
Multimedia Tools and Applications (2019) 78: 8183–8196
https://doi.org/10.1007/s11042-018-6737-3

Detection of double JPEG compression using modified
DenseNet model

Ximei Zeng1,2 ·Guorui Feng1,2 ·Xinpeng Zhang1,2

Received: 26 July 2018 / Revised: 14 September 2018 / Accepted: 27 September 2018 /
Published online: 8 October 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
With the increasing tendency of the tempering of JPEG images, development of methods
detecting image forgery is of great importance. In many cases, JPEG image forgery is usu-
ally accompanied with double JPEG compression, leaving no visual traces. In this paper,
a modified version of DenseNet (densely connected convolutional networks) is proposed
to accomplish the detection task of primary JPEG compression among double compressed
images. A special filtering layer in the front of the network contains typically selected filter-
ing kernels that can help the network following to discriminating the images more easily. As
shown in the results, the network has achieved great improvement compared to the-state-of-
the-art method especially on the classification accuracy among images with lower quality
factors.

Keywords Double JPEG compression · DenseNet · Filtering layer · F-LDA · Residual
noises

1 Introduction

As one of the most popular media, JPEG (Joint photographic experts group) images are eas-
ily accessible and thus are liable to be altered or manipulated with various basic operations
such as image resizing, filtering, splicing, noise addition, contrast enhancement, rotation,
double compression and so on [25, 26]. With no visual traces left, such images are often
not clear in processing history which could be detrimental in some specific situations [2].
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Therefore, it is of great significance to verify the trustworthy of a given digital image. A
variety of image forensics measures have been developed on the purpose of detecting the
traces of these operations.

Among these operations, double compression is a hotspot because it mainly has its place
in two different situations. One is that JPEG images often result from image forgery. Oper-
ations like image splicing tends to generate a forged image by copying a local block of the
source image to the target one, and a JPEG compression is needed if one of the two images
is in JPEG format. Consequently, a trace of JPEG compression is exhibited. The other is
that in several JPEG steganographic algorithms [27], the images are recompressed during
embedding after decompressed into the spatial domain. A double compression will take
place if the quantization matrix used in embedding differs from that used in the original
compression. This steganalysis usually uses the similar idea with the double compression
detection [17].

For JPEG double compression detection, researchers have proposed several methods
based on different algorithm theory. In [19], a noisy mixing model which is studied in
blind component analysis was formulated to interpret the shifted double JPEG compression
problem. To adapt the noisy environment, aside from the independent component analysis
(ICA), the asymmetry of independent value map (IVM) was learned to obtain the inde-
pendency’s normalized criteria. The features exploited were then fed to a support vector
machine (SVM) classifier. Besides, in [4], differences between magnitude of JPEG coef-
ficient 2-D array of a given image and the shifted versions along various directions are
used to strengthen artifacts of double JPEG compression. Transition probability matrices
are obtained with a thresholding technique applied to Markov random process. In another
study, the neighboring joint density features and marginal density features on the discrete
cosine transform (DCT) coefficients are extracted to help the learning classifiers to detect
the clue of manipulation [16]. Moreover, the variation trend of the DCT coefficients when a
JPEG image is recompressed with the same quantization matrix again and again was studied
in [8]. The differences of the trends among uncompressed, single-compressed and double
compressed images were then used to discriminate the images undergoing unknown times of
compression with a novel random perturbation strategy. Similarly, feature vector formed by
histograms of low-frequency DCT coefficients is used to accomplish a classification using
SVM in [18]. Other methods exploiting features from DCT coefficients are proposed in
[15, 22, 24].

In this paper, a special filtering layer and blocks of the DenseNet (densely connected
convolutional networks) are comprised to form a new neural network trained to check
the compression history of a given image. In particular, a network based on features
from both spatial domain and frequency domain is proposed to perform image forgery
detection on RGB images. The network is trained to differentiate images undergone
uncompressed, single-compressed, and double-compressed. If the image is classified as
double-compressed, the maximum likelihood of the quality factor (QF) of the primary JPEG
compression is detected.

