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Abstract
In medical field, it remains challenging to accurately segment medical images due to low
contrast, complex noises and intensity inhomogeneity. To overcome these obstacles, this
paper provides a novel edge-based active contour model (ACM) for medical image segmen-
tation. Specifically, an accurate regularization approach is presented to maintain the level
set function with a signed distance property, which guarantees the stability of the evolu-
tion curve and the accuracy of the numerical computation. More significantly, an adaptive
perturbation is integrated into the framework of the edge-based ACM. The perturbation
technique can balance the stability of curve evolution and the accuracy of segmentation,
which is key for segmenting medical images with intensity inhomogeneity. A number of
experiments on both artificial and real medical images demonstrate that the proposed seg-
mentation model outperforms state-of-the-art methods in terms of robustness to noise and
segmentation accuracy.

Keywords Intensity inhomogeneity · Adaptive perturbation · Medical image
segmentation · Computer vision

1 Introduction

Medical image segmentation is a hot research area in computer vision and image processing
[5, 7, 21, 32, 34, 51, 56, 76, 83, 85]. Accurate segmentation results are applied in the field
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of image understanding, such as for surgical planning, abnormality detection and disease
prediction [11, 64, 88]. Manual image segmentation not only relies on experienced experts
but also is time-consuming. Therefore, researchers have proposed many automatic segmen-
tation methods, including clustering based methods [17, 19, 20], learning-based methods
[26, 63], superpixel-based methods [1, 24] and active contour models(ACMs) [2, 45, 52,
73, 74, 84]. In recent years, ACMs have been increasingly and widely used in image pro-
cessing. The basic idea of ACMs can extract a desired object by using en evolution curve.
They can be divided into two types of models: explicit ACMs [15, 25, 62] and implicit
ACMs [8, 28, 48, 49, 61, 78]. Recently, level set methods(LSMs), as typical implicit active
contour models, have been widely used for image segmentation. LSMs provide convenient
shape representation for numerical computations and can easily handle topological changes
in curve evolution in a very conventional way. In addition, LSMs do not parameterize the
evolution curve.

However, traditional LSMs have the following limitations.

(1) High computational complexity: Level set implementation is based on a higher dimen-
sion, which increases the computational cost. If the image size is N , the computational
complexity is O(N ∗ N).

(2) Irregular evolution function: During the level set evolution, numerical errors appear
occasionally, which causes the irregular evolution function. The main reason is the
the irregularity of the level set function(LSF). Thus, it is very significant for LSF
to maintain the signed distance property. This property ensure the correctness of the
numerical calculation and the stability of evolution.

(3) Low robustness to noise: The traditional LSMs are inherently sensitive to noise for
segmenting noisy images. Recently, some improved level set methods with a certain
effect on segmenting noisy images have been developed [57]. For example, reference
[30] adopted an edge indicator function g to reduce noise (see Eq. 1). Niu et al. used a
local similarity factor to resist the influence of noise [45]:

g = 1

1 + |∇Gσ ∗ I |2 (1)

here, I is an image, Gσ is a Gaussian kernel with deviation σ , and g is the edge
indicator function.

(4) Challenge of intensity inhomogeneous image segmentation: To segmente an image
with intensity inhomogeneity, several methods based on LSMs have been presented in
the literature [3, 23, 31, 43, 55, 59, 81]. In the reference [43], the model approximated
the image intensity with a piecewise smooth function, which achieved the desired
segmentation results for images with intensity inhomogeneity. However, it was very
difficult to solve the energy functional due to its non-convexity [39, 46]. In addition,
the model was very time-consuming and limited in practical applications.

(5) Deficiency of locality: Existing LSMs lack locality properties. However, some
improved LSMs have the feature of a signed distance profile near the zero level set,
which does not guarantee the uniqueness of local properties. A localizing region-based
model has been proposed in the literature [6, 18, 27, 54].

To address the aforementioned problems, this paper presents a hybrid level set model for
image segmentation. The main contribution of this paper includes three aspects:

(1) We first utilize an efficient diffusion function to regularize the level set evolution,
which ensure the correctness of the numerical calculation and the stability of the curve
evolution.
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(2) Second, in order to balance the stability of the curve evolution and the accuracy of
the segmentation, a perturbation factor is constructed to integrate the external energy
functional of the curve evolution.

(3) Third, a new edge indicator function is proposed to resist the noise of the image while
preserving image edge detail to a large extent.

