯, n)are on circles S+and S−,
respectively, and {Bk+, Bk−}(k = 1, 2,⋯, n) are n pairs of antipodal points, then (i) the tangent
lines lk+of circleS+ at points Bk+ are parallel to the tangent lines lk−of circle S− at points Bk−,
where lk+lies on the base plane of S+and lk−lies on the base plane of S−; and (ii) when n ≥ 2, the
vanishing line~lon the base plane of S+ can be determined by n pairs of antipodal points {Bk+,
Bk−}, and thus, the imaged circular points mI, mJon the base plane of S+ can be obtained.

Proof (i) As shown in Fig. 2, from the properties of the tangent of a circle, there existO+Bk+ ⊥
lk+, O−Bk− ⊥ lk−. Then, from O+O− ⊥O+Bk+, O+O− ⊥O−Bk−, and the coplanarity of the four
points O+, O−, Bk+, Bk+, we haveO+Bk+ ∥O−Bk−. Further, the plane containing lk+ and the plane
containing lk− are parallel; hence, lk+ ∥ lk−. (ii) For an arbitrary k, the intersection point of lk+and
lk− is a point at infinity on the base plane of S+from conclusion (i) of Corollary 1, denoted
asDk∞.The images of points Bk+andBk− are denoted as bk+ and bk−, respectively; {bk+, bk−}is a
pair of antipodal image points. The images of lines lk+and lk− are denoted as ~lkþand ~lk−,
respectively, and the intersection point of ~lkþand ~lk− is dk. According to the properties of

projective transformation, ~lkþis a tangent line of sphere image C+at point bk+, ~lk−is a tangent
line of antipodal sphere image C− at pointbk−, and dkis the image of Dk∞. According to the
definition of a vanishing point [11], dk is a vanishing point on the base plane of S+; hence, a
vanishing point on the base plane of S+ can be determined by a pair of antipodal points {Bk+, Bk

−}.Then,n vanishing points on the base plane of S+ can be determined by n pairs of antipodal
points {Bk+, Bk−}; thus, n ≥ 2. Thesen vanishing points can determine the line ofΠI, which is a

vanishing line ~lon the base plane of S+. According to the definition of circular points and the
combination characteristic of the projective transformation, vanishing line S+ and conics C+

and C−have the same intersection points, which are the imaged circular points mI, mJ on the
base plane of S+.

3 Using the projecting relationship of the relative position between two
spheres to calibrate the paracatadioptric camera

In this section, we discuss the projection of two spheres under the imaging model of the
paracatadioptric camera and investigate how the projecting relationship of the relative position
between two spheres can be used to calibrate the paracatadioptric camera.

3.1 Projection of two spheres under the paracatadioptric camera

First, the following definition is introduced before studying the projection properties of two
spheres under the unit sphere model of the paracatadioptric camera.

Definition 1 Two viewing cones formed by taking a point in space as a viewpoint to observe
two spheres in 3D space cannot contain each other. If the two viewing cones intersect two
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common generatrices, the two spheres are mutually occluding in this viewpoint. If the two
viewing cones only intersect in one common generatrix, the two spheres are tangential in this
viewpoint. If the two viewing cones do not intersect, the two spheres are separated in this
viewpoint.

In Definition 1, the case in which the projection cone of one sphere contains the other one
will not be discussed. Consider the projections of two spheres Q1, Q2 under the unit sphere
model for the paracatadioptric camera. Here, take the ith(i ∈ℕ+) view of the two spheres Q1,
Q2 as an example, where the elements in the ith view are denoted by the superscript letter i. By
Definition 1, two arbitrary spheres in 3D space can be classified into three types: mutually
occluding spheres, tangential spheres, and separated spheres. For each of type, the following
proposition is true.

Proposition 2 Taking the center of the unit viewing sphere as a viewpoint, the projection of
two mutually occluding spheres under the unit sphere model for the paracatadioptric camera

has the following properties (see Fig. 3): (i) Projection circles Si1þ; S
i
2þ of two spheres Q1, Q2

have two real points Ai
1þ;A

i
2þ on the unit viewing sphere. Their antipodal circlesSi1−; S

i
2−also

have two real intersection points Ai
1−;A

i
2− on the unit viewing sphere, and Ai

1þ;A
i
1−

� �
and

Ai
2þ;A

i
2−

� �
are two pairs of antipodal points. (ii) Images Ci

1þ;C
i
2þ of two spheres Q1, Q2 have

two real intersection points ai1þ; a
i
2þand two imaginary intersection points ai3þ; a

i
4þ. Their

antipodal sphere images Ci
1− and Ci

2− also have two real intersection pointsai1−; a
i
2− and two

imaginary intersection points ai3−; a
i
4−. Further, aijþ; a

i
j−

n o
j ¼ 1; 2; 3; 4ð Þ are four pairs of

antipodal image points, where two pairs of imaginary antipodal image points ai3þ; a
i
3−

� �
and

ai4þ; a
i
4−

� �
can be regarded as the images of two pairs of imaginary antipodal points

Ai
3þ;A

i
3−

� �
and Ai

4þ;A
i
4−

� �
, respectively. (iii) The lines passing through points

aijþ; a
i
j− j ¼ 1; 2; 3; 4ð Þintersect at principal point p.

li12-
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O
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(a) (b)
Fig. 3 Projection of two mutually occluding spheres under the unit sphere model of the paracatadioptric camera:
a The projection circles Si1þ and Si2þ intersect at two real pointsAi

1þand Ai
2þon the unit viewing sphere for the

paracatadioptric camera; their antipodal circlesSi1−and Si2−also intersect at two real points Ai
1−andA

i
2−. b The

corresponding projection of (a) in the image planeΠI
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Proof (i) As shown in Fig. 3a, let two viewing cones formed by viewing point O and two
spheres Q1, Q2 be Vi

