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Abstract
Food recognition is the first step for dietary assessment. Computer vision technology is being
viewed as an effective tool for automatic food recognition for monitoring nutrition intake. Of
the many food recognition algorithms in the literature, Bag-of-Features model is a proven
approach that has shown impressive recognition accuracy. In this paper, we propose a small
and efficient convolutional neural network architecture for Chinese food recognition, which is
more applicable for resources limited platforms. Our network architecture is designed to model
and perform a pipeline of processing similar to the Bag-of-Features approach. The main
advantage of the proposed architecture, like other convolutional neural networks, is its ability
to unifiedly optimize the entire network through back propagation, which is critical to
recognition accuracy. We further compare and correlate our architecture with the traditional
Bag-of-Features model in an attempt to investigate the similarities between them and identify
factors that influence the recognition accuracy. The proposed architecture with a 5-layer deep
convolutional neural network achieves the top-1 accuracy of 97.12% and the top-5 accuracy of
99.86% on a newly created Chinese food image dataset that is composed of 8734 images of 25
food categories. Our experimental result demonstrates the feasibility of applying the proposed
compact CNN architecture to a challenging problem and achieve real-time performance.

Keywords Chinese food . Recognition . Convolutional neural network . Bag-of-features model

1 Introduction

Statistics show that approximately 600 million adults and 100 million children worldwide
were obese in 2015 [4]. Obesity increases the possibility of contracting diseases or affecting
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health conditions such as cardiovascular problems, type 2 diabetes, certain types of cancer,
osteoarthritis and depression [13, 19]. It is regarded as one of many serious health problems in
most developing and developed countries. The American Medical Association even classified
obesity as a disease in 2013 [2, 22]. Obesity may be a result of any combinations of excessive
food intake, lack of physical activities, endocrine or mental disorders [5], and heredity. It is
considered preventable by some experts through social changes and personal choices. Among
treatments for obesity, an accurate measurement of the daily nutrition amount or portion of
food intake is an effective way to control or monitor obesity. It provides valuable insights into
the occurrence of disease and subsequent approaches for mounting intervention programs [34].

Traditional methods to assess the amount of daily food intake are based on human visual
recognition and self-reporting through the use of questionnaires and structured interviews [6,
34] (e.g., 24-Hour Dietary Recall and Food Record), which require the help from the
nutritionist and cooperation from the obese patient. Investigations found that the accuracy of
food intake data obtained by self-reporting is much dependent on experience and is prone to
being underestimated [6, 31]. The accuracy of self-reporting methods is often affected by
human errors.

Recent advancements in hardware, image processing, and pattern recognition make
computer vision a viable technique for personal health assistance. Many promising works
based on computer vision have been proposed to address the food recognition and assess-
ment problem. With the widespread use of smart phones which are all equipped with Internet
connection, high resolution cameras, large memory capacity, and a powerful processor,
computer vision based food recognition and amount estimation algorithms can be readily
implemented and run on a smart phone as a portable device to automatically acquire accurate
diet assessment data [29].

A computer vision based diet assessment scheme usually pre-processes the acquired food
image and segments the food regions from the background. An elaborate algorithm is
employed to recognize the type of the food in the image. The nutrition content of the food
can then be retrieved by accessing public nutrition datasets, e.g., Food and Nutrient Database
for Dietary Studies (FNDDS) [25], through Internet connection, or looking up a nutrition
database stored locally on the phone. The amount or the weight of food can either be estimated
by stereo vision techniques or directly weighted by a scale mounted beneath the food
container. The energy or the calories of the food can be calculated using the type, the nutrition
content, and the amount of the food.