(4) Finally, a large number of experimental results for synthetic and medical images show
the superiority of our model in terms of anti-noise ability and segmentation accuracy.
In addition, comparisons with well-known segmentation models show that our model
is more efficient and robust to noise.

The remainder of this paper is organized as follows: Section 2 reviews previous research. A
new segmentation model based on adaptive perturbation is proposed in Section 3. The exper-
imental results are given in Section 4. Section 5 discusses the evaluation of the proposed
model. Finally, conclusion and future works are discussed in Section 6.

2 Related works

In image processing fields, LSMs have been widely used to solve image segmentation prob-
lems, however, their applications have been troubled with the irregularities of the LSF in
segmenting images with intensity inhomogeneity. Therefore, many improved LSMs have
been proposed, such as the reference [29–31, 57, 78, 79, 81]. To sum up, the improved
LSMs is divided into two classes: re-initialization-based LSMs and variational LSMs with-
out re-initialization. In this section, we will introduce two categories of models for image
segmentation: re-initialization-based LSMs and variational LSMs without re-initialization.
Then, we describe the two categories and their limitations for segmenting images with
intensity inhomogeneity.

2.1 Re-initialization based level set method

In the traditional level set method, high-dimensional implicit functions tend to be sharp or
flat during the evolution, which results in numerical inaccuracy. To avoid these defects, one
remedy is to initialize the implicit function as a signed distance function(SDF) periodically
during the curve evolution. The work in [47] first proposed to initialize the LSF as φ(x) =
1 ± dist2(x). Here, dist2(x) represents a distance function. The standard re-initialization
equation is defined as follows:

∂φ

∂t
= sign(φ0)(1 − |∇φ|) (2)

where φ0 is a re-initialization function, φ is the high dimensional implicit function, the
function of sign(·) represents the sign function [50, 80], and t is a time step.

The re-initialization method plays a significant role in maintaing the stability of curve
evolution. In practical applications, there are three shortcomings:

(1) Problem of re-initialization execution: In the evolution processing, how and when to
initialize the LSF to a sign distance function remain unsolved problems.

(2) Time step constraints: When the time step is larger, the LSF’s φ may wander irreg-
ularly in some iteration steps and become far, form an SDF resulting in inaccurate
segmentation results. By contrast, the shorter the time step, the higher the accuracy,
and the higher the time consumption.
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(3) High time consumption: Ideally, the re-initialization function will allow the LSF to
have the property of a signed function to ensure stable curve evolution. Because of
its ad-hoc manner, the time consumption is excessively high. In addition, the LSF is
compelled to be an SDF, which cannot guarantee stability.

2.2 Variational LSMs without re-initialization

To solve the defects of the re-initialization based LSM, researchers have proposed some
variational LSMs without re-initialization to adjust the level set function during curve evo-
lution. Li et al. proposed a variational formulation as a penalty term to eliminate the process
of re-initialization [28, 30]. The penalty term P(φ) is defined as follows:

P(φ) = 1

2

∫
�

(|∇φ| − 1)2dx (3)

The gradient flow of P(φ) is obtained as follows:

∂φ

∂t
= −∂P

∂t
= div(D∇φ) (4)

here, D is a diffusion rate. The penalty term can successfully regularize the variational LSF.
For variational LSMs, Li et al. proposed two diffusion rates to regularize the level set

evolution. These rates Di(i = 1, 2) are defined as follows:

D1 = 1 − 1

|∇φ| , |∇φ| > 0 (5)

D2 =
{

sin(2π |∇φ|)
2π |∇φ| , 0 < |∇φ| ≤ 1

1 − 1
|∇φ| , |∇φ| > 1

(6)

where, D1 and D2 are called DRLSE1 and DRLSE2, respectively.
In our previous work [76], we also proposed an efficient diffusion rate, that achieved the

same effect. The function is as follows:

D3 =
⎧⎨
⎩

(|∇φ|2 − 1)2 + 2|∇φ|2(|∇φ|2 − 1),
0 < |∇φ| ≤ 1

1 − 1
|∇φ| , |∇φ| > 1

(7)

In the above diffusion rate, the LSFs can be successfully constrained to a signed distance
function. For instance, as shown in Fig. 1, to ensure a flat shape of the LSF, the diffusion
rate D2 (or D3) smoothly decreases |∇φ| to 0 at blue arrow 1 (or black arrow 3), When the
value of |∇φ| is larger than 1(as shown by red arrow 2), the diffusion rate is increased to
decrease the value of |∇φ|, which makes the diffusion rate close to 1.