1;V
i
2, respectively. Because Q1, Q2are mutually occluding, according to

Definition 1, Vi
1;V

i
2 have two common generatrices, and the two common generatrices and the

viewing sphere intersect at four real intersection points. The viewing sphere and Vi
1, V

i
2

intersect inSi1þ, S
i
1−and Si2þ, S

i
2−, respectively; thus, two of the four abovementioned intersec-

tion points are the intersection of Si1þ and Si2þ, denoted as A
i
1þ;A

i
2þ, respectively, and the other

two intersection points are the intersection of Si1−andS
i
2−, denoted as A

i
1−;A

i
2−, respectively. By

definition, Ai
1þ;A

i
1−

� �
and Ai

2þ;A
i
2−

� �
are two pairs of antipodal points. (ii) From Section 2.2,

under the optical centerOcof a virtual camera, Ci
1þ and Ci

2þ are the projections of Si1þandS
i
2þ,

and Ci
1−and C

i
2− are the projections of S

i
1−andS

i
2−. From conclusion (i) of Proposition 2 and the

combination characteristic of the projective transformation, Ci
1þand Ci

2þ have two real

intersection points, denoted as ai1þ; a
i
2þ, respectively; C

i
1− and Ci

2− also have two real

intersection points, denoted as ai1−; a
i
2−, respectively. Further, a

i
1þ; a

i
2þ; a

i
1−; a

i
2−are the projec-

tions of Ai
1þ;A

i
2þ;A

i
1−;Aunder Oc. According to conclusion (i) of Proposition 2 and Definition

1, ai1þ; a
i
1−

� �
and ai2þ; a

i
2−

� �
are two pairs of antipodal image points. Every two different

conics on the same plane have two imaginary intersection points; hence, the two imaginary

intersection points of Ci
1þand Ci

2þ are denoted as ai3þ; a
i
4þ, respectively, and the two imagi-

nary intersection points of Ci
1−and Ci

2− are denoted as ai3−; a
i
4−, respectively. Further,

ai3þ; a
i
3−

� �
and ai4þ; a

i
4−

� �
are two pairs of imaginary antipodal image points that can be

regarded as the images of two pairs of imaginary antipodal points Ai
3þ;A

i
3−

� �
and Ai

4þ;A
i
4−

� �
,

respectively, as shown in Fig. 3b. (iii) According to properties of the antipodal image points
[28], any pair of antipodal image points and p are collinear, and combined with conclusion (ii)
of Proposition 2, the lines passing through points aijþ; a

i
j− j ¼ 1; 2; 3; 4ð Þintersect at principal

point p, as shown in Fig. 3b.

Proposition 3 Taking the center of the unit viewing sphere as a viewpoint, the projection of
two tangential spheres under the unit sphere model for the paracatadioptric camera has the
following properties (see Fig. 4): (i) Projection circles Si1þ; S

i
2þ of two spheres Q1, Q2 have a

real pointAi
1þ on the unit viewing sphere. Their antipodal circles Si1−; S

i
2−also have a real

intersection point Ai
1− on the unit viewing sphere, and Ai

1þ;A
i
1−

� �
is a pair of antipodal points.

(ii) Images Ci
1þ;C

i
2þ of two spheres Q1, Q2have a real intersection point ai1þand two

imaginary intersection points ai2þ; a
i
3þ.Their antipodal sphere images Ci

1− and Ci
2− also have

a real intersection pointai1− and two imaginary intersection points ai2−; a
i
3−; hence, aijþ; a

i
j−

n o
j ¼ 1; 2; 3ð Þ are three pairs of antipodal image points, where two pairs of imaginary antipodal

image points ai2þ; a
i
2−

� �
and ai3þ; a

i
3−

� �
can be regarded as the images of two pairs of

imaginary antipodal points Ai
2þ;A

i
2−

� �
and Ai

3þ;A
i
3−

� �
, respectively. (iii) The lines passing

through points aijþ; a
i
j−

n o
j ¼ 1; 2; 3ð Þintersect at principal point p.

Proposition 4 Taking the center of the unit viewing sphere as a viewpoint, the projection of
two separated spheres under the unit sphere model for the paracatadioptric camera has the

following properties (see Fig. 5): (i) Projection circles Si1þ; S
i
2þ of two spheres Q1, Q2 have no

real intersection point; their antipodal circles Si1−; S
i
2−also have no real intersection point. (ii)
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Images Ci
1þ;C

i
2þ of two spheres Q1, Q2 have four imaginary intersection points aijþ. Their

antipodal sphere images Ci
1− and Ci

2− also have four imaginary intersection points aij−,

and aijþ; a
i
j−

n o
are four pairs of antipodal image points, which can be regarded as the images

of four pairs of imaginary antipodal points Ai
jþ;A

i
j−

n o
, respectively, where j = 1, 2, 3, 4. (iii)

The lines passing through points aijþ; a
i
j− j ¼ 1; 2; 3; 4ð Þintersect at principal point p.

The proofs of Propositions 4 and 5 follow the same procedure as the proof of Proposition 2;
hence, they are omitted. Propositions 3, 4, and 5 describe the projection properties of three
different cases of two spheres under the unit sphere model of the paracatadioptric camera. For
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Fig. 4 Projection of two tangential spheres under the unit sphere model of the paracatadioptric camera: a The
projection circles Si1þ and Si2þ intersect at a real intersection point Ai

1þon the unit viewing sphere for the
paracatadioptric camera; their antipodal circles Si1−andS

i
2− also intersect at a real intersection pointAi

1−. b The
corresponding projection of (a) in the paracatadioptric image planeΠI
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Fig. 5 Projection of two separated spheres under the unit sphere model of the paracatadioptric camera: a The
projection circles Si1þandS

i
2þ have no real intersection points; their antipodal circlesSi1−and S

i
2− also have no real

intersection points on the unit viewing sphere. b The corresponding projection of (a) in the paracatadioptric
image plane ΠI
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the sake of discussion, the projection types that correspond to Propositions 3, 4, and 5 are
referred to as the first projection, the second projection, and the third projection, respectively.

3.2 Obtaining the principal point of the paracatadioptric camera by a view of two
spheres

On the basis of Section 3.1, we discuss how to obtain the principal point of the paracatadioptric
camera using three different cases of two spheres. According to Propositions 3, 4, and 5, the
following corollary is true.

Corollary 2 In each type of projection, the principal point of the paracatadioptric camera can
be determined using only one view of the two spheres.

From the conclusions and proofs of Propositions 3, 4, and 5, it is easy to deduce the
correctness of Corollary 2; hence, its proof is omitted.