The rest of the paper is organized as follows. A brief overview of CNNs and DenseNet
is given in Section 2. In Section 3, we describe the proposed model at full length, as
well as the process of filtering kernel selection in the first layer. Experimental results
and performance comparisons are presented in Section 4. Conclusions are given in
Section 5.
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2 Related work

In recent years, neural networks especially convolutional neural networks (CNN), have
shown ability of extracting and learning complex features and their representations from
images. CNN was first introduced in 1990 [14], but did not catch much attention until
2012 when it was used in the image classification on the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) [5, 12]. It benefits from fewer connections and param-
eters to train and reduced computational cost due to the pooling layer, compared with
standard feedforward neural networks.

In the wake of the wide utilization of CNNs, they have been the major methods for visual
object recognition, and many improved versions of CNN have been springing up. Among
them, the residual deep learning framework introduced in [7] was designed to address the
degradation problem: as the number of the layers increases, instead of steadily improving
or remaining stable, accuracy degrades rapidly and training error rises with the depth of
the network increasing [6, 9, 13, 20, 21]. A deep residual learning framework explicitly let
the layers fit a residual mapping by simply performing an identity mapping with a shortcut
connection which skips two convolutional layers. With the identity mapping, it is easier
for the solver to find the perturbation when the optimal function is closer to an identity
mapping rather than a zero mapping. Thus, the residual networks can ease the optimization
by providing faster convergence. In fact, not only the residual network, but also several
other researches have started to realize a similar improvement on CNN: to create short
connections from early layers to later ones [9, 13, 21].

In [10], the researchers simply distilled the idea above, and applied it to a greater part
of the network. They connects all layers each other to ensure the maximum usage of the
output information of every layer involved. As shown in Fig. 1, each layer takes in additional
inputs from the early layers, and meanwhile delivers its feature maps to all later layers.
Instead of summation, concatenation is used at the joint points, so that each layer’s input
contains all the output information of the preceding layers, and thus much fewer feature
maps are needed. The problem of gradient-vanishing is also alleviated for the implicit deep
supervision that each layer has the direct original input signal as well as the gradients of
loss function. All of these advantages will help a lot in avoiding overfitting problems.

More concretely, in one dense block, there are several convolutional layers including
one transition layer. The duplicated outputs of the previous layers are directly concatenated
to every input of the latter layers. That is to say, the number of the feature maps of each
layer in a dense block has a trend of increase. In the present paper, the number of feature
maps of each layer in a dense block in the proposed network is: 32, 32, 16, 16, 32, and
32. In addition, the input layer of the dense block has 32 feature maps, making a total of
160 feature maps concatenated together at the input of the last transition layer. The sizes of
the convolutional kernels in the convolutional layers defined in the proposed network are
all 3 × 3. The detailed structure of a dense block and the parameters set can be seen in
Fig. 1.

In [1], the authors applied a simply CNN based network to accomplish detection of dou-
ble JPEG compression. Besides, a multi-branch CNN network with raw DCT coefficients
as input was proposed in [15]. Moreover, a well-designed pre-processing step concatenating
the histograms of different selective sub-bands with different numbers of bins was applied
before the deep convolutional neural network [24]. However, to our best knowledge, few
works have applied the DenseNet in the field of double JPEG compression detection. Con-
sidering the training time and accuracy performance, four dense blocks are used in the
proposed model.
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Fig. 1 Layout of a dense block
with all layers connected

3 CNN-based network structure

3.1 Network architecture

To accomplish the task of detecting the existence primary JPEG compression and its quality
factor, a mainly spatial domain-based network with and without a frequency-based part is
defined, respectively. The spatial domain-based network is composed of a cascade of several
convolutional layers, pooling layers, fully-connected layers, and dense blocks. As for the
frequency-based part, it appears in form of a branch and joins the spatial domain-based
part at the second fully-connected layer. Figure 2 shows the architecture of the proposed
networks.