As a unique application of object recognition, food recognition based on efficient image
features plays a critical pole in the process of diet assessment. Many human designed
descriptors are proposed to characterize the specifics of the food image, e.g., size, color,
texture, shape, and context-based features. The characteristics or the features of food are
input to classifiers such as artificial neural networks (ANN), support vector machine (SVM),
or Adaboost for classification. In recent years, the Bag-of-Features (BoF) model have been
employed to address the challenges of food recognition. Methods based on the BoF model
learn a dictionary of visual words from the training sets of food images to provide an
accurate local description of food image patches. They represent the food image with a
histogram of visual words which are designed to describe particular visual patterns. BoF
methods ignore the order of local descriptors corresponding to a learned word dictionary and
consider only the frequency they appear to form a global representation of the food image.
The concept of BoF model adequately fits for solving the problem of food recognition and
has obtained promising results.
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In recent years, Convolutional Neural Networks (CNNs) and its improvements [18, 27, 33],
as a type of highly parallelized method, has achieved great success in many computer vision
applications such as classification, segmentation, object detection, and edge detection. In this
paper, we propose a compact and efficient CNN architecture which is suitable for resources
limited platforms for Chinese food recognition, and investigate the relationship between the
BoF model based pipeline and CNNs. The proposed CNN architecture does not learn the
dictionaries explicitly for modeling the patch space. Instead, it implicitly accomplishes the
learning task similar to the BoF with hidden layers. The filters or kernels formulated as the
convolutional layers in CNNs serve for the purposes similar to the atoms in the dictionary of
BoF. Similarly, the process of generating a histogram to form global features in the BoF is
equivalent to the pooling layers in CNNs. As opposed to optimizing feature extraction, feature
representation, and classification separately and independently in the BoF methods, the
proposed CNN architecture performs better than the BoF methods by taking the advantage
of the intrinsic unified optimization of the entire network.

The contributions of this work include three aspects: (1) A small and efficient convolutional
neural networks architecture for Chinese food recognition; (2) Comparison and correlation
between the proposed CNN architecture and the BoF model; (3) Demonstration of the
effectiveness and accuracy of our CNN architecture.

2 Related works

Traditional human visual recognition and self-reporting methods are not able to provide
accurate and instantaneous evaluation on dietary intake, Shroff et al. propose a mobile
phone-based fast-food recognition system for calorie monitoring [24]. Food image is cap-
tured by a cell phone, while the recognition of the food image is performed on a remote
server. Because of the varying and implicit nature of certain foods, contextual information
from the user and system are required as auxiliary information for traditional image recog-
nition techniques. Zhu et al. develop a volume estimation method which utilizes camera
parameter estimation and model reconstruction to estimate the volume of the food items [34].
To provide standard baselines for research work in the field of food recognition, Chen et al.
create a visual dataset of 101 foods from 11 fast food chains [6]. A larger visual dataset with
nearly 5000 food images that are organized into 11 classes is created by Anthimopoulos et al.
[3]. Up to now, more than 10 datasets have been created for the evaluation of food
recognition algorithms [9]. A group of researchers claim to have created a dataset of Chinese
food but its link is not yet available [8]. An accurate and efficient method that is able to
recognize the special characteristics of Chinese food is needed as Chinese food becomes a
worldwide favorite. A typical reason for this need is that Chinese food prefers to retain the
ingredient’s original color, smell, and taste. Color and texture features of the food ingredients
play a more important role in the recognition process of Chinese food than foods from other
cultures.

Many research papers in the literature address food classification as a unique pattern
recognition problem while others focus on constructing applicable solutions for dietary
evaluation. Extracting efficient features and identifying suitable classifiers are the two main
challenges for pattern recognition and have attracted great attention from researchers. Martin
et al. describe a selected food image region only with the color features, and use
Mahalanobis distance for classification [20]. Zhu et al. extract the average value of the pixel
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intensity along with two color components and Gabor filtering based texture features to
characterize the local specifics of the segmented food image region [34]. A feature vector
composed of 48 texture features and 3 color features is sent to a support vector machine
(SVM) to classify the food image region. Anthimopoulos et al., after a comprehensive
comparison, use an optimized system to compute dense local features using the scale-
invariant feature transform (SIFT) in the HSV color space. A visual dictionary of 10,000
visual words is built with the hierarchical K-means clustering [3]. A linear SVM is used as
the classifier and obtains the classification accuracy of approximately 78%. Yang et al.
investigates the spatial relationships between different ingredients and describe the food item
by calculating pairwise statistics between local features computed over a soft pixel-level
segmentation of the image [30]. The statistics accumulated in a multi-dimensional histogram
is used as a feature vector for an SVM.