The variational LSMs without re-initialization have high efficiency in applications [38,
44]. However, some defects exist:

(1) Lower anti-robustness for images with weak boundaries: If an image to be segmented
has a weak boundary, the force function will lead to boundary leakage especially near
the zero level set. Accordingly, we will obtain an inaccurate segmentation result.

(2) No consideration of the trade-off between the regularization term and segmentation
accuracy. In the whole process, the LSFs are always regular and stable; however, the
segmentation result will be inaccurate when the energy function converges.
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Fig. 1 Comparison of the different diffusion rates

3 Methodology

Despite the drawbacks of the DRLSE method as mentioned above, the model successfully
avoids the process of re-initialization and ensures that the level set function has the desired
shape in the whole iterative process, as shown in Fig. 2 a. In this paper, we propose an
enhanced model to perform accurate segmentation and maintain the LSF as an SDF. Specif-
ically, we first analyse the relationship between the stability of the evolution curve and the
accuracy of segmentation. Second, we propose an efficient strategy to achieve a balanced
gap. In this strategy. an adaptive perturbation factor is added to the external force to prevent
the energy function from falling into a local optimum in the neighbourhood classification
process.

3.1 Analysis of curve smoothness and segmentation accuracy

Although LSMs have solved many scientific problems, their applications have always been
troubled with the irregularities of the LSF in the curve evolution, which cause numerical
errors. Numerical correctness is the guarantee of the stability of the level set [30]. Therefore,
to guarantee the stability and numerical computation of the evolution curve, it is critical to
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Fig. 2 Comparisons of the influence of regularization term on segmentation accuracy

maintain the property of the signed distance function of the LSF, especially near the zero
level set during the evolution process. Accordingly, the LSF should be smooth. However, in
the real-world, most images feature intensity inhomogeneity. With the guarantee of the good
status of the LSF, accurately segmenting images with intensity inhomogeneity becomes a
considerable problem.

As shown in Fig. 2, we perform the segmentation experiments on a synthetic image
and its corresponding noisy images. (a) is the segmentation results and their correspond-
ing level sets of the DRLSE model, (b) is the segmentation and their corresponding level
sets of the proposed model. In the DRLSE model, the regularization term has a strong
smoothing effect and ensures that the LSF has a signed distance property. However,
when the intensity value is very similar between the foreground and background, espe-
cially near the boundary of the image, the DRLSE model has poor performance. Thus,
maintaining the balance between the smoothness of the evolution curve and the accu-
racy of segmentation is key. Although the LSF of the DRLSE model is more stable,
our model performs better than the DRLSE model in segmentation accuracy as shown
in Fig. 2b. In our model, we construct an adaptive perturbation strategy to achieve this
compromise.
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3.2 The proposedmodel based on the adaptive perturbation factor

As shown in Fig. 2a, When the image noise is severe, the segmentation result is inaccurate,
but the regularization function always maintains stability of the level set function under the
premise of preserving the image features [35]. With the influence of noise, the LSE force F

reaches to a fault balance. In fact, the balance is an illusion. It is vitally important to main-
tain a balance between the stability of the curve evolution and the accuracy of segmentation.
Motivated by perturbation-based methods [9, 16], an adaptive perturbation strategy has the
feature of jumping out of the local optimum. In our model, we utilize the perturbation strat-
egy to solve the fault balance. Next, we propose a perturbation factor based level set method
to segment images with intensity inhomogeneity. Specifically, an adaptive perturbation fac-
tor is added to the external force to disrupt the fake balance in the adaptive iterative process
while ensuring the stability of curve evolution. The adaptive perturbation is based on the
principle of clustering. In the local neighbourhood regions, the perturbation factor ensures
that pixels with similar intensity values belong to the same category. Next, we will elaborate
the adaptive model based on the perturbation factor in detail.

In the traditional level set function, the implicit high-dimensional curve evolution
function can be expressed as:

{
∂φ
∂t

= F |∇φ|
∂φ
∂t

|t=0 = φ(x, t = 0)
(8)

where F is a force function and φ(·) is a high dimension implicit function, that can handle
topological changes in the curve, such as curve merging and splitting. The symbol ∇ is a
gradient operator and can be expressed as ∇(·) = (∂(·)/∂x1, ∂(·)/∂x2, . . . , ∂(·)/∂xn), t is
a time step.