The first layer of the spatial domain part is a special filtering layer containing 12 specifi-
cally defined filtering kernels selecting using Fisher Linear Discriminant Analysis (F-LDA).
The details will be disclosed in the next section. A convolutional layer with 32 kernels of
size 3 × 3 follows the first layer and the resolution of the feature maps the output is then
reduced to 32 × 32 with a kernel of size 2 × 2 and a stride of two. After that, four dense
blocks each containing five convolutional layers and one transition layer. In addition, as the
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Fig. 2 Framework of the proposed neural network

last part of each dense block, an average pooling layer downsamples the output of them with
a 2×2 sized kernel and a stride of two. Thus, the resolution is reduced to 2×2 after the fifth
average pooling layer. The output is then reshaped to a column vector of length 128 and fol-
lowed with three fully-connected layers. The first two fully-connected layers contain 256
neurons while the last one contains nine neurons since it is the classification results output
from the network. To prevent overfitting, dropout technique is used in the first two fully-
connected layers so that half of the neurons are randomly dropped during training. The same
network is applied to eight different datasets with QF2 varying from 60 to 95 with step 5.

The frequency-based part of the network keeps in accordance with that in the research
[1]. The input of it is a 909 × 1 sized vector extracted from every image based on the first
nine spatial frequencies in the Zigzag scan order (the direct component is omitted) and the
corresponding histogram of their DCT coefficients following the idea described in [23] and
[1]. The next two layers are both convolutional layers with 100 kernels of size 3 × 1, each
followed by a max-pooling layer with a stride of two. After them, there is a fully-connected
layer containing 256 neurons. The output of it joins together into the output of the first
fully-connected layer of the spatial domain-based part, making a second fully-connected
layer containing 512 neurons with a dropout technique. During the validation experiments,
a purely spatial domain-based network and a multi-domain-based one are carried out to
complete the classification task respectively and the results are listed in two tables. We will
then give a simple introduction to every kind of layer in the network.

Convolutional layer: a conventional convolutional layer contains two main operations:
convolution and non-linearity. The convolution operation extracts larger quantity of features
through the theory of receptive filed and shared weights. It aggregates the response of both
local and global areas of the input as particular feature representations called feature maps.
In the proposed network, every convolutional layer in the spatial domain-based part follows
a batch normalization (BN) layer and a Rectified Linear Unit (ReLU) technique sequentially
(Fig. 3). Batch normalization is a technique introduced by [11], which can accelerate the
convergence rate of training process by standardizing the distribution of the inputs of each
layer so as to reduce the ‘internal covariate shift’ (that is, the phenomenon that the distribu-
tion of each layer’s input changes during training). Normalization is applied to each training
mini-batch as a part of the model architecture. With batch normalization, higher learning
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Fig. 3 Extended configuration of
a convolutional layer

rate can be used to train the model and we no longer need to take much care of parameter
initialization. In addition, the activation ReLU non-linearity, i.e., f (x) = max(0, x), also
allows the model train faster than other activation functions [3].

Pooling layer: to relieve the computational complex and probability of over-fitting, after
obtaining feature maps from the convolutional layers, the pooling layer is used to discard
irrelevant information while preserving important one over a local region of the feature
maps. There are mainly two pooling methods: average pooling and max pooling. The out-
puts of neighboring neurons in a local region of the feature maps are summarized as the
average and maximum value and then propagated to the next layer as higher-level feature
representations.

Fully-connected layer: several various-sized fully-connected layers comprise a classifi-
cation module. A dropout technique is used for the two previous fully-connected layers by
randomly setting the neurons to zero for the alleviation of over-fitting problem. For the last
fully connected layer, a softmax activation function is applied to generate a distribution over
all nine class labels to accomplish the classification.