Among the reported methods, BoF based algorithms that construct global features from the
local patches of the food image are employed more often than others in recent years. Kawano
et al. extract the color histogram and SURF-based bag-of-features to describe the segmented
food image region and use a linear SVM for classification [14]. Giovany et al. describe the
image patch with SIFT-feature and formed statistical features for classification. K-Dimensional
tree and backpropagation neural network are used as the classifier to recognize Indonesian
food [12]. Farinell et al. treat food recognition as a problem of texture classification and
employ a bag of visual words model to represent the food image [11]. They process the food
image with a bank of rotation and scale invariant filters. The responses of the filters are
clustered by k-means to build a code book of textons. The learned class-based textons are
collected in a single visual dictionary and the food image is represented as distributions of
visual words. SVM is used for classification.

Convolutional Neural Networks have shown great success in many pattern recognition
applications. Kawano et al. combine features generated from Deep Convolutional Neural
Network and conventional hand-crafted image features to obtain high food recognition
accuracy [15]. Zhang et al. use a five-layer convolutional neural network for food
recognition and achieve an accuracy of 80.8% on the fruit dataset and 60.9% on the
multi-food dataset [32]. Phat et al. compare CNNs with traditional methods with hand-
crafted features for Vietnamese food recognition and conclude that CNNs outperform
hand-crafted techniques by a significant margin [26]. Ciocca et al. perform comprehen-
sive comparisons among different visual descriptors, including high dimensional color
feature vectors, Gabor features, dual tree complex wavelet transform features, and CNNs
features [9]. Test results show that the CNNs-based visual descriptors have the best
recognition accuracy.

Although CNNs are generated by an iterative optimization process through
backpropagation, most steps of CNNs are closely related to traditional pattern recogni-
tion procedures [10, 23]. For example, the convolutional layers of CNNs serve for the
purpose similar to image filtering by which the features of edge or texture are extracted
from a selected patch. The fully-connected layers of CNNs can be regarded as
performing a linear transformation on its input information. The concept of pooling
layers can also be considered as the counterpart of feature construction in the BoF
method [1]. Considering the promising results obtained by the BoF model and the
success of CNNs, this paper proposes a CNN architecture for Chinese food recognition
and compares and correlates the two approaches in an attempt to identify factors that
influence recognition accuracy.
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3 A CNN structure for Chinese food recognition

A typical BoF method describes each patch of the food image with designed descriptors
which characterize the local specifics of the input image. Local descriptors of the food
image are used to generate a visual dictionary by means of learning algorithms. By using
clustering or sparse coding, each local descriptor of the food image is represented as a
combination of several visual words from the learned dictionary. The food image is
represented by a histogram of visual words, which ignores the order of the visual words
and considers only how frequently they appear. The histogram of visual words works as
the global features of the food image. BoF methods use the global features of the training
images and their corresponding labels to train a classifier. BoF methods obtain promising
results in food recognition. However, the BoF pipeline has rarely been considered in a
unified optimization framework [15]. In this paper, we propose to use a small and
efficient Convolutional Neural Network to recognize Chinese foods and investigate the
relationship between the sparse coding based BoF model and the Convolutional Neural
Network to show the BoF pipeline serves for the purpose similar to the structure of
CNNs. CNNs are able to achieve superior performance in food recognition because all
steps in CNNs that involve the filters are optimized in a unified framework during
training.

As shown in Fig. 1, the proposed CNN architecture consists of two phases of
operations, i.e., feature extraction and feature combination for classification. The feature
extraction phases contains k convolutional layers, each of which is followed by a
Rectified Linear Unit (ReLU). Suppose the input to the feature extraction phase is an
image resized to N1 × N1. For the i-th layer of convolution, filters with the size of ni × ni
are employed to extract the features of its corresponding layer, thus forms mi feature
maps with the size of (Ni − ni + 1) × (Ni − ni + 1).The feature combination and classifica-
tion phase is formed with fully-connected layers, which combine the features extracted
by the feature extraction phase and output a distribution over different class labels
through a layer of Softmax.