Motivated by reactive-diffusion methods in chemical mechanisms [12, 22], we propose
to add an adaptive perturbation factor to the external force. In the traditional external energy
function, noise interference leads to premature convergence of the function during curve
evolution. The perturbation strategy can disrupt the fake energy balance. In addition, a reg-
ularization term is needed to ensure that the LSF is an SDF. The energy evolution equation
is defined as follows:

∂φ

∂t
= μdiv(D∇φ) + καT F |∇φ| + A · ∇φ (9)

αT =
{
1, T ≤ Tthreshold

exp(−λ(Ii − Ij )
2), T > Tthreshold

(10)

where μ and κ are two constant parameters,D is a diffusion rate, αT is a perturbation factor,
Ii and Ij are the intensity values at pixels i and j , respectively, F is a scalar function, A

represents a vector valued function, T represents the number of iterations, λ is a control
parameters, and Tthreshold is an iteration threshold, in which the curve energy reaches a
pseudo-balance due to the effect of factors such as noise. It is difficult to automatically set
the threshold for the number of iterations, because the number of iterations is different for
different images. The value of t determines the size of the local region. If t is too large , over-
fitting will occur easily. If t is too small, the result will fall into the local optimum. In the
proposed model, after extensive experimental verification, we choose to set t to an empirical
value within the narrow band for our experiments. The narrow band will be discussed in
Section 3.3.
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In details, ideally, if the LSF force F is close to zero, the zero level set will be near
the object boundary. However, for an image with intensity inhomogeneity, when the LSF
force F is close to zero, the zero level set does not reach the object boundary, because the
property of intensity inhomogeneity breaks the balance. The perturbation factor is added to
restrict the force function F to act in a small neighbourhood of the zero level set. In fact,
the pseudo-balance ensures that the minimization of the energy function falls into the local
optimum.

3.3 Implementation

From the analysis in Section 3.2, we realize that the trade-off solution of (10) is a piecewise
solving problem, that should be divided into two iterative steps. We call it a two-stage seg-
mentation model based on the perturbation factor. In the first step, a conventional level set
with a clipping regularization term is executed; in the second step, an adaptive perturbation
factor is added to the external force to prevent the energy function from falling into a local
optimum.

In the field of image segmentation, various types of image information can be used to
define the energy model. For the level set method, two most important methods are the edge-
based method and the region-based method. In our model, we use edge-based information
as the external energy. In contrast to the standard edge-base method, we use a perturbation
factor to ensure that the misclassification problem falls within the narrow band.

Let I be an image to be segmented on a domain �; the conventional edge indicator
function g is defined as in (1). Although, the function of ∇Gσ ∗ I in (1) can resist the noise
of an image, it also weakens the edge information of the image. Therefore, in our model,
we use the next edge indicator function gi to compensate for the deficiency:

gi = 1

1 + (gc/γ )τ
(11)

where gc is the normalized gradient of I [77], and γ and τ are two constant parameters.

gc = || � (Gσ ∗ I )||
max||∇(Gσ ∗ I )|| (12)

Let φ : � → R, the energy functional Eext is defined as :

Eext = λLg(φ) + βAg(φ) (13)

where λ, β are two non-negative parameters. Lg represents the geometric energy,Ag is the
area weighted function. They are defined as:

Lgi
(φ) =

∫
�

giδ(φ)|∇φ|dx (14)

and

Agi
(φ) =

∫
�

giH(−φ)dx (15)

where the Dirac delta function δ(·) is used to calculate the line integral of gi , and the Heav-
iside function H(·) can be used to compute the internal energy of the closed contour. Due
to the non-differentiation of the function H(·), we use the approximate function defined as
follows:

H(x) = 1

2

[
1 + 2

π
arctan

(x

ε

)]
(16)
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δ(x) = ∂H(x)

∂x
= 1

π
.