3.2 Special filtering layer

To find out the most appropriate filtering kernels in the first layer of the spatial domain-
based network for the classification task, the F-LDA method is used to rank the ability of
residual noise defined for image classes distinguishing. F-LDA is a method used in machine
learning to find out a linear combination of features which are able to separate several
classes from each other. It projects the high dimensional pattern samples over the optimum
discriminant vector space so as to extract useful information for classification and reduce the
dimensions of feature subspaces. To ensure the best separability of the samples of different
classes, the projection makes sure that the pattern samples have the maximal between-class
scatter but the minimal within-class scatter. Mathematically, the between-class scatter can
be defined as:

Sbe =
c∑

i=1

Ni(ui − u)(ui − u)T , u = 1

N

∑
x (1)
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where N is the number of samples in the dataset, c is the number of classes, x is the input
training feature and ui is the mean vector of every class. The within-class scatter can be
defined as:

Sin =
c∑

i=1

Si , Si =
∑

x∈Ci

(x − ui )(x − ui )
T (2)

where Si is the covariance matrix of every class and Ci is the set of each class. Thus, the
object function can be described as:

J (W) = ‖WT SbeW‖
‖WT SinW‖ (3)

where W is the projection matrix. The projection matrix can also be referred to W =
[w1,w2, . . . ,wk], and wi satisfies the following formula:

S−1
in Sbewi = λiwi (4)

indicating that wi is the eigenvectors of the matrix S−1
in Sbe. In turn, the corresponding

eigenvectors to the first k greatest eigenvalues obtained after applying matrix eigenvalue
decomposition to the matrix S−1

in Sbe can be chosen to form the projection matrix, and the
value of k is no more than C − 1.

In the present paper, we rank every residual noise’s ability to get the class separation for
each class through F-LDA and find out the residuals that are good at separation as many
classes as possible. First of all, we defined seven basic filters (BF) among which four are of
size 3 × 3 and the other three are 5 × 5 (Fig. 4). To expand the diversity of RN, taking the
3 × 3 filter named BF3 as an example, we generate more filters using the formula below:

RN = α × RA ± β × RB (5)

where α, β ∈ {0, 0.1, . . . , 1}, and RA,RB ∈ {BF31, BF32, BF33, BF34}.
Altogether 144 unique BF3 are obtained after eliminating the repeated ones. Next, 1000

images for each class are randomly chosen after cropping the origin images of resolution

Fig. 4 Definitions of seven basic filters
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512 × 384 to 48 subimages sized 64 × 64. For each image, we extracted 400 blocks of
size 3 × 3 in the center. As for the RGB images have three channels, each block is an
average result of three blocks extracted from three channels. In all, a training sample of
400 × 1000 × 144 = 57600000 residual noises are obtained for each class. After that, a
feature matrix of size 9000 × 400 is generated with each BF. Thus, altogether 144 feature
matrixes are generated.

Using 400 features of each image among the nine classes, we calculate the linear dis-
criminant coefficients through F-LDA. The linear discriminant coefficients are used for
classification. We calculate the linear scores with the coefficients and finally, a posterior
probability of each one of the 9000 images are obtained. To see the ability to distinguish
among the nine classes of images, we calculate the average posterior probabilities of the
1000 images in one class so that for each BF, there is a 9×1 vector demonstrating its capac-
ity of classification. We rank the 144 posterior probabilities of each class and find out the

Fig. 5 Details about 12 selected basic filters
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same BFs shared by all nine classes in the top 50 ones ranked in each class. Nine BF3 come
out during the selection. The same operations are done to three basic BF5. We obtain 440
unique BF, and in the end, three of them are chosen. In Fig. 5, we depict the details about
12 selected basic filters. Furthermore, In Fig. 6, a simple workflow of the process of BF
selection is also provided.