Fig. 1 The proposed CNN architecture for food recognition
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3.1 Feature extraction

The feature extraction phase computes the responses of the learned filters to the input image.
For the convenience of description, we suppose the input image is with the size ofN1 ×N1. The
first layer of convolution employs a set ofm1 learned filters of the size of n1 × n1 to generate m1

feature maps. Suppose the convolution operation is performed within the range of the input
image and the stride of the convolution is set to one, the output will be m1 size-reduced
(depending on the size of the filters) feature maps, each of which is with the size of (N1 − n1 +
1) × (N1 − n1 + 1). The convolution operation is shown in Fig. 2a.

If the input image x is rearranged from an N1 ×N1 matrix into a N2
1 � 1 vector, the

convolution of a filter with the input image to generate a feature map can be expressed as
the production of a matrix, MT, and x, as shown in Fig. 2b. Each row of MTis composed of a
shifted version of the filter kernel (gray cells in Fig. 2b) and some filled zeros (white cells in
Fig. 2b). Thus,MTx represents the production of x and a series of shifted versions of the filter
kernel. The result of production has (N1 − n1 + 1)2 elements, which represents the filter
response to the input signal x.

The generation of a feature map (one filter convolves with the input image) of the first
convolutional layer is expressed as the production of a matrix,MT, and x. The generation ofm1

feature maps can also be expressed by the production of a matrixWT
1 and the input x arranged

as a 1D signal. The convolution matrixWT
1 is the concatenation of the matrices that are used to

generate individual feature maps. As shown in Fig. 2c, the number of columns ofWT
1 equals to

the length of input signal N2
1 for the multiplication betweenWT

1 and x. The number of rows of

WT
1 is m1(N1 − n1 + 1)2 since m1 filter kernels are employed and the convolution is performed

within the range of the input image. We construct the rows ofWT
1 according to the shift of the

filter kernels in the same manner as convolution. In Fig. 2c, as an example, the number of filter
kernels m1 is 5, the size of each filter kernel is 3 × 3 (n0 = 3), and the size of input image is 6 ×

6 (N1 = 6). The top 5 rows ofWT
1 show the filters without shift, while the next 5 rows show all

the filters right shifted one pixel, and so on. Thus, the convolution operation of the m1 filters
with the input image is expressed as the measurement result of x byW1, which is equivalent to
the inner product between the input image and the visual dictionary in the coding step of the
BoF pipeline.

The first convolution layer is followed by a nonlinear function ReLU, which provides a bias
denoted by b1. Thus, the operation of the first layer of CNN can be expressed as Eq. (1)

f xð Þ ¼ ReLU WT
1 xþ b1

� � ¼ max 0;WT
1 xþ b1

� � ð1Þ
The structure of the feature extraction phase can be extended to multiple layers to acquire
higher-level abstracted features. Suppose that we have k convolutional layers, the operation of
feature extraction phase is expressed as Eq. (2).

f xð Þ ¼ ReLU WT
k⋯ReLU WT

2 ReLU WT
1 xþ b1

� �þ b2
� �

⋯þ bk
� � ð2Þ

Fig. 2 Explanation of the function of a convolution layer. a The first convolution layer uses m1 kernels and
generates m1 feature maps; b Each individual convolution of a learned filter with the input image (the generation
of a feature map) can be viewed as the production of a matrix,MT, and the input image signal x; c The operation
of the entire convolution layer (or the generation of m1 feature maps) can be viewed as the production of a
convolution matrix WT

1 and the input x

b
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where WT
k denotes the k-th convolutional matrix constructed from mk filters of length

mk − 1nk × nk. The kernel size is nk × nk for the k-th convolutional layer and mk − 1 is the
number of feature maps the (k − 1)-th convolutional layer output. The matrix size for

the kth layer is mk−1N 2
k � mk Nk−nk þ 1ð Þ 2. Figure 3 shows the structure of the feature

extraction phase when k layers are employed.