With only one view of two spheres, there are two pairs of conicsC1
n�in the paracatadioptric

image plane:

C1
n� ¼

a1n� b1n� d1n�
b1n� c1n� e1n�
d1n� e1n� f 1n�

2
4

3
5; n ¼ 1; 2; ð3Þ

where conic C1
nþis the image of sphere Qnand conic C1

n−is the antipodal sphere image of

sphere Qn. The equations of conics C1
nþ;C

1
n−can be estimated, as discussed in [5]. The method

for obtaining the principal point of each projection type is as follows.

In the first projection, images C1
1þand C1

2þof two spheres have two real intersection points
and two imaginary intersection points, the homogeneous coordinates of which are denoted as

a1jþ ¼ u1ajþ v1ajþ 1
h i

T j ¼ 1; 2ð Þand a1jþ ¼ u1ajþ v1ajþ 1
h i

T j ¼ 3; 4ð Þ, respectively. Their an-
tipodal spheres images Ci

1− and Ci
2− also have two real intersection points and two imaginary

intersection points, the homogeneous coordinates of which are denoted as a1j− ¼ u1aj− v
1
aj− 1

h i
T j ¼ 1; 2ð Þ and a1j− ¼ u1aj− v

1
aj− 1

h i
T j ¼ 3; 4ð Þ, respectively, as shown in Fig. 3b. From the

simultaneous equations of conics C1
nþ n ¼ 1; 2ð Þ, we have:

u1 v1 1
� �

C1
nþ u1 v1 1
� �T ¼ 0; n ¼ 1; 2: ð4Þ

Similarly, from the simultaneous equations of conics C1
1−;C

1
2−, we have:

u1 v1 1
� �

C1
n− u1 v1 1
� �T ¼ 0; n ¼ 1; 2; ð5Þ

where [u1 v1 1]T represents a pixel coordinate of the first view in the paracatadioptric image

plane, and it is the same in the following part. According to the discussion in Section 3.1, a1jþ

¼ u1ajþ v1ajþ 1
h i

T j ¼ 1; 2ð Þ is a pair of real solutions and a1jþ ¼ u1ajþ v1ajþ 1
h i

T j ¼ 3; 4ð Þis a
pair of conjugate imaginary solutions in Eq. (4). Further, a1j− ¼ u1aj− v

1
aj− 1

h i
T j ¼ 1; 2ð Þis a

pair of real solutions and a1j− ¼ u1aj− v
1
aj− 1

h i
T j ¼ 3; 4ð Þ is a pair of conjugate imaginary
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solutions in Eq. (5). At the same time, a1jþ; a
1
j−

n o
j ¼ 1; 2; 3; 4ð Þare four pairs of antipodal

image points. Principal pointp is the intersection point of the lines passing through points
a1jþ; a

1
j− j ¼ 1; 2; 3; 4ð Þ. Hence, principal point p = [u0 v0 1]T is a solution of the following

linear equations:

a1jþ � a1j−
� �T

u1 v1 1
� �T ¼ 0; j ¼ 1; 2; 3; 4: ð6Þ

In the second projection, principal point p = [u0 v0 1]Tcan be determined by solving the linear
equations:

a1jþ � a1j−
� �T

u1 v1 1
� �T ¼ 0; j ¼ 1; 2; 3; ð7Þ

where a11þ ¼ u1a1þ v1a1þ 1
� �

T is the real intersection point of C1
1þand C1

2þ, and a1jþ ¼
u1ajþ v1ajþ 1
h i

T j ¼ 2; 3ð Þ are two imaginary intersection points of C1
1þ and C1

2þ.

In the third projection, principal point p = [u0 v0 1]T can be determined by solving the linear
equations

a1jþ � a1j−
� �T

u1 v1 1
� �T ¼ 0; j ¼ 1; 2; 3; 4; ð8Þ

wherea1jþ ¼ u1ajþ v1ajþ 1
h i

T j ¼ 1; 2; 3; 4ð Þ are four imaginary intersection points of C1
1þ and

C1
2þ, and a

1
j− ¼ u1aj− v

1
aj− 1

h i
j ¼ 1; 2; 3; 4ð Þ are four imaginary intersection points of C1

1− and

C1
2−.
In theory, linear equations have unique solutions, but because of the effects of noise, their

solutions may be non-unique. The solutions of Eqs. (6), (7), and (8) can be obtained by
singular value decomposition (SVD).

3.3 Obtaining the other intrinsic camera parameters using the imaged circular points

As discussed in Section 3.2, by the analysis of the three projection types under the
paracatadioptric camera, the solution for the principal point of the camera can be obtained
from a view of two spheres. In this section, we discuss how the projection of the two spheres
can be used to obtain the other intrinsic camera parameters for the three projection types.
Based on Corollary 1, a pair of imaged circular points can be obtained from a view of a sphere;
hence, two pairs of imaged circular points can be obtained from a view of two spheres.
Because a pair of imaged circular points can provide two constraints of the intrinsic camera
parameters, the other intrinsic camera parameters can be obtained using the two imaged
circular points.

3.3.1 Obtaining the imaged circular points

Conclusion (ii) of Corollary 1 and its proof provide the basis for obtaining the imaged circular
points by a view of a sphere. Aview of two spheres can be considered as two views of a sphere
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in the same image plane. On the basis of Corollary 1, we discuss the implementation for
obtaining the imaged circular points.