4 Experiments

4.1 Experimental setup

We use the UCID database for the experimental tests. For the sufficiency of the data, we
crop each of the 1338 images (size: 512×384) into 48 blocks sized 64×64 and thus 64224
images are made. Among them, 90% images (57798) are used for training and the others
(6426) for testing. For the first and second JPEG compression, quality factors (QF) are set
from 60 to 95 with a step of five. Moreover, when QF1 = QF2, the second compression
is skipped considering the class would fall in the single-compressed class. Therefore, there
are seven double-compressed classes and another two classes, uncompressed and single-
compressed, for a network to be trained to classify. Eight networks are trained on eight
groups of datasets varying with QF2 to detect the primary JPEG compression. In addition,
based on the DCT coefficients, features of frequency-domain are extracted. In detail, for
each 8 × 8 block, DCT coefficients are extracted from a given N × N patch. We select the
first nine spatial frequencies in the zigzag scan order (eliminating the DC component). We
then form a 101 × 1 vector based on the occurrences of the absolute values of quantized
DCT values varying from -50 to 50. Thus, a vector containing 909 elements (101 vectors ×
9 columns) is taken as the input of the frequency-based part of network. After that, another
eight networks with the extra frequency-domain features are trained as before on the same
eight groups of datasets.

We implement the proposed model using the Tensorflow 1.5 deep learning framework,
Nvidia 1080 Ti GPU with 16GB RAM. The network is optimized using Momentum Opti-
mizer, with momentum=0.9. The learning rate is set as 0.1 due to the existence of BN layers.
We set the batch size for training and testing to 64 images.

Fig. 6 A simple workflow of the process of BF selection
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Table 1 Classification results over eight groups of datasets using the spatial domain-based network

QF2

% 60 65 70 75 80 85 90 95 AVG

Uncompressed 97.8 97.6 97.8 97.5 97.7 97.9 97.6 97.8 97.7

−2.1 −2.2 −1.6 −2.2 −2.0 −2.0 −2.1 −1.8 −2.0

Single compressed 83.2 85.6 86.2 86.4 88.3 91.2 91.7 92.4 88.2

+23.3 +15.5 +14.5 +7.5 +4.0 −4.3 −6.4 −6.2 +6.1

QF1 60 — 74.3 78.3 81.2 83.6 86.9 89.3 91.1 83.5

— +34.0 −8.7 −10.6 +3.2 −4.3 +9.0 +8.4 +4.4

65 73.2 — 77.2 79.2 80.8 83.4 86.1 86.7 80.9

+49.7 — +30.2 +0.9 +27.6 +16.2 +19.2 +9.6 +21.9

70 74.6 76.7 — 80.4 81.5 82.3 83.5 83.8 80.4

+32.3 +41.1 — +24.9 +16.9 +27.2 +17.4 +1.9 +23.1

75 85.6 85.2 83.9 — 89.4 90.2 93.3 94.2 88.8

+22.3 +29.1 +42.4 — +14.8 +18.6 +19.4 +15.7 +23.2

80 87.5 84.7 85.1 86.2 — 90.5 93.2 94.2 88.8

+7.9 +13.3 +27.1 +39.5 +1.4 +12.2 +9.0 +15.8

85 89.8 88.8 90.5 91.6 93.7 — 95.3 95.6 92.2

+26.2 +41.9 +11.3 +9.0 +14.3 — +4.5 +3.0 +15.8

90 90.0 91.3 93.2 93.5 93.8 94.2 — 95.0 93.0

+16.0 +15.8 +16.1 +18.9 +3.9 −1.4 — −4.1 +9.3

95 90.8 90.4 86.2 91.3 94.7 95.3 95.6 — 92.0

+20.6 +19.1 +46.7 +17.9 +5.1 +2.1 +1.4 — +16.1

4.2 Spatial domain-based network results

The performance of the spatial domain-based network is shown in Table 1. Both of the
accuracy and the True Positive Rate (TPR) are shown in the table. As the results tested on
6426 images shown, the comprehensive accuracy rate is up to 88.6%. Among them, it is
obvious that the performance is much better in the top-right area of the table because it
is easier to detect the existence of the primary JPEG compression as the traces of it could
easily remain when QF2 > QF1. Note that we only use features extracted from the spatial
domain and the results are far better than the results in [1] using the spatial domain-based
CNN and are close to the results using the multi-domain-based CNN in it. The positive
and negative differences between the results of the network we proposed and the spatial
domain-based network in [1] are also listed in Table 1.