3.2 Feature combination and classification

The feature combination and classification phase is composed of fully-connected layers. The
purpose of using fully-connected layers is to combine high-level features extracted from the
previous phase to classify the input image into its corresponding class as specified by the
training dataset. This operation combines the extracted features and maps them to l discrete
values, where l represents the number of categories or classes to be classified. During training,
the goal is to minimize the defined cross-entropy classification loss, as shown in Eq. (3),

CE ¼ −
1

M
∑
M

i¼1
log pi;Lk

� � ð3Þ

where M is the number of samples. Suppose a sample xi with the label Lk is provided to the
network, pi;Lk is the probability that the softmax predicts xi belongs to the class labelled withLk.
This step is carried out in the fully-connected network as shown in Fig. 1.

4 Experiments and discussion

We created an image dataset of Chinese food for testing the proposed CNN architecture. The
performance of the proposed network was verified with a 5-fold cross validation in experi-
ments. We investigated different configurations and the parameters of the architecture, and
their corresponding influence on classification performance. We also compared the perfor-
mance of the proposed architecture with four BoF methods.

4.1 Dataset

The images in the newly created Chinese food dataset were captured with three mobile phones:
HM NOTE 1S CMCC of XIAOMI with Android 4.4.4 (KTU84P), iPhone 6 of Apple with
IOS 9.3.2 (13F69), and MEIZU MX5 with Android 5.1. All food images were taken at the
canteen of SYSU-CMU Shunde International Joint Research Institute under nature lighting,

Fig. 3 The illustration of Eq. (2) for a multi-layer feature extraction architecture
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and in stainless steel food containers. The photos were taken randomly on different dates and
at different times, which provided more diverse brightness, view angle, and background. The
constructed dataset of Chinese food image contains 8734 images from 25 food categories.
Each category had over 300 samples. The captured Chinese food images were segmented and
resized to 256 × 256 before training. Figure 4 shows food image examples in the dataset.
Figure 5 lists the number of samples for each food class. We use the letter ‘c’ following the
class name to indicate the class number.

4.2 Model and performance

We trained our model using a batch size of 256 for 2000 iterations corresponding to roughly 58
epochs. This took 8 min on one NVIDIA GTX Titan X(Pascal) GPU. We evaluated the
performance of our CNN architecture in terms of classification accuracy and visualized the
learned filters of the first convolutional layer to show what important features the architecture
was able to extract. We also investigated the impact of the network depth on classification
accuracy. Furthermore, we evaluated our model by calculating precision rate and recall rate.

4.2.1 Classification accuracy

Our first CNN architecture, CNN_5, contained three convolutional layers and two fully-
connected layers. The first convolutional layer used 64 kernels of size 9 × 9 with a stride of
4 pixels, followed by a 3 × 3 max pooling layer with a stride of 2. It produced 64 feature maps
of size 31 × 31 after the max-pooling. The second convolutional layer used 128 filters of size
5 × 5 with a stride of 1 pixel and padding of 2 pixels on the edges. The corresponding pooling
layer had the same specification as the first one. The size of feature maps became 15 × 15 after
the second convolutional-max pooling layer. The third convolutional layer used 256 filters of
size 3 × 3 with stride of 1. The pooling layer followed the third convolutional layer also had the
same configuration as the previous two. The output of the third pooling layer finally provided
high level visual features of the input food image for classification. Our first CNN architecture
had two fully-connected layers after the three convolutional layers. The first fully-connected

Fig. 4 Sample images of the dataset
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layer had 512 output neurons followed by a dropout layer. The second fully-connected layer
had 25 output neurons and was followed by a softmax output layer with 25 outputs for the 25
food categories.

We evaluated the performance of the proposed architecture in terms of recognition accuracy
within the top-1 and top-5 candidates by employing 5-fold cross validation. As shown in
Table 1, five-fold classification top-1 accuracy was 97.22% and top-5 accuracy was 99.87%.