ε

ε2 + x2
(17)

Combining (9) and (13), we obtain the following energy evolution equation φt :

φt = μdiv(D∇φ) + καT λδ(φ)div

(
gi

∇φ

|∇φ|
)

+ βgiδ(φ) (18)

where μ, κ, β are controlling constant parameters, D and αT are the diffusion rate and
perturbation factor defined in (9) and (10), respectively, and gi represents the edge detection
operator defined in (11). The higher-dimensional implicit function φ is a Lipschitz function
initialized by the following:

φ0(x) =
⎧⎨
⎩

c0, x ∈ � − �0
0, x ∈ ∂�0,

−c0, x ∈ �0 − ∂�0

(19)

To reduce the computational cost of the level set method, the proposed model confines
the computation within a narrow-band scheme around the closed contour. The red line rep-
resents the zero level set, and the narrow-band is between the blue line and the green line.
Simply, we define the narrow-bandNBρ as follows:

NBρ =
⋃
j∈Z

|i − j |2 (20)

where, Z is the set of points within the narrow-band, j is the neighbourhood centered at
pixel i, and ρ is the amplitude of the narrow band. In details, we describe the main steps of
our algorithm:

Step 1 Initialization. Initialize the LSF φ to be a binary function φ0, and other constant
parameters μ, κ, λ, β, ε and ρ. Formulate the initial narrow-band according to
NBρ = ⋃

j∈Z0 |i − j |2.
Step 2 Compute φn+1 = φn + �tL(φ).

If t ≤ Tthreshold , update φn+1 using (9) (αT = 1); else compute the perturbation
factor using (10) within the narrow-band. Then update φn+1 using (9).

Step 3 Set the narrow-band usingNBn+1
ρ = ⋃

j∈Zn+1 |i − j |2.
Step 4 Convergence judgment. If φn+1 satisfies the termination condition, then stop the

iteration; otherwise, set n = n + 1, go to Step 2.

4 Experimental results

In this section, we will describe experiments to prove the effectiveness of our proposed
model for segmenting two-phase medical images. Our experiments are implemented in
MATLAB R2013a on a 3.3 GHz Intel. In each experiment, some constant parameters are
set as follows: �t = 1.0,mu = 0.2, k = 1.0, λ = 3.0, β = 1.0, ρ = 3.0, andε = 1.5.
Different values of the time threshold Tthreshold are used depending on the degree of the
intensity inhomogeneity of the image.

In the first experiment, we compare our proposed model with the DRLSE [30] model by
applying them to a magnetic resonance(MR) image of the left ventricle of a human heart.
The size of the MR image is 136 × 132 pixels. The image Fig. 3 has severe intensity inho-
mogeneity, and part of the image boundaries are quite fuzzy. Thus, segmenting this medical
image is an arduous task. In Fig. 3a and b show the iterative details of the DRLSE model. In
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(a) n=130, 170, 210, 250 (from left to right)

(b) n=310, 510, 610, 710 (from left to right)

(c) n= 130, 210,230,270 (from left to right）

(d) n=310, 350, 410, 450（from left to right）

Fig. 3 Segmentation Results of DRLSE and Our Model: a and b are the DRLSE model, c and d are our
model

the first stage, the energy curve evolves along the object(Iteration Times:n=130,170,210),
but, due to the severe noise of the MR image and the image smoothing processing, this algo-
rithm causes an error in the segmentation results. In Fig. 4c and d present the segmentation
results of the proposed model. The closed contour can converge according to the boundary
of the image, eIn particular, for iteration times n = 310 as shown in Fig. 4d, the evolution
curves converge near the boundary of the image, and finally the energy curves converge
at the iteration times n = 410 as shown in Fig. 4d. Fig. 4d (n=450) shows that the itera-
tion process has been terminated. From Fig. 6, it can be concluded that the proposed model
achieves better segmentation results than the DRLSE model.

To verify the performance of our model in the case of noise, in the second experiment
we apply it to a typical ultrasound image with severe noise. For a fair comparison, we
use the same initial contour for the ultrasound image. We first use the DRLSE model to
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(b) LSF of DRLSE, our Model and LSACM

(a) Comparison of  DRLSE, our Model and LSACM
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Fig. 4 Comparisons among Our Model, DRLSE and LSACM

segment the ultrasound image, and the segmentation result is shown in the first part of
Fig. 4a. In Fig. 4b, horizontal coordinates (x, y) represent image pixels, and z-axis represents
level set function values. The evolution of the LSF is stable as shown in the first part of
Fig. 4b, but the segmentation result is less accurate. Due to the influence of severe noise,
the energy minimization of the curve falls into the local optimum in the curve evolution
process. In addition, the balance between the stability of the LSF and the accuracy of the