As there are three projection cases of two spheres Q1, Q2 under the paracatadioptric camera,
and their solutions of the imaged circular points are nearly the same, taking the first projection
as an example, the method for obtaining the imaged circular points is given. The imaged

circular points mi
2I ;m

i
2 J on the base plane of projection circle S

i
2þ of sphere Q2are obtained in

a similar manner as the imaged circular points mi
1I ;m

i
1 Jon the base plane of projection circle

Si1þof sphere Q1. Given k(k ≥ 1) views of two spheres Q1, Q2 in the paracatadioptric image

plane ΠI, there are 2k pairs of conicsCi
n�:

Ci
n� ¼

ain� bin� din�
bin� cin� ein�
din� ein� f in�

2
4

3
5; i ¼ 1; 2;⋯; k; n ¼ 1; 2; ð9Þ

where conic Ci
nþ is the image of sphere Qn and conic Ci

n− is the antipodal image of sphere Qn in

the ith view. The equations of conics Ci
nþ;C

i
n−can be estimated as discussed in [5]. Select

Ni
1different points b

i
nmþon conic Ci

nþ, the homogeneous coordinates of which are represented

as uibnmþ vibnmþ 1
� �

T , and these points are known. Let the antipodal image points of binmþbe b
i
nm−,

the homogeneous coordinates of which are uibnm− v
i
bnm− 1

� �
T , and binm− are on conicC

i
n−from the

previous analysis. From properties of the antipodal image points [28], the points binm−are along the
lines p−binmþand on C

i
n−; hence, the points b

i
nm− are intersection points of the lines pb

i
nmþ and the

conic Ci
n−. From the simultaneous equations of lines pbinmþand conics C

i
n−, we have:

p� binmþ
	 
T

ui vi 1
� �T ¼ 0

ui vi 1
� �

Ci
n− ui vi 1
� �T ¼ 0

;

(
ð10Þ

where[ui vi 1]Trepresents a pixel coordinate of the ith view in the paracatadioptric image. The
homogeneous coordinates of the principal point pcan be obtained by the method described in

Section 3.2. According to the analysis presented above, binm− ¼ uibnm− v
i
bnm− 1

� �
Tare the solu-

tions of Eq. (10). In general, there exist two groups of solutions for Eq. (10). Obtaining the initial

values of the intrinsic camera parameters as discussed in [29], binm− ¼ uibnm− v
i
bnm− 1

� �
T can be

selected using properties of the antipodal image points [28]. By definition of the tangent line, the

tangential point of which is on a conic [11], the equations of tangent lines~l
i
nmþ at points binmþ on

conic Ci
nþare:

binmþ
	 
T

Ci
nþ ui vi 1
� �T ¼ 0: ð11Þ

Similarly, the equations of tangent lines ~l
i
nm− at points binm− on conicCi

n−are:

binm−
	 
T

Ci
n− ui vi 1
� �T ¼ 0: ð12Þ

From the simultaneous Eqs. (11) and (12), linear equations can be obtained:

binmþ
	 
T

Ci
nþ ui vi 1
� �T ¼ 0

binm−
	 
T

Ci
n− ui vi 1
� �T ¼ 0

:

(
ð13Þ
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Let points dinmbe the vanishing points of lines l
i
nmþ, the homogeneous coordinates of which are

uibnm− v
i
bnm− 1

� �
T ; hence, dinm ¼ uidnm vidnm 1

� �
Tare solutions of Eq. (13), and dinm are images

of Ni
1 Ni

1≥2
	 


points at infinity on the plane containing circle Sinþ. When Ni
1 ¼ 2, the equation

of vanishing line ~l
i
non the base plane of circle Sinþ is:

din1 � din2
� �T

ui vi 1
� �T ¼ 0: ð14Þ

When Ni
1≥3, the equation of vanishing line ~l

i
non the base plane of circle Sinþ can be obtained

by least squares fitting [16]. To simplify the description, let the equation of vanishing line ~l
i
n

be:

~l
i

n

� �T

ui vi 1
� �T ¼ 0; ð15Þ

where~l
i
n ¼ uiln v

i
ln 1

� �
T denotes the homogeneous line coordinates of vanishing line~l

i
n. Let the

conjugate imaginary points mi
nI ;m

i
nJ be the imaged circular points of the base plane of circle

Sinþ with homogeneous coordinates ain þ bini c
i
n þ dini 1

� �
Tof points mi

nI and homogeneous

coordinates ain−b
i
ni c

i
n−d

i
ni 1

� �
Tof pointsmi

nJ . By the simultaneous equations of vanishing line

~l
i
n and conic Ci

nþ, we have:

~l
i

n

� �T

ui vi 1
� �T ¼ 0

ui vi 1
� �

Ci
nþ ui vi 1
� �T ¼ 0

:

8><
>: ð16Þ

Similarly, by the simultaneous equation system of vanishing line ~l
i
n and conic Ci

n−, we have:

~l
i

n

� �T

ui vi 1
� �T ¼ 0

ui vi 1
� �

Ci
n− ui vi 1
� �T ¼ 0

:

8><
>: ð17Þ

In theory, Eqs. (16) and (17) have the same solutions, which aremi
nI ¼ ain þ bini c

i
n þ dini 1

� �
T

and mi
nJ ¼ ain−b

i
ni c

i
n−d

i
ni 1

� �
T. However, because of the effect of noise, not all of their

solutions may be the same. Let the solutions of Eq. (16) be ain1 þ bin1i c
i
n1 þ din1i 1

� �
Tand

ain1−b
i
n1i c

i
n1−d

i
n1i 1

� �
T, and let the solutions of Eq. (17) be ain2 þ bin2i c

i
n2 þ din2i 1

� �
Tand

ain2−b
i
n2i c

i
n2−d

i
n2i 1

� �
T.Then,

mi
nI ¼

ain1 þ ain2
2

þ bin1 þ bin2
2

i
cin1 þ cin2

2
þ din1 þ din2

2
i 1

 �T

mi
nJ ¼ ain1 þ ain2

2
−
bin1 þ bin2

2
i
cin1 þ cin2

2
−
din1 þ din2

2
i 1

 �T :

8>>><
>>>:

ð18Þ

Thus, we have obtained a pair of imaged circular points mi
nI ;m

i
nJon the plane containing circle

Sinþ.
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3.3.2 Obtaining the other intrinsic camera parameters

The principal point p can be obtained by the method described in Section 3.2, and the
algorithm can be simplified using a method presented in the literature [17]. First, via translation
of transformation matrix Tp, move the origin of the image coordinate system to the principal
point p, with:

Tp ¼
1 0 −u0
0 1 −v0
0 0 1

2
4

3
5: ð19Þ

In the new coordinate system, the intrinsic matrix Kc can be simplified as:

K
0
c ¼ TpKc ¼

r f e s 0
0 f e 0
0 0 1

2
4

3
5: ð20Þ

Therefore, ωcan be simplified as:

ω
0 ¼ K

0
c

� �−T
K

0
c

� �−1
≔

ω
0
1 ω

0
2 0

ω
0
2 ω

0
3 0

0 0 ω
0
4

2
64

3
75: ð21Þ

In this case, ω′can be obtained using at least three linear constraints (i.e., three degrees of
freedom); hence, at least two pairs of imaged circular points are required to obtainω′. In the
new coordinate system, the imaged circular points mi

nI ;m
i
nJ on the plane containing circle S

i
nþ

transform into:

~m
i

nI ¼ Tpmi
nI≔ ~a

i

n þ ~b
i

ni ~c
i

n þ ~d
i

ni 1

 �T

~m
i

nJ ¼ Tpmi
nJ≔ ~a

i

n−~b
i

ni ~c
i

n−~d
i

ni 1

 �T ;

8>>><
>>>:

ð22Þ

where ~ain ¼ ain−u0; ~b
i
n ¼ bin;~c

i
n ¼ cin−v0; ~d

i
n ¼ din. Further, 2k pairs of imaged circular points

can be obtained from k(k ≥ 1) views of two spheres Q1, Q2. Applying the constraints of the
imaged circular points to the image of the absolute conic (IAC), linear equations for the
elements of ω′can be established:

Re ~m
i

nI

� �T

ω
0
~m
i

nI

" #
¼ 0

Im ~m
i

nI

� �T

ω
0
~m
i

nI

" #
¼ 0

; i ¼ 1; 2;⋯; k; n ¼ 1; 2;

8>>>><
>>>>:

ð23Þ

where ω′is given by Eq. (21). Eq. (23) includes 2k linear equations for the elements of ω′; the
solution of Eq. (23) can be obtained using SVD to get ω′. Finally, via Cholesky decomposition

of the known ω′, the simplified intrinsic matrix K
0
c under the new coordinate system can be

obtained directly by the inverse solution of the decomposition matrix.
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The calibration algorithm by utilizing the imaged circular points is as follows:

Input: The images of two spheres in k(k ≥ 1) views.
Output: The camera intrinsic matrix Kc.

1): Extract the pixel coordinates of the images of two spheres in k(k ≥ 1) views to estimate

equations Ci
nþ (i = 1, 2, ⋯, k; n = 1, 2) of the sphere images, and equations Ci

n− of their
antipodal sphere images according to [5].

2): Take the i(i = 1, 2,⋯, k) th view and solve the principal pointp of the camera according to
section 3.2.

3): Solve the imaged circular points mi
nI ;m

i
nJ (i = 1, 2,⋯, k; n = 1, 2) on the plane containing

circle Sinþaccording to section 3.3.1.
4): Move the coordinate origin point of the image coordinate system to the principal point p

via translation of transformation matrix Tp, and get K
0
c, ω

', ~mi
n I ; ~m

i
nJ (i = 1, 2, ⋯, k; n = 1,

2) from (20), (21), (22), respectively.
5): Solve ω′ from (23) by SVD. With Cholesky decomposition of the known ω′ matrix, K

0
c

can be obtained directly by inverse solving for the decomposition matrix. Finally, Kccan
be obtained by (20).

3.4 Obtaining the intrinsic camera parameters using orthogonal vanishing points

In this section, we discuss how the three projection types of two spheres can be used to
obtain the intrinsic camera parameters when the principal point is unknown. The method
for obtaining the intrinsic camera parameters is proposed using only orthogonal vanishing
points.

The following corollary can be obtained from definition of the antipodal points.

Corollary 3 If {MS1+,MS1−}and {MS2+,MS2−} are two pairs of antipodal points, the directions
of the straight line passing through points MS1+andMS2+, and the straight line passing through
points MS1+ and MS2− are orthogonal.

Proof According to definition of the antipodal points, MS1+MS1−and MS2+MS2−are two diam-
eters on the unit viewing sphere; hence, quadrilateralMS1+MS2+MS1−MS2− is a rectangle. Thus,
the directions of the straight line passing through points MS1+and MS2+, as well as the straight
line passing through points MS1+ and MS2−, are orthogonal.

Corollary 3 establishes the relationship between the antipodal points and orthogonal
direction and provides a theoretical basis for using the orthogonal vanishing point to obtain
the intrinsic camera parameters. Next, we discuss how the intrinsic camera parameters can be
obtained using the orthogonal vanishing points for the three projection types.

For the first projection, from Corollary 3 and Proposition 2, we have the following
corollary.

Corollary 4 The six groups of orthogonal vanishing points can be determined by a view of two
mutually occluding spheres Q1, Q2, and the intrinsic camera parameters can be handled
linearly by at least one view.

Multimedia Tools and Applications (2019) 78:12223–12249 12237



Proof From the conclusion of Proposition 2, four pairs of antipodal points Ai
jþ;A

i
j−

n o
j ¼ 1; 2; 3; 4ð Þ are obtained from a view of two spheres Q1, Q2 in the first projection, where

Ai
jþ;A

i
j−

n o
j ¼ 1; 2ð Þ are two pairs of real antipodal points, and Ai

jþ;A
i
j−

n o
j ¼ 3; 4ð Þ are

two pairs of imaginary antipodal points. According to Corollary 3, the four pairs of

antipodal points can provide six groups of orthogonal directions Ai
j1þA

i
j2þ andAi

j1þA
i
j2−,

where j1, j2 = 1, 2, 3, 4, j1 ≠ j2. A group of orthogonal vanishing points exists in the group
of orthogonal directions in space; hence, six groups of orthogonal vanishing points can be
determined by the above six groups of orthogonal directions. According to the relationship
between the orthogonal vanishing points and the IAC [11], ω can be determined by at least
five groups of orthogonal vanishing points to obtain the intrinsic camera parameters, in
other words, the paracatadioptric camera calibration requires at least a view of two spheres
Q1, Q2 in this case.