4.2.2 Visualization of learned filters

Figure 6 shows the kernels learned by the first convolutional layer. The network learned a
variety of kernels with different information, e.g., color and edge detectors in different
directions, which extract low-level features of the food image.

4.2.3 Impact of network depth

Normally, the performance of a CNN benefits from the increased network layers. To compare
the performance of CNNs with different number of layers, we designed another two architec-
tures with three and seven layers, and named them CNN_3 and CNN_7, respectively.

290

300

310

320

330

340

350

360

370

380

Fig. 5 Number of samples for each food class

Table 1 Five-fold classification
accuracy in top-1 and top-5 of
CNN_5

Fold number Top-1 Top-5

Fold 1 97.84% 100.00%
Fold 2 95.80% 99.80%
Fold 3 97.72% 100.00%
Fold 4 97.54% 99.61%
Fold 5 97.22% 99.93%
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CNN_3 contained one convolutional-max pooling layer and two fully-connected layers.
The convolutional layer had 48 kernels with the size of 9 × 9 pixels. The first fully-connected
layer of CNN_3 contained 128 output neurons, while the second fully-connected layer had 25
output neurons. CNN_7 had four convolutional layers followed by three fully-connected
layers. The four convolutional layers were configured to have 256, 512, 768, 512 kernels,
whose sizes were set to 11 × 11, 5 × 5, 3 × 3, and 3 × 3, respectively. The three fully-connected
layers of CNN_7 were set with 2048, 1024 and 25 output neurons respectively. All these
networks used Rectified Linear Units (ReLUs) as their activate functions and shared the same
configured parameters for the max-pooling layers, i.e., the kernel size and stride were set to
3 × 3, and 2, respectively.

We compared the performance of these three models and investigated the impact of the
depth of the network. The results are listed in Table 2. Table 2 shows that CNN_7 obtained the
best performance with top-1 accuracy of 98.96% and top-5 accuracy of 99.95%. CNN_5
achieved the second best performance of accuracy, 97.12% for top-1 and 99.86% for top-5.
The obtained accuracy of CNN_3, which has only one convolutional layer, was the worst in
the experiment. Experiment results show the model size of CNN_7 is the largest (65,756 KB),
while the model size of CNN_3 is the smallest (2, 027 KB) in the comparison. The model size
of CNN_5 is 27,155 KB.

Fig. 6 Filters learned by the first convolutional layer

Table 2 Comparison of classification accuracy of different network depths

Model Depth Top-1 Top-5

CNN_3 3 layers 74.83% 97.39%
CNN_5 5 layers 97.12% 99.86%
CNN_7 7 layers 98.96% 99.95%
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Although the performance was improved by increasing the depth of the network, a CNN
with moderate number of layers is preferred if real-time performance is desired. As shown in
Table 2, CNN_5 and CNN_7 obtained comparable accuracy. The training time for CNN_5
was much faster than CNN_7 because fewer layers were required to be trained.

4.2.4 Precision and recall evaluation

We evaluated the performance of the trained CNN_5 model in terms of precision, recall and
accuracy, using a test set which was randomly chosen from our dataset. The definitions of
precision, recall and accuracy are formulated as Eq. (4) to (6).

precision ¼ Tp

Tp þ Fp
ð4Þ

recall ¼ Tp

Tp þ Fn
ð5Þ

accuracy ¼ Tp þ Tn

Tp þ Tn þ Fp þ Fn
ð6Þ

where Tp denotes the number of true positive, Fp the number of false positive, Fn the number of
false negative, and Tn the number of true negative. Table 3 shows our evaluation. For each
input image, the proposed CNN architecture outputs a probability corresponding to each class
of food in the test. If the highest probability for a class is greater than the threshold τ, the image
will be classified to be that class. The threshold can be adjusted for different tradeoffs between
false positives and false negatives. Table 3 shows the best accuracy of 96.75% was achieved
with a 100% recall rate and a 96.80% precision rate.