4.3 Multi-domain-based network results

The results of the multi-domain-based network are shown in Table 2. As the results tested on
6426 images shown, the comprehensive accuracy rate is up to 95.0%. Generally, significant
improvement can be spotted in all of the eight networks. Similarly, the positive and negative
differences between the results of the network we proposed and the multi-domain-based
network in [1] are also listed in different colors.
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Table 2 Classification results over eight groups of datasets using the multi-domain-based network

QF2

% 60 65 70 75 80 85 90 95 AVG

Uncompressed 98.6 98.3 98.5 98.6 98.6 98.5 98.7 98.9 98.6

−1.3 −1.7 −1.5 −1.3 −1.3 −1.5 −1.3 −0.8 −1.3

Single compressed 94.4 95.2 96.3 96.9 97.1 96.7 96.9 97.3 96.4

+11.1 +11.9 +8.2 +6.6 +2.2 −0.4 +0.4 −2.1 +4.8

QF1 60 — 91.6 91.8 93.3 94.0 95.3 95.1 95.6 93.8

— +2.4 −6.5 −5.4 −3.6 −3.7 −2.9 −3.6 −3.4

65 88.7 — 90.0 92.2 92.5 93.0 94.2 93.8 92.1

+20.8 — +3.6 −3.6 −2.1 −5.0 −5.2 −5.3 +0.5

70 88.0 88.3 — 91.4 92.5 93.7 94.4 94.6 91.8

+4.2 +12.3 — +4.5 −6.0 −4.5 −3.7 −3.9 +0.4

75 89.6 89.0 89.5 — 93.4 95.0 95.6 95.8 92.6

+3.2 +8.1 +16.1 — −1.8 −2.4 −2.6 −3.3 +2.5

80 89.9 90.4 92.1 93.1 — 95.8 96.4 96.4 93.4

+12.7 +2.4 +8.0 +4.7 −2.4 −3.0 −2.7 +2.7

85 93.4 94.1 94.5 94.6 96.3 — 97.7 98.1 95.5

+17.0 +18.1 +13.0 +7.0 +4.4 — −0.7 −1.2 +8.2

90 97.2 97.3 97.8 98.2 98.1 98.2 — 98.5 97.9

+31.3 +20.6 +23.9 +15.6 +5.7 +2.7 — −1.1 +14.1

95 96.3 96.8 97.5 97.3 97.7 98.0 98.3 — 97.4

+13.3 +26.5 +20.2 +21.3 +4.5 +2.1 +9.4 — +13.9

From Fig. 7, we can see that the performances of eight proposed networks rise steadily
with QF2 increasing from 60 to 95. The performance of the proposed network is well better
than that of the network in [1] when QF2 is no more than 80, but only not as good as the
multi-domain-based one in [1] after QF2 surpasses 85.

Fig. 7 Comparison of the classification results of four networks
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5 Conclusions

To meet the challenge of double JPEG compression detection, the present paper has pro-
posed a modified version of DenseNet with a special filtering layer applied previously in the
front of the network and a frequency-based part exploiting DCT features from the images.
F-LDAmethod is used to select the most appropriate filtering kernels among a large amount
of predefined residual noises based on the posterior probability obtained. The DenseNet
was applied to achieve incremental training accuracy, efficient reutilization of the training
features and persistent feature propagation. Results show that the networks perfectly accom-
plish the task of double JPEG compression detection, especially making great progress
when QF2 is less than 80 comparing with the other works.
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