Fig. 5 Comparisons among our method, CV, LIF, DRLSE and LSACM(from left to right)
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Table 1 CPU time(in s) comparison in Fig. 5

CPU time

Figure 5 Our Model CV LIF DRLSE LSACM

image1(152×128) 28.20 36.18 29.01 42.99 71.40

image2(95×93) 18.63 21.39 22.79 30.46 42.55

image3(87×79) 7.65 15.93 20.32 19.68 39.43

segmentation result is broken in the DRLSE model. Therefore, the DRLSE model has much
lower accuracy of segmentation of the ultrasonic image. The second of Fig. 4a shows the
segmentation result of our model, which has high accuracy for segmenting the ultrasound
image. Compared with the DRLSE model, the advantage of our model is that the adaptive
perturbation factor is added to ensure energy minimization into the local optimal solution
near the object boundary. In addition, our model guarantee the stability of the LSF as shown
in the second of Fig. 4b. As shown in the third part of Fig. 4a the locally statistical active
contour model(LSACM) achieves good performance in segmenting images with intensity
inhomogeneity, especially magnetic resonance images(see [81] for more details). However,
the high noise of the ultrasound image disturbs the distribution of image intensity, and the
model is based on the assumption that the noise is a Gaussian distribution with zero mean
and variance σ 2. From the third part of Fig. 4b, the model use the standard Von Neumann
to assure the stability of the LSF, which is lower than that of DRLSE and our model.

In the third experiment, the segmentation performance of our model is illustrated by
comparing it with the Chan-Vese (CV) model [55], local image fitting (LIF) model [78],
DRLSE and LSACM(the segmentation results are shown as column 1 to column 5 of Fig. 5,

(a) initial contours (b) CV model (c) RSF model (d)LVC model (e) Our model 

Fig. 6 Comparisons among our method, the CV model, the region-scalable fitting (RSF) [29] model and the
local variational contour (LVC) [79] model
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Table 2 CPU time(in s) comparison in Fig. 6

CPU time

Figure 6 Our Model CV RSF LVC

image1(160×165) 50.77 185.02 109.07 57.84

image2(141×157) 40.13 91.07 89.55 49.61

image3(181×156) 15.31 175.13 20.02 35.75

respectively). From top to bottom, Fig. 5 shows the segmentation results for a heart CT
image, an ultrasound heart image and an X-ray bone image, respectively. In our model, we
use a narrow-band as a constraint as shown in (20). The main purpose is to form the local
region and clearly state the intensity in each local region. For a fair comparison, for these
five models, we use the same initial contour shown in the green window of the first column
of Fig. 5. The constant parameters are the optimal scale in all experiments. Table 1 shows
the CPU time consumption of the CV, LIF, DRLSE, LSACM and our model. Fig. 5 shows
that our model achieves satisfactory results because we attach an adaptive perturbation fac-
tor to the external force that can better distinguish each object from the background. The
CV model uses global region information and thus misclassifies the medical images with
intensity inhomogeneity. The LIF model can adequately segment the bone image because
its intensity inhomogeneity is not severe. The DRLSE is stable but does not perform well
on these medical images.

To further demonstrate the capability of the proposed model in segmenting images with
intensity inhomogeneity in the fourth experiment shown in Fig. 6, we test our model for
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Fig. 7 Comparisons among LVC [79], NLALS [58], DRLSE [30] and Our Model
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(a) Segmentation Results of  LVC, RSF, NLALS and our Model (SNR=  30) 

(b) Segmentation Results of  LVC, RSF, NLALS and our Model (SNR=  20) 

(c) Segmentation Results of  LVC, RSF, NLALS and our Model (SNR=           10) 

Fig. 8 Comparisons among LVC, RSF, NLALS [58] and Our Model with different signal-noise
radio(SNR=30,20,10)

three real medical images. From top to bottom, Fig. 6 shows a bone x-ray image, a brain
MRI image and a vessel image, respectively. Table 2 shows the CPU time consumption of
the CV, RSF, LVC and our model. Due to the complicated feature of image images, the CV
model fails to extract the boundaries of the images and has higher time consumption. The
region-scalable fitting (RSF) [29] and the local variational contour (LVC) [79] models can
partially segment images. Comparison with the other models, our model is proved to be
more efficient.