We present the solution procedure in detail in this case. Given k(k ≥ 1) views of two
spheres Q1, Q2 in paracatadioptric image planeΠI, there are 2k pairs of conics, denoted for
simplicity as Ci

n� n ¼ 1; 2; i ¼ 1; 2;⋯; kð Þ, which can be estimated, as discussed in [5]. Let

the homogeneous coordinates aij� ¼ uiaj� viaj� 1
h i

T be the images of points Ai
j�with (j =

1, 2, 3, 4); hence, aijþ; a
i
j−

n o
j ¼ 1; 2; 3; 4ð Þ are four pairs of antipodal image points from

the definition of the antipodal image points. According to Proposition 2, points ai1þ,a
i
2þ are

two real intersection points of two conics Ci
1þ,C

i
2þ, points ai3þ,a

i
4þ are two imaginary

intersection points of two conics Ci
1þ,C

i
2þ, points a

i
1−,a

i
2− are two real intersection points of

two conics Ci
1−,C

i
2−, and points a

i
3−,a

i
4− are two imaginary intersection points of two conics

Ci
1−,C

i
2−. The following equation can be obtained from the simultaneous equations of

conics Ci
1þ;C

i
2þ:

ui vi 1
� �

Ci
nþ ui vi 1
� �T ¼ 0; n ¼ 1; 2: ð24Þ

Eq. (25) can be similarly obtained from the simultaneous equations of conics C1
1−;C

1
2−:

ui vi 1
� �

Ci
n− ui vi 1
� �T ¼ 0; n ¼ 1; 2: ð25Þ

From the above analysis, aijþ ¼ uiajþ viajþ 1
h iT

j ¼ 1; 2ð Þ is a pair of real solutions and aijþ

¼ uiajþ viajþ 1
h i

T j ¼ 3; 4ð Þ is a pair of conjugate imaginary solutions in Eq. (24). Further, aij−

¼ uiaj− v
i
aj− 1

h i
T j ¼ 1; 2ð Þ is a pair of real solutions and aij− ¼ uiaj− v

i
aj− 1

h i
T j ¼ 3; 4ð Þis a

pair of conjugate imaginary solutions in Eq. (25). The points at infinity in Ai
j1þA

i
j2þ,

Ai
j1þA

i
j2−directions are denoted as Ui

j1 j2∞,V
i
j1 j2∞ j1; j2 ¼ 1; 2; 3; 4; j1≠ j2ð Þ, respectively, and

Ai
j1þA

i
j2þas well as A

i
j1þA

i
j2− are orthogonal from the above analysis. The images of points

Ui
j1 j2∞,V

i
j1 j2∞ are denoted as uij1 j2 ,v

i
j1 j2

, respectively; hence, uij1 j2 , v
i
j1 j2

are orthogonal vanishing

points in the plane ΠI. According to the combination characteristic of the projective transfor-
mation, uij1 j2 is the intersection point of line aij1þa

i
j2þ and line aij1−a

i
j2−, and vij1 j2 is the
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intersection point of line aij1þa
i
j2− and line aij1−a

i
j2þ. Let the homogeneous coordinates of

points uij1 j2 , v
i
j1 j2

be uiu j1 j2 v
i
u j1 j2

1
h i

T, uiv j1 j2 v
i
v j1 j2

1
h i

T, respectively, which are the solutions

of two linear equations, respectively:

aij1þ � aij2þ
� �T

ui vi 1
� �T ¼ 0

aij1− � aij2−
� �T

ui vi 1
� �T ¼ 0

;

8><
>: ð26Þ

aij1þ � aij2−
� �T

ui vi 1
� �T ¼ 0

aij1− � aij2þ
� �T

ui vi 1
� �T ¼ 0

;

8><
>: ð27Þ

where j1, j2 = 1, 2, 3, 4; j1 ≠ j2, and there exist 6k pairs of orthogonal vanishing points in k
views. Therefore, a linear equation can be given using the constraints of the orthogonal
vanishing points and the IAC [11]:

uij1 j2

� �T
ωvij1 j2 ¼ 0; i ¼ 1; 2;⋯; k; j1; j2 ¼ 1; 2; 3; 4; j1≠ j2; ð28Þ

with

ω ¼
ω1 ω2 ω4

ω2 ω3 ω5

ω4 ω5 ω6

2
4

3
5; ð29Þ

where ω is the IAC equation coefficient matrix. Eq. (28) consists of 6k linear equations of the
elements of ω. The solution of Eq. (28) can be obtained by SVD to giveω. Finally, via
Cholesky decomposition of ω, the intrinsic matrix ω can be obtained.

For the second projection, from Corollary 3 and Proposition 3, we have the following
corollary.

Corollary 5 The three groups of orthogonal vanishing points can be determined by a view of
two tangential spheres Q1, Q2 with viewpoint O; hence, the intrinsic camera parameters can be
handled by at least two views.

The proof of Corollary 5 follows the same procedure as the proof of Corollary 4; hence,
it is omitted. Furthermore, the solutions of the orthogonal vanishing points and the
intrinsic camera parameters are the same as those in the first projection. In the second
projection, the major difference is that a view of the two spheres only can obtain three
pairs of antipodal points; hence, three groups of orthogonal directions can be provided to
determine three groups of orthogonal vanishing points. Therefore, the camera calibration
requires at least two views of the two spheres. The pointsAi

1þ and Ai
2þ are regarded as the

same point in the first projection; hence, the solution process can be obtained in the second
projection.

In the third projection, from Corollary 3 and Proposition 4, we have the following corollary.
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Corollary 6 The six groups of orthogonal vanishing points can be determined by a view of two
separated spheres Q1, Q2 with viewpoint O; hence, the intrinsic camera parameters can be
handled by at least one view.

The proof of Corollary 6 follows the same procedure as the proof of Corollary 4; hence,
it is omitted. Furthermore, the solutions of the orthogonal vanishing points and the
intrinsic camera parameters are the same as those in the first projection. In the third
projection, the major difference is that a view of the two spheres can obtain four pairs
of imaginary antipodal points, and two pairs of four pairs of antipodal points in the first

projection only belong to the imaginary antipodal points. The real points Ai
1þ;A

i
2þ in the

first projection are regarded as two imaginary points; hence, the solution process can be
obtained in the third projection.

For three projection types of two spheres, the methods using the constraints of vanishing
points in orthogonal directions to solve the camera intrinsic parameters are essentially the
same. The calibration steps are as follows:

Input: The images of two spheres in k views.
if it is the first or third projection, then k ≥ 1.
else it is the second projection, then k ≥ 2.
Output: The camera intrinsic matrix Kc

1): Extract the pixel coordinates of the images of two spheres in k views to estimate

equations for the Ci
nþ of the sphere images and equations for the Ci

n− of their antipodal
sphere images [5].