4.3 Comparison and discussion

In this section, we compare CNN_5’s performance to a series of BoF methods and three
mainstream networks: AlexNet, GoogLeNet and NIN, on our dataset of food images. We also
demonstrate the performance of the proposed CNN_5 on the UEC-FOOD100 dataset [21].

The BoF methods were implemented following the scheme provided in [3]. Color
histograms (HistRGNorm), and four texture features, including Gabor feature, HOG feature,

Table 3 Performance evaluation of CNN_5 model for different threshold values τ

Threshold τ 0.99 0.90 0.80 0.60 0.40

True positives 1329 1558 1607 1649 1665
True negatives 52 36 27 13 1
False positives 4 20 29 43 55
False negatives 336 107 58 16 0
Precision 99.70% 98.73% 98.23% 97.46% 96.80%
Recall 79.82% 93.57% 96.51% 99.03% 100%
Accuracy 80.24% 92.62% 94.94% 96.57% 96.75%
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LBP feature, and SURF feature, were employed as local feature descriptors. Rather than used
k-means or hierarchical k-means, K-SVD [1] was employed in the BoF methods to learn the
visual dictionary for representing local descriptors. As shown in Table 4, CNN_5 achieved a
superior classification accuracy of 97.12% among the five methods compared.

We also compared CNN_5 with three other mainstream networks: AlexNet,
GoogLeNet, and NIN [17, 29] on our dataset. Experiment results show that AlexNet
achieved the top-1 accuracy of 97.32% while GoogLeNet achieved top-1 accuracy of
97.84%, which are comparable with the performance of the proposed CNN_5 architec-
ture. Besides the classification accuracy, we also compared their trained model size.
CNN_5’s model size is 27,155 KB, approximately 10% of the AlexNet (275,791 KB)
and less than half of the GoogLeNet (57,872 KB). The model sizes of AlexNet and
GoogLeNet are much larger than CNN_5 because of the complexity of their architec-
tures. AlexNet has eight layers including five convolutional layers and three fully-
connected layers. The last four convolutional layers of AlexNet all have more than
256 convolutional kernels and its three fully-connected layers have 4096, 4096 and 25
neurons respectively for classifying 25 classes. Although it applies pooling and drop-out
operation to reduce the number of parameters, AlexNet is a complex model compared to
CNN_5. Similar analysis can be done on the GoogLeNet. As for NIN, it has the smallest
model size (8103 KB) among the above four networks because of its simple architecture,
but its classification accuracy is the worst (94.67%), which is 2.45% lower than CNN_5.
For food recognition on a resource-limited system, the memory requirement and com-
putational cost are critical [29]. Compared to the other three networks, the proposed
CNN_5 architecture obtained promising recognition accuracy with a much smaller model
size (Table 5).

We tested the proposed CNN_5 architecture on UEC-FOOD100 dataset [21] as well.
UEC-FOOD100 is a 100-class food image dataset including around 100 or more images
for each category and bounding box information which indicates food location within each
photo. We compared the test result of CNN_5 with other reported works [15, 16] using
UEC-FOOD100. As shown in Table 6, the proposed CNN_5 achieved the top-1 accuracy
of 60.90% and top-5 accuracy of 86.15%, which are higher than the accuracy of other
compared methods except BFV + DCNN^ [15]. BFV + DCNN^ integrated DCNN features
and hand-crafted features that are specialized for the dataset. As stated in [15], classifica-
tion using only CNN feature would not work well in dataset without enough samples for
training, that is the reason it combined hand-crafted features for classification on UEC-
FOOD100, which has only approximately 100 images in each category (total 12,905
images for 100 categories). Considering our method does not include any hand-crafted
features, we compared CNN_5 to the DCNN of [15] and obtained a better performance in
terms of classification accuracy. Additionally, DCNN has five convolutional layers and
three fully-connected layers, and is much more complex than our proposed CNN_5. The

Table 4 Comparison of recogni-
tion accuracy of CNN_5 with four
BoF methods

Method Accuracy

CNN_5 97.12%
HistRGNorm + Gabor 83.90%
HistRGNorm + HOG 84.00%
HistRGNorm + LBP 83.85%
HistRGNorm + SURF 85.00%
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experiment shows that our CNN_5 model can keep a good balance between complexity
and recognition accuracy on a more challenging dataset.