5 Evaluation

In this section, we first evaluate the stability of curve evolution using a synthetic image
in the fourth experiment. In Fig. 7a is the ground truth(left) and the initial contour of the
noisy image (right), (b) represents the segmentation results of the LVC [79], the nonlinear
adaptive level set (NLALS) [58], the DRLSE [30] and our model, (c) shows the respective
level set functions, respectively (from left to right). The results of the comparison show that
our model is more stable and accurate.

To evaluation the effectiveness of our model, an effective similarity measurement must
be chosen [10, 60]. Among various similarity coefficients, we use the Jaccard similarity
coefficient to compare our model with state-of-the-art models, including the LVC [79], RSF
[29] and NLALS [58] models. The Jaccard similarity coefficient, also known as the Jaccard
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Table 3 Comparisons of Jaccard Index with different signal-noise radio

Models SNR=10 SNR=20 SNR=30

LVC 0.9808 0.9841 0.9978

RSF 0.5908 0.9821 0.9976

NLALS 0.7198 0.8343 0.9933

Our Model 0.9839 0.9959 0.9981

index(J I ), is a statistic used for measuring similarity between finite sample sets. In the field
of image segmentation, the J I can be computed by

J I (S1, S2) = |S1 ∩ S2|
|S1 ∪ S2| (21)

where S1 and S2 are the segmented object region and the ground truth, respectively.
Specifically, the larger J I , the more accurate the segmentation rate.

We use a synthetic image with three different signal-to-noise ratio (Fig. 8a SNR=30,(b)
SNR=20, and (c) SNR=10) to compare the proposed model with other state-of-the-art mod-
els as shown in Table. 3. For a fair comparison, we use the same initial contour in all
experiments. When the noise is small, the differences between the models are not obvious,
and the J I values are relatively similar, as shown in Fig. 8 (SNR=30). In the three mod-
els, the LVC model utilizes Gaussian filter to regularize the LSF and has the capacity of
anti-edge leakage, Therefore, the model can well segment noisy image as shown in the first
column of Fig. 8; the RSF model constructs a date fitting term by using kernel function,
and well segments images with intensity inhomogeneity as shown in the second column of
Fig. 8a and b. However, it is hard to control the scale parameter, when the scale parameter
is unsuitable, the model has poor performance as shown in the second column of Fig. 8c.
And the NLALS construct a clever velocity in the energy functional for objects with weak
boundaries, and it performs well in segmenting images with weak boundaries, however, the
third column of Fig. 8 shows that this model cannot segment severe noisy images. As the
noise increases, the comparison results become more significant. Table 3 shows that LVC
has equivalent performance against the proposed, and the proposed model is better than the
RSF model and NLALS model. In general, our model is more efficient than other models.
The main reason lies in that the adaptive perturbation factor within the narrow-band is con-
structed during the curve evolution in the proposed model, which prevents the minimization
of the energy function from falling into the local optimum. In addition, the regularization
term ensures that the LSF retains the signed distance property during the curve evolution.

6 Conclusion and future works

In this paper, we proposed an adaptive perturbation based level set method for medical
image segmentation. In the model, an appropriate regularization technique is presented to
maintain the level set as a sign distance function, which guarantees the stability of the
evolution curve. Then, we built an improved edge-based ACM with local perturbation by
using the local intensity information within the narrow-band, resulting in efficient seg-
mentation of medical images with intensity inhomogeneity. Moreover, our model does not
re-initialization, which improves the efficiency of our algorithm. Extensive experiments
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exploring different aspects using both synthetic images and medical images are provided
to evaluate our model, and demonstrated effective improvements of both segmentation and
anti-noise ability, compared with other classic models.

In future work, we will explore at least three directions. (1) GPU-based image process-
ing is expected to accelerate the segmentation speed, and thus we will attempt to accelerate
our algorithm by using GPU technology [4, 72, 86, 87] or parallel framework [65, 66]. In
addition, in the era of cloud computing, we will try to improve the performance of the pro-
posed model using optimization technology [75]. (2) We will attempt to combine our model
with other related areas, such as human motion tracking [13, 36, 37], detection technology
[68, 69], deep learning methods [40, 41, 70], and PSO-based intelligent algorithms [67, 71]
to improve the efficiency of solving the energy minimization problem. (3) We can refer to
natural images [14, 42] or video processes [33, 53, 82] and explore the evaluation standard
of medical image segmentation.
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