2): Solve intersection points aijþ and aij− of their antipodal sphere images Ci
n− in the ith view

using Eqs. (27) and (28), where i = 1, 2, ⋯, k; j = 1, 2, 3, 4; and n = 1, 2.

if it is the first projection, then points ai1þ and ai2þ are two different real points and points

ai1− and ai2− are also two different real points.
else if it is the second projection, then points ai1þ and ai2þ are the same real point and

points ai1− and ai2− are also the same real point.
else it is the third projection, then points ai1þ and ai2þ are two different imaginary points of

images Ci
nþ of the two spheres. Points ai1− and a

i
2− are also two different imaginary points.

3): Solve the orthogonal vanishing points in the ith view according to Section 3.4.
4): Obtain ω using SVD for Eq. (31), perform a Cholesky decomposition and its inverse to

obtain Kc.

4 Experiments

In order to verify the effectiveness of the calibration methods and test their sensitivity to noise,
a number of computations were performed using both simulation data and real experimental
data. Through analysis of the geometric projective property of a ball under the unit viewing
sphere model, the calibration method for the paracatadioptric camera can be present by using
the vanishing point, the vanishing line and parallel circles recently [14], which are denoted as
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[36]1, [36]2, [36]3, respectively, and are added to the experiments. The two types of calibra-
tion methods discussed in this study, i.e., using imaged circular points (ICP) and orthogonal
vanishing points (OVP), were compared with the three calibration methods of Li and Zhao
[14], Duan and Wu [5], and the initial estimation method based on the paraboloidal mirror
contour projection (Initial) [29].

4.1 Experimental results with simulated data

Let the mirror parameter of the simulated paracatadioptric camera be ξ = 1, and let its FOV be180∘.

The matrix of the intrinsic parameters is Kc ¼
800 0:8 450
0 750 380
0 0 1

2
4

3
5, where[450 380 1]Tare the

homogeneous coordinates of principal point p, 16/15 is the value of the aspect ratio r, 750 is the
value of the effective focal length fe, and 0.8 is the value of the skew factor s.

When the principal point is unknown, the camera calibration with OVP requires two views
of the two spheres in the second projection, and the calibration method of Duan and Wu [5]
requires at least three views of one sphere. We generate two views of two spheres in each of the
three projections: two separated spheres, two tangential spheres, and two intersection spheres.
The views of two spheres under the three different projection cases are shown in Fig. 6, where
the bold conic represents the projected contour of the paraboloid mirror, the two conics inside
the projected contour represent the images of the two spheres, and the two conics outside the
projected contour represent the antipodal sphere images of the two spheres. Both the images of
the two spheres and their antipodal sphere images in the catadioptric image plane show the
following probable results: intersection, tangency, and separation, as shown in Fig. 6a, b, and
c, respectively.

Further, 100 points are chosen on each conic. In the simulated experiment, Gaussian
noise with zero mean and standard deviation σ was added to these points on the conics,
and the noise level of σ varied from 0 to 3.5 pixels. For each noise level, we performed 100
independent trials, and the absolute errors of these recovered parameters were computed
over each run. The effect of the change in the absolute errors of the estimated intrinsic
camera parameters is shown in Fig. 7 for ICP and OVP. According to the discussion in
Section 3.3, regardless of the type of projection of the two spheres under the
paracatadioptric camera, the solutions using ICP are similar. Here, taking the first projec-
tion as an example, the change in the absolute error of the intrinsic camera parameters with

Abscissa (pixel) Abscissa (pixel) Abscissa (pixel)

O
rd

in
at

e 
(p

ix
el

)

O
rd

in
at

e 
(p

ix
el

)

O
rd

in
at

e 
(p

ix
el

)

-500 0 500 100015002000250030003500
-2400

-2000
-1600
-1200

-800
-400

0

400
800

1200

-500 0 500 1000 1500 2000 2500 3000 3500
-2400

-2000

-1600

-1200

-800

-400

0

400

800

1200

-500 0 500 100015002000250030003500
-2400

-2000

-1600

-1200

-800
-400

0

400

800
1200

(a) (b) (c)

Fig. 6 Three categories of images of two simulated spheres and their antipodal spheres: a two real intersection
points, (b) one real intersection point, and (c) no real intersection point
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ICP is shown in Fig. 7a. According to the discussion in Section 3.4, OVP is different for
the three projection cases of two spheres under the paracatadioptric camera, i.e., intersec-
tion, tangency, and separation, represented by OVP1, OVP2, and OVP3, respectively. The
effect on the absolute errors of the estimated intrinsic camera parameters is shown in Fig.
7b, c, and d for OVP1, OVP2, and OVP3, respectively. More importantly, the results of
our methods (ICP, OVP1, OVP2, and OVP3), the method of Li and Zhao [14], Duan and
Wu [5], and Initial [29] are compared in Fig. 8. Because the performances ofu0 and v0are
very similar, only the estimated results for u0 are shown here. Asσincreases, the absolute
error of the intrinsic camera parameters decreases, implying that our methods are more
accurate than other methods, while the methods of Li and Zhao [14] are more accurate than
Duan and Wu [5] and Initial [29], and the method of Duan and Wu [5] is more accurate
than Initial [29]. In our methods, the process for obtaining the imaged circular points and
vanishing points is simple; hence, our results are more precise. In some views, if the mirror
contour projection is not very clear, the calibration results, which mainly depend on the
mirror contour projection, are relatively poor. The absolute error of the intrinsic camera
parameters obtained by ICP, OVP1, OVP3, and OVP2 increases gradually, implying that
their precise decreases gradually, but the differences are insignificant.
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Fig. 7 Absolute errors of the intrinsic camera parameters obtained by different methods under different noise
levels. a, (b), (c), and (d) show the results of ICP, OVP1, OVP2, and OVP3, respectively

12242 Multimedia Tools and Applications (2019) 78:12223–12249



4.2 Experimental results with real data

In the real experiment, we used two yellow table tennis balls as the calibration model. We used
a central catadioptric camera with a hyperboloidal mirror designed by the Center for Machine
Perception at the Czech Technical University; the FOVand mirror parameter of the camera are
212° and ξ = 0.966 (approximately equal to 1), respectively.