Chen et al. [7] and Yanai et al. [28] reported good experimental results on UEC Food-100
dataset. The employed AlexNet contains an 8-layer architecture, and the employed VGG has a
16-layer architecture [7]. The method presented [28] is a fine-tuned DCNN with 8 layers
which was pre-trained with 2000 categories in the ImageNet including 1000 food-related
categories. All three proposed architectures are deeper and more complex than our CNN_5.
We performed experiments by deepen our model to 7 (CNN_7) and 9 (CNN_9) layers, and
tested them on the UEC FOOD-100 dataset. CNN_7 model, as descripted in Subsection 4.2.3,
achieved top-1 accuracy of 66.41% and top-5 accuracy of 88.40%. CNN_9 had six
convolutional layers and three fully-connected layers. The five convolutional layers were
configured to have 96, 256, 384, 384, 256, 256 kernels, whose sizes were set to11 × 11, 5 ×
5, 3 × 3, 3 × 3, 3 × 3 and 3 × 3, respectively. It has three fully-connected layers with 4096, 4096
and 100 output neurons respectively. The CNN_9 model achieved top-1 accuracy of 75.80%
and top-5 accuracy of 92.95%, which were comparable to the AlexNet reported in [7] and
Yanai et al. in [28]. VGG still holds the highest performance for its complex network
architecture. The experiment results show that our method is able to achieve higher recognition
accuracy by deepening our architecture. However, we prefer to keep a compact model for
resource-limited systems such as Nvidia’s Jetson TX2 for instance, as the memory requirement
and computational cost are critical in resources-limited systems for which complicated archi-
tectures are not suitable.

Table 5 Comparison of accuracy and model size on our dataset with other works

Method Accuracy Model size

CNN_3 74.83% 2,027 KB
CNN_5 97.12% 27,155 KB
CNN_7 98.96% 65,756 KB
NIN 94.67% 8,103 KB
GoogLeNet 97.84% 57,872 KB
AlexNet 97.32% 275,791 KB

Table 6 Comparison of recognition accuracy on UEC-FOOD100 with other works

Method Top-1 Top-5

CNN_5 60.90% 86.15%
CNN_7 66.41% 88.40%
CNN_9 75.80% 92.95%
DCNN [15] 57.87% /
RootHoG FV [15] 50.14% /
Color FV [15] 53.04% /
FV+DCNN [15] 72.26% 92.00%
SURF-BoF + ColorHistogram [16] 42.0% 68.2%
HOG Patch-FV+Color Patch-FV [16] 51.9% 79.2%
AlexNet [7] 75.62% 92.43%
VGG [7] 81.31% 96.72%
Yanai et al. [28] 78.77% 95.15%
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5 Conclusion

This paper presents a small and efficient convolutional neural network architecture for Chinese
food recognition. Experiment results show that the proposed CNN_5 architecture achieved
top-1 accuracy of 97.12% and top-5 accuracy of 99.86% on the newly created Chinese food
dataset. Our architecture’s model size is approximately 10 and 50% of the AlexNet and
GoogLeNet, respectively. This small model size is critical for performing food recognition
on a resource-limited system such as a smartphone. We also verify that the network depth
impacts recognition accuracy. Increasing network depth does improve accuracy slightly but for
the price of network complexity and slower classification speed. We compare our CNN_5
architecture with four BoF methods which require experts to design or select useful descriptors
to characterize the specifics of the food image. We confirm that CNNs learn efficient filters
implicitly and automatically with their intrinsic unified optimization and thus achieve superior
performance for Chinese food recognition. We also attempted to correlate the proposed CNN
architecture with traditional BoF methods. We conclude that CNNs actually perform every step
of BoF in convolutional layers and fully-connected layers and provide a unified optimization
to the entire network.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.
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