In the experiment, the two balls were moved so that they met, and based on their relative
position, three projection cases were considered: intersection, tangency, and separation. Two
different pictures were captured by the catadioptric camera in each case. Six images that meet
the stipulated conditions are shown in Fig. 9a–f; each image has a resolution of 1063 × 1033.
Because the processing is similar for each image in Fig. 9, here, only Fig. 9a is discussed as an
example. First, the Canny edge detector is used to extract the edges of the sphere image and the
contour projection of the paraboloidal mirror, as shown in Fig. 10a. Next, the equation of the
sphere image and the contour projection are obtained by least squares fitting (see Fig. 10b).
The initial values of the intrinsic camera parameters can be obtained by the equation for the
paraboloidal mirror contour projection [29]. On this basis, the equations of the sphere image
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Fig. 8 Comparison of the results of our methods, the method of Li and Zhao [14] ([36]1, [36]2, [36]3 denoted
respectively as the vanishing point, the vanishing line and parallel circles), the method of Duan and Wu [5], and
Initial [29] for a camera with different noise levels: (a) r, (b) fe, (c) u0, and (d) s
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and its antipodal sphere image are estimated using the method of Duan and Wu [5], as shown
in Fig. 10b, where the thickest conic is the projected contour of the paraboloidal mirror, the
two thin conics are the images of the two spheres, and the two remaining conics are the images

Fig. 9 Six images of two spheres in the real experiment: (a), (b) images of two intersecting spheres; (c), (d)
images of two tangential spheres; (e), (f) images of two separated spheres

Fig. 10 a Edges of the image in Fig. 9a are extracted using the Canny edge detector. b Corresponding to Fig.
10a, the contour projection of the paraboloidal mirror is obtained through least squares fitting, and the images of
the two spheres and their antipodal sphere images are obtained by the method of Duan and Wu [5]
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of the antipodal spheres. Finally, the intersection points of the two sphere images and their
antipodal sphere images in each image can be obtained, as discussed in Section 3.2. In
particular, the tangent point of the two tangential sphere images needs to obey the following
rules: (i) if the two spheres have no real intersection point, the midpoint of the closest two
points between the two sphere images is used as their tangent point and (ii) if the two spheres
have two close real intersection points, the midpoint between the two real intersection points is
used as their tangent point. The tangent point of the two antipodal tangential sphere images is
determined similarly.

Using the results of the above operation, the intrinsic camera parameters are obtain-
ed using our methods presented in Section 3 as well as the methods of Li and Zhao
[14], Duan and Wu [5], and Initial [29]. Because the method of Li and Zhao [14] and
Duan and Wu [5] requires three images of a ball, the three images were chosen
arbitrarily from those shown in Fig. 9a–f. The average calibration results with real
data are listed in Table 1. We find that the calibration results using these methods are
similar to one another, which implies that the calibration methods in this paper are
effective. In order to further verify the effectiveness of the calibration methods pro-
posed in this paper, we use the obtained intrinsic camera parameters (see Table 1) to
rectify the images shown in Fig. 9 to obtain their perspective images. Here, only the
rectified results of Fig. 9a, c, and e and are shown in Fig. 11, which only displays the
vanishing point ([36]1) for the literature [14]. These results indicate that our methods
are very effective.

5 Discussion and conclusions

In this study, we mainly discussed how to make use of the relative position between the
projections of two spheres to calibrate a paracatadioptric camera. From the analysis of
the relative projections of two spheres in the paracatadioptric image plane, there are
three cases for which methods for obtaining the principal point are given. Based on the
principal point obtained, the geometric relationship between the two groups of parallel
circles for which two spheres are projected on the unit viewing sphere is analyzed, and
the tangent lines at the antipodal points are found to be parallel. The vanishing points
on the plane of the projection circle can be obtained to determine the vanishing line,

Table 1 Calibration Results with Real Data

Calibration Methods Parameters

r fe s u0 v0

OVP1 1.00308 374.85941 2.07983 531.73617 519.00491
OVP2 0.99848 377.27956 1.78303 535.95486 519.40766
OVP3 0.99907 376.83935 1.84762 529.64511 519.38938
ICP 0.99921 375.08311 1.92161 531.77257 518.13793
[36]1 1.07372 377.67456 2.08637 533.57871 520.21977
[36]2 1.12703 379.59037 2.23791 530.19062 521.90248
[36]3 0.92931 375.21095 2.58374 524.16125 515.72164
Duan and Wu [5] 1.00362 374.99444 1.75670 526.70261 517.26443
Initial [29] 0.89719 371.28413 3.17573 521.64511 513.98943
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and the imaged circular points can be calculated by the equations of the vanishing line
and the projection circle. Hence, the other intrinsic camera parameters can be obtained
using the imaged circular points. When the principal point is unknown, the orthogonal
directions can be established to determine the orthogonal vanishing points on the basis
of a rectangle having the (real or imaginary) intersection points of the circles for which
two spheres are projected on the unit viewing sphere and their corresponding antipodal
points as the vertices, and the intrinsic camera parameters can be obtained. In addition,

Fig. 11 Rectified images of the images shown in Fig. 9a, c, and e: (a), (f), (k) using the initial parameters [29];
(b), (g), (l) using the method of Duan and Wu [5] to obtain the intrinsic camera parameters; (c), (h), (m) using the
vanishing point ([36]1) to obtain the intrinsic camera parameters; (d), (i), (n) using ICP to obtain the intrinsic
camera parameters; (e), (j), (o) using OVP to obtain the intrinsic camera parameters

12246 Multimedia Tools and Applications (2019) 78:12223–12249



the method of applying two spheres to calibration theories can be extended to n(n ≥ 3)
spheres in a view; and the only difference is that their projection cases have various
combinations (as the number of combinations increases with the number of spheres),
and higher accuracy can be achieved. Furthermore, n(n ≥ 2) spheres in a view may be
regarded as n(n ≥ 2) combination views of one sphere at different locations; hence,
n(n ≥ 2) views of one sphere for camera calibration are equivalent to spheres at different
locations